Citation: Bingzhou Chen, Jiagui Luo. On the Diophantine equations $x^2-Dy^2=-1$ and $x^2-Dy^2=4$[J]. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170
[1] | L. E. Dickson, History of the Theory of Numbers, Vol. II, Washington, Carnegie Institution of Washington, 1920. |
[2] | D. H. Lehmer, An extended theory of Lucas' functions, Ann. Math., 31 (1930), 419-448. |
[3] | J. G. Luo, Extensions and applications on störmer theory, Journal of Sichuan University, 28 (1991), 469-474. |
[4] | J. G. Luo, P. Z. Yuan, On the solutions of a system of two Diophantine equations, Science China Mathematics, 57 (2014), 1401-1418. |
[5] | J. G. Luo, A. Togbe, P. Z. Yuan, On some equations related to Ma's conjecture, Integers, 11 (2011), 683-694. |
[6] | J. G. Luo, P. Z. Yuan, Square-classes in Lehmer sequences having odd parameters and their applications, Acta Arith., 127 (2007), 49-62. |
[7] | H. Mei, L. Mei, Q. fan, et al. Extensions of störmer theorem, Journal of Yuzhou University, 12 (1995), 25-27. |
[8] | P. Ribenboim, The Book of Prime Number Records, Springer-Verlag, New York, 1989. |
[9] | J. G. Luo, On the Diophantine equation $\frac{ax^m\pm 1}{ax\pm 1}=y^n$ and $\frac{ax^m\pm 1}{ax\pm 1}=y^n+1$, Chinese Annals of Mathematics, Series A, 25 (2004), 805-808. |
[10] | Q. Sun, P. Z. Yuan, On the Diophantine equatins $(ax^n-1)/(ax-1)=y^2$ and $(ax^n+1)/(ax+1)=y^2$, Journal of Sichuan University, 26 (1989), 20-24. |
[11] | P. Z. Yuan, A note on the divisibility of the generalized Lucas sequences, Fibonacci Quarterly, 40 (2002), 153-156. |
[12] | P. Mihäilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167-196. |