Let $ a, b $ and $ k $ be integers greater than $ 1 $. For a tuple of $ k $ consecutive integers sorted in ascending order, denoted by $ T_k $, call $ T_k $ a nice $ k $-tuple if each integer of $ T_k $ is a sum of two powers of the form $ a^x+y^b $ and a perfect $ k $-tuple if each integer of $ T_k $ is a sum of two perfect powers of the form $ a^x+y^b $, respectively. Let $ N_k(a, b) $ be the number of nice $ k $-tuples and $ \widetilde{N}_k(a, b) $ be the number of perfect $ k $-tuples. For a given $ (a, b) $, it is quite interesting to find out $ N_k(a, b) $ and $ \widetilde{N}_k(a, b) $. In 2020, Lin and Cheng obtained the formula for $ N_k(2, 2) $. The main goal of this paper is to establish the formulas for $ N_k(a, b) $ and $ \widetilde{N}_k(a, b) $. Actually, by using the method of modulo coverage together with some elementary techniques, the formulas for $ \widetilde{N}_k(2, 2) $, $ \widetilde{N}_k(3, 2) $ and $ N_k(3, 2) $ are derived.
Citation: Zhen Pu, Kaimin Cheng. Consecutive integers in the form $ a^x+y^b $[J]. AIMS Mathematics, 2023, 8(8): 17620-17630. doi: 10.3934/math.2023899
Let $ a, b $ and $ k $ be integers greater than $ 1 $. For a tuple of $ k $ consecutive integers sorted in ascending order, denoted by $ T_k $, call $ T_k $ a nice $ k $-tuple if each integer of $ T_k $ is a sum of two powers of the form $ a^x+y^b $ and a perfect $ k $-tuple if each integer of $ T_k $ is a sum of two perfect powers of the form $ a^x+y^b $, respectively. Let $ N_k(a, b) $ be the number of nice $ k $-tuples and $ \widetilde{N}_k(a, b) $ be the number of perfect $ k $-tuples. For a given $ (a, b) $, it is quite interesting to find out $ N_k(a, b) $ and $ \widetilde{N}_k(a, b) $. In 2020, Lin and Cheng obtained the formula for $ N_k(2, 2) $. The main goal of this paper is to establish the formulas for $ N_k(a, b) $ and $ \widetilde{N}_k(a, b) $. Actually, by using the method of modulo coverage together with some elementary techniques, the formulas for $ \widetilde{N}_k(2, 2) $, $ \widetilde{N}_k(3, 2) $ and $ N_k(3, 2) $ are derived.
[1] | E. Catalan, Note extraite d'une lettre adressée à l'éditeur par Mr. E. Catalan, Répétiteur à l'école polytechnique de Paris, J. Reine Angew. Math., 1844 (2009), 192. https://doi.org/10.1515/crll.1844.27.192 doi: 10.1515/crll.1844.27.192 |
[2] | R. Tijdeman, On the equation of Catalan, Acta. Arithmetca, 29 (1976), 197–209. |
[3] | M. Mignotte, Catalan's equation just before 2000, Number theory (Turku, 1999), Berlin: de Gruyter, 2001. |
[4] | P. Mihailescu, Primary cyclotomic units and a proof of Catalans conjecture, J. Reine Angew. Math., 572 (2004), 167–196. |
[5] | A. Herschfeld, The equation $2^x-3^y = d$, Bull. Amer. Math. Soc., 42 (1936), 231–234. http://dx.doi.org/10.1090/S0002-9904-1936-06275-0 doi: 10.1090/S0002-9904-1936-06275-0 |
[6] | S. Pillai, On the inequality $0 < a^x-b^y\le n$, J. India. Math. Soc., 19 (1931), 1–11. |
[7] | S. Pillai, On the equation $a^x-b^y = c$, J. India. Math. Soc., 2 (1936), 119–122. |
[8] | S. Pillai, On the equation $2^x-3^y = 2^X-3^Y$, Bull. Calcutta Math. Soc., 37 (1945), 18–20. |
[9] | C. Ko, On a problem of consecutive integers, J. Sichuan Uni., 2 (1962), 1–6. |
[10] | Z. Lin, K. Cheng, A note on consecutive integers of the form $2^x+y^2$, AIMS Math., 5 (2020), 4453–4458. http://dx.doi.org/10.3934/math.2020285 doi: 10.3934/math.2020285 |