Research article

Odd symmetry of ground state solutions for the Choquard system

  • Received: 06 February 2023 Revised: 07 May 2023 Accepted: 08 May 2023 Published: 23 May 2023
  • MSC : 35J20, 35J05, 35J60

  • This paper is dedicated to the following Choquard system:

    $ \left\{\begin{aligned}&-\Delta u+u = \frac{2p}{p+q}\bigl(I_\alpha\ast|v|^q\bigr)|u|^{p-2}u, \\ &-\Delta v+v = \frac{2q}{p+q}\bigl(I_\alpha\ast|u|^p\bigr)|v|^{q-2}v, \\ &u(x)\to 0, \ \ v(x)\to 0\ \ \hbox{as}\ |x|\to\infty, \end{aligned}\right. $

    where $ N\geq 1 $, $ \alpha\in(0, N) $ and $ \frac{N+\alpha}{N} < p, \ q < 2_*^\alpha $, in which $ 2_*^\alpha $ denotes $ \frac{N+\alpha}{N-2} $ if $ N\geq3 $ and $ 2_*^\alpha: = \infty $ if $ N = 1, \ 2 $. $ I_\alpha $ is a Riesz potential. We obtain the odd symmetry of ground state solutions via a variant of Nehari constraint. Our results can be looked on as a partial generalization to results by Ghimenti and Schaftingen (Nodal solutions for the Choquard equation, J. Funct. Anal. 271 (2016), 107).

    Citation: Jianqing Chen, Qihua Ruan, Qian Zhang. Odd symmetry of ground state solutions for the Choquard system[J]. AIMS Mathematics, 2023, 8(8): 17603-17619. doi: 10.3934/math.2023898

    Related Papers:

  • This paper is dedicated to the following Choquard system:

    $ \left\{\begin{aligned}&-\Delta u+u = \frac{2p}{p+q}\bigl(I_\alpha\ast|v|^q\bigr)|u|^{p-2}u, \\ &-\Delta v+v = \frac{2q}{p+q}\bigl(I_\alpha\ast|u|^p\bigr)|v|^{q-2}v, \\ &u(x)\to 0, \ \ v(x)\to 0\ \ \hbox{as}\ |x|\to\infty, \end{aligned}\right. $

    where $ N\geq 1 $, $ \alpha\in(0, N) $ and $ \frac{N+\alpha}{N} < p, \ q < 2_*^\alpha $, in which $ 2_*^\alpha $ denotes $ \frac{N+\alpha}{N-2} $ if $ N\geq3 $ and $ 2_*^\alpha: = \infty $ if $ N = 1, \ 2 $. $ I_\alpha $ is a Riesz potential. We obtain the odd symmetry of ground state solutions via a variant of Nehari constraint. Our results can be looked on as a partial generalization to results by Ghimenti and Schaftingen (Nodal solutions for the Choquard equation, J. Funct. Anal. 271 (2016), 107).



    加载中


    [1] N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248 (2004), 423–443. https://doi.org/10.1007/s00209-004-0663-y doi: 10.1007/s00209-004-0663-y
    [2] J. Chen, B. Guo, Blow up solutions for one class of system of Pekar-Choquard type nonlinear Schrödinger equation, Appl. Math. Comput., 186 (2007), 83–92. https://doi.org/10.1016/j.amc.2006.07.089 doi: 10.1016/j.amc.2006.07.089
    [3] P. Chen, X. Liu, Ground states of linearly coupled systems of Choquard type, Appl. Math. Lett., 84 (2018), 70–75. https://doi.org/10.1016/j.aml.2018.04.016 doi: 10.1016/j.aml.2018.04.016
    [4] M. Ghimenti, J. V. Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal., 271 (2016), 107–135. https://doi.org/10.1016/j.jfa.2016.04.019 doi: 10.1016/j.jfa.2016.04.019
    [5] M. Clapp, D. Salazar, Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407 (2013), 1–15. https://doi.org/10.1016/j.jmaa.2013.04.081 doi: 10.1016/j.jmaa.2013.04.081
    [6] C. Gui, H. Guo, On nodal solutions of the nonlinear Choquard equation, Adv. Nonlinear Stud., 19 (2019), 677–691. https://doi.org/10.1515/ans-2019-2061 doi: 10.1515/ans-2019-2061
    [7] C. Gui, H. Guo, Nodal solutions of a nonlocal Choquard equation in a bounded domain, Commun. Contemp. Math., 23 (2019), 1950067. https://doi.org/10.1142/S0219199719500676 doi: 10.1142/S0219199719500676
    [8] Z. Huang, J. Yang, W. Yu, Multiple nodal solutions of nonlinear Choquard equations, Electron. J. Differ. Equations, 2017 (2017), 1–18.
    [9] X. Li, S. Ma, G. Zhang, Existence and qualitative properties of solutions for Choquard equations with a local term, Nonlinear Anal., 45 (2019), 1–25. https://doi.org/10.1016/j.nonrwa.2018.06.007 doi: 10.1016/j.nonrwa.2018.06.007
    [10] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93–105. https://doi.org/10.1002/sapm197757293 doi: 10.1002/sapm197757293
    [11] E. Lieb, M. Loss, Graduate studies in mathematics, American Mathematical Society, 2001.
    [12] P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063–1072. https://doi.org/10.1016/0362-546X(80)90016-4 doi: 10.1016/0362-546X(80)90016-4
    [13] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223–283. https://doi.org/10.1016/S0294-1449(16)30422-X doi: 10.1016/S0294-1449(16)30422-X
    [14] L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455–467. https://doi.org/10.1007/s00205-008-0208-3 doi: 10.1007/s00205-008-0208-3
    [15] I. M. Moroz, R. Penrose, P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Class. Quantum Grav., 15 (1998), 2733–2742. https://doi.org/10.1088/0264-9381/15/9/019 doi: 10.1088/0264-9381/15/9/019
    [16] V. Moroz, J. Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Differ Equations, 254 (2013), 3089–3145. https://doi.org/10.1016/j.jde.2012.12.019 doi: 10.1016/j.jde.2012.12.019
    [17] V. Moroz, J. Schaftingen, Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. https://doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007
    [18] V. Moroz, J. Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557–6579.
    [19] V. Moroz, J. Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005. https://doi.org/10.1142/S0219199715500054 doi: 10.1142/S0219199715500054
    [20] V. Moroz, J. Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773–813. https://doi.org/10.1007/s11784-016-0373-1 doi: 10.1007/s11784-016-0373-1
    [21] S. I. Pekar, Untersuchung über die elektronentheorie der kristalle, Akademie Verlag, 1954. https://doi.org/10.1515/9783112649305
    [22] J. V. Schaftingen, Interpolation inequalities between Sobolev and Morrey-Campanato spaces: a common gateway to concentration-compactness and Gagliardo-Nirenberg interpolation inequalities, Port. Math., 71 (2014), 159–175. https://doi.org/10.4171/PM/1947 doi: 10.4171/PM/1947
    [23] J. V. Schaftingen, J. Xia, Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent, J. Math. Anal. Appl., 464 (2018), 1184–1202. https://doi.org/10.1016/j.jmaa.2018.04.047 doi: 10.1016/j.jmaa.2018.04.047
    [24] G. Vaira, Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011), 263–297. https://doi.org/10.1007/s11587-011-0109-x doi: 10.1007/s11587-011-0109-x
    [25] G. Vaira, Existence of bound states for Schrödinger-Newton type systems, Adv. Nonlinear Stud., 13 (2013), 495–516. https://doi.org/10.1515/ans-2013-0214 doi: 10.1515/ans-2013-0214
    [26] T. Wang, H. Guo, Existence and nonexistence of nodal solutions for Choquard type equations with perturbation, J. Math. Anal. Appl., 480 (2019), 123438. https://doi.org/10.1016/j.jmaa.2019.123438 doi: 10.1016/j.jmaa.2019.123438
    [27] M. Willem, Minimax theorems, Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1
    [28] N. Xu, S. Ma, R. Xing, Existence and asymptotic behavior of vector solutions for linearly coupled Choquard-type systems, Appl. Math. Lett., 104 (2020), 106249. https://doi.org/10.1016/j.aml.2020.106249 doi: 10.1016/j.aml.2020.106249
    [29] M. Yang, J. C. D. Albuquerque, E. D. Silva, M. L. Silva, On the critical cases of linearly coupled Choquard systems, Appl. Math. Lett., 91 (2018), 1–8. https://doi.org/10.1016/j.aml.2018.11.005 doi: 10.1016/j.aml.2018.11.005
    [30] X. Zhong, C. Tang, Ground state sign-changing solutions for a class of subcritical Choquard equations with a critical pure power nonlinearity in $\mathbb R^N$, Comput. Math. Appl., 76 (2018), 23–34. https://doi.org/10.1016/j.camwa.2018.04.001 doi: 10.1016/j.camwa.2018.04.001
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1042) PDF downloads(64) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog