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Abstract: In this paper, using only the Störmer theorem and its generalizations on Pell’s equation
and fundamental properties of Lehmer sequence and the associated Lehmer sequence, we discuss the
Diophantine equations x2 − Dy2 = −1 and x2 − Dy2 = 4. We obtain the relation between a positive
integer solution (x, y) of the Diophantine equation x2 − Dy2 = −1 and its fundamental solution if there
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there is exactly two prime divisors of y not dividing D.
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1. Introduction

Throughout our paper, we let Z,N denote the sets of integers and positive integers respectively. We
recall that the minimal positive solution of Diophantine equation

x2 − Dy2 = C,C ∈ {−1, 4} (1.1)

is one of all positive integer solutions (x, y) such that x + y
√

D is the smallest. One can easily find that
the condition is equivalent to saying that (x, y) is a positive integer solutions of (1.1) such that x and y
are the smallest. If C = −1, then such a solution is also called the fundamental solution of (1.1).

Störmer had ever obtained an important property on Pell’s equation, called Störmer theory and
stated it as follow

Theorem 1.1. (Störmer theorem [1]) Let D be a positive nonsquare integer. Let (x1, y1) be a positive
integer solution of Pell equation

x2 − Dy2 = ±1. (1.2)

If every prime factor of y1 divides D, then x1 + y1
√

D is the fundamental solution.
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Consider the Diophantine equation
kx2 − ly2 = 1, (1.3)

where k > 1, l are relatively prime positive integers such that kl is not square. Qi Sun, Pingzhi yuan
obtained the similar result with Störmer theorem.

Theorem 1.2. [10] Let (x, y) be a positive integer solution of Diophantine equation (1.3).
(i) If every prime factor x divides k, then

x
√

k + y
√

l = ε

or
x
√

k + y
√

l = ε3,

and x = 3sx1, 3s + 3 = 4kx2
1, 3 6 |x1, s ∈ N, 2|s, where ε = x1

√
k + y1

√
l is the minimal positive solution

of equation (1.3).
(ii) If every prime factor of y divides l, then

x
√

k + y
√

l = ε

or
x
√

k + y
√

l = ε3,

and y = 3sy1, 3s − 3 = 4ly2
1, 3 6 |y1, s ∈ N, 2 6 |s.

Using the method of [10], Jiagui Luo proved the following

Theorem 1.3. [3] Let (x, y) be a positive integer solution of Diophantine equation

kx2 − ly2 = 2, (1.4)

where k, l are odd positive integers such that kl is not square.
(i) If every prime factor of x divides k, then

x
√

k + y
√

l = ε

or
x
√

k + y
√

l
√

2
= (

ε
√

2
)3,

and x = 3sx1, 3s + 3 = 2kx2
1, where ε = x1

√
k + y1

√
l is the minimal positive solution of equation (1.4),

s ∈ N.
(ii) If every prime factor of y divides l, then

x
√

k + y
√

l = ε

or
x
√

k + y
√

l
√

2
= (

ε
√

2
)3,

and y = 3sy1, 3s − 3 = 2ly2
1, s ∈ N.
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Theorem 1.4. [3] Let (x, y) be a positive integer solution of Diophantine equation

kx2 − ly2 = 4, (1.5)

where k, l are odd positive integers such that kl is not square.
(i) If every prime factor of x divides k, then x

√
k + y

√
l = ε is the minimal solution of equation (1.5)

except for the case (k, l, x, y) = (5, 1, 5, 11).
(ii) If every prime factor of y divides l, then x

√
k + y

√
l = ε is the minimal solution of equation (1.5).

Remark From the proofs of Theorem 1.2, 1.3, 1.4 in [3, 10], one can easily find that the above
Theorems are also true if every prime divisor of x divides one of k and x1, so are done if every prime
divisor of y divides one of l and y1.

In 2011, Luo, Togbe and Yuan obtained the following

Theorem 1.5. [5] Let D be a positive nonsquare integer such that the Diophantine equation

x2 − Dy2 = 4, (1.6)

is solvable in odd integers x and y. Let (x, y) be a positive integer solution of Pell equation (1.6) with
y = pny′, where p is a prime not dividing D and n ∈ N. If every prime factor of y′ divides D, then
x+y
√

D
2 = ε

2 or ( ε2 )2 or ( ε2 )3 except for the case (x, y,D) = (123, 55, 5), where x1 + y1
√

D = ε is the
minimal positive solution of (1.6).

In this paper, we prove the following

Theorem 1.6. Let D be a positive nonsquare integer. Let (x, y) be a positive integer solution of Pell
equation

x2 − Dy2 = −1, (1.7)

with y = pny′, where p is a prime not dividing D and n ∈ N. If every prime factor of y′ divides D, then
x + y

√
D = ε or εq, where x1 + y1

√
D = ε is the fundamental solution of (1.7) and q is an odd prime

which is not equal to p.

Theorem 1.7. Let (x, y) be a positive integer solution of Pell equation with y = pn1
1 pn2

2 y′, where both
p1 and p2 are primes not dividing D with p1 < p2 and n1, n2 ∈ N. If every prime divisor of y′ divides
D, then x + y

√
D = ε or εq or εq2

, where x1 + y1
√

D = ε is the fundamental solution of (1.7) and q is
an odd prime which is not equal to p1 and p2.

Theorem 1.8. Let (x, y) be a positive integer solution of Pell equation (1.6) with y = pn1
1 pn2

2 y′, where
both p1 and p2 are primes not dividing D with p1 < p2 and n1, n2 ∈ N. If every prime factor of y′

divides D, then x+y
√

D
2 = ε

2 or ( ε2 )2 or ( ε2 )3 or ( ε2 )4 or ( ε2 )6 or ( ε2 )q, where x1 + y1
√

D = ε is the minimal
solution of (1.6), q is an odd prime different from p1 and p2.

We organize this paper as follows. In Section 2, we present some lemmas which are needed in the
proofs of our main results. Consequently, in Sections 3 to 5, we give the proofs of Theorem 1.6 to 1.8
respectively.
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2. Lemmas

In this section, we present some lemmas that will be used later.

Lemma 2.1. [10] All positive integer solutions of equation (1.7) are given by

x + y
√

D = (x1 + y1

√
D)n, n ∈ N, 2 6 |n.

Lemma 2.2. [3] All positive integer solutions of equation (1.6) are given by

x + y
√

D
2

= (
x1 + y1

√
D

2
)n, n ∈ N, 2 6 |n.

Let R > 0, Q be nonzero coprime integers with R − 4Q > 0. Let α and β be the two roots of the
trinomial x2 −

√
Rx + Q. The Lehmer sequence {Pn(R,Q)} and the associated Lehmer sequence

{Qn(R,Q)} with parameters R and Q are defined as follows:

Pn = Pn(R,Q) =

{
(αn − βn)/(α − β), 2 6 |n,

(αn − βn)/(α2 − β2), 2|n

and

Qn = Qn(R,Q) =

{
(αn + βn)/(α + β), 2 6 |n,
αn + βn, 2|n

For simplicity, in this paper we denote (αdr − βdr)/(αd − βd) and (αr − βr)/(α − β) by Pr,d and Pr

respectively. Lehmer sequences and associated Lehmer sequences have many interesting properties
and often raise in the study of exponential Diophantine equations. It is not difficult to see that Pn

and Qn are both positive integers for all positive integers n. The details can be seen in the references
[2, 8, 11].

Lemma 2.3. [2] Let m, n be positive integers and d = gcd(m, n). We have

1. gcd(Pm, Pn) = Pd.
2. gcd(Qm,Qn) = Qd if m/d and n/d are odd, and 1 or 2 otherwise.
3. gcd(Pm,Qn) = Qd if m/d is even, and 1 or 2 otherwise.
4. Let p be an odd prime. If p2|(α − β)2, then ordp(Pn) = ordp(n).
5. For odd integers r and d, we have gcd(Pr,d, Pd)|r.

Lemma 2.4. [2, 4] If 2|Pn, then we have

1. R = 4k,Q = 2l + 1, n = 2h, or
2. R = 2k,Q = 2l + 1, n = 4h, or
3. R = 4k ± 1,Q = 2l + 1, n = 3h.

Lemma 2.5. [6] Assume that R and Q are all odd. If Qn = ku2, k|n, then n = 1, 3, 5. If Qn = 2ku2, k|n,
then n = 3.

Lemma 2.6. [7] Let D be a positive nonsquare integer. Let (x, y) be a positive integer solution of Pell
equation

x2 − Dy2 = 1, (2.1)

with y = pny′, where p is a prime not dividing D and n ∈ N. If every prime divisor of y′ divides D, then
x + y

√
D = ε or ε2 or ε3, where x1 + y1

√
D = ε is the fundamental solution of (2.1).

AIMS Mathematics Volume 4, Issue 4, 1170–1180.



1174

Lemma 2.7. [12] The Diophantine equation

xm − yn = 1,m, n ∈ N,m > 1, n > 1 (2.2)

has only the positive integer solution (x, y,m, n) = (3, 2, 2, 3).

Lemma 2.8. [9] Let (x, y) be a positive integer solution of Diophantine equation (1.7). If every prime
divisor of y divides y1, then x + y

√
D = ε, where ε = x1 + y1

√
D is the fundamental solution of

equation (1.7).

3. Proof of Theorem 1.6

By Lemma 2.1 we know that
x + y

√
D = (x1 + y1

√
D)m (3.1)

for some odd integer m. If m = 1, there is nothing to do. Hence we may restrict ourself to m > 1. Let
α = x1 + y1

√
D, β = x1 − y1

√
D and define

xt + yt

√
D = (x1 + y1

√
D)t, t ∈ N.

We write m = m1qr, where q is a prime factor of m, gcd(m1, q) = 1, r ∈ N. By Lemma 2.8 we have
p dos not divide y1. We contend that p divides Pq. For otherwise every prime factor of yq = y1Pq

divides D by the assumption. It follows from Theorem 1.1 that q = 1. This leads to a contradiction.
By Lemma 2.3 we know that gcd(Pm1 , Pq) = Pgcd(m1,q) = P1 = 1. This implies that every prime factor
of ym1 = y1Pm1 divides D because of ym1 |ym = y = pny′. Thus we obtain m1 = 1 again by Theorem 1.1.
Therefore, we have m = qr. It is obvious that q , p since

Pq =

(q−1)/2∑
r=0

(
q

2r + 1

)
xq−2r−1

1 (Dy2
1)r.

If r > 1, then

Pq,q =

(q−1)/2∑
r=0

(
q

2r + 1

)
xq−2r−1

q (Dy2
q)r. (3.2)

By Lemma 2.3, we know that gcd(Pq, Pq,q)|q. Therefore we have p does not divide Pq,q, and thus every
prime factor P of Pq,q divides D. Then we get from (3.2) that P|qxq−1

q , hence P = q. If q > 3, we
contend that Pq,q = q. Otherwise we find from (3.2) that q2|qxq−1

q which is impossible. In another
point, if q > 3, then we have

Pq,q =

(q−1)/2∑
r=0

(
q

2r + 1

)
xq−2r−1

q (Dy2
q)r > q.

This leads to a contradiction. So we obtain that q = 3, whence 3|D. Since x2
q − Dy2

q = −1, we get
−1 = (−1|3) = 1, which is impossible. It follows that r = 1. This completes the proof of Theorem 1.6.
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4. Proof of Theorem 1.7

By Lemma 2.1 we know that
x + y

√
D = (x1 + y1

√
D)m (4.1)

for some odd integer m. It is enough to prove the result for the case m > 1 and p1 6 |y1, p2 6 |y1 by
Theorem 1.6 and Lemma 2.8. Let α = x1 + y1

√
D, β = x1 − y1

√
D and define

xt + yt

√
D = (x1 + y1

√
D)t, t ∈ N.

We write m = m1qr, where q is a prime divisor of m, gcd(m1, q) = 1, r ∈ N.
We first prove that m1 = 1. Otherwise m1 > 1, we get from Theorem 1.1 that p1|Pm1 , p2|Pqr or

p2|Pm1 , p1|Pqr . Without loss of generality, we assume that p1|Pm1 , p2|Pqr . Then we get from Lemma 2.3
that gcd(Pm1 , Pqr ) = Pgcd(m1,qr) = P1 = 1. Therefore we get from Theorem 1.6 that qr = q , p2 and that
m1 = p is an odd prime other than p1. So m = pq and

y′pn1
1 pn2

2 = ypq = y1PqPp,q = y1PpPq,p. (4.2)

Let P be an arbitrary prime factor of Pq. It is easy to see that P , p1 because of p1|Pp and gcd(Pp, Pq) =

Pgcd(p,q) = P1 = 1. If P , p2, then we have P|D by assumption. Hence we get from

Pq =

(q−1)/2∑
r=0

(
q

2r + 1

)
xq−2r−1

1 (Dy2
1)r (4.3)

that P|qx
q−1

2
1 . It follows that P = q, whereas q2 does not divide Pq. Conversely, if q|D, we can easily get

from (4.3) that ordq(Pq) = 1. We have shown that Pq = qλpt
2, where λ = 1 or 0 depending q|D or q 6 |D

and t ≤ n2. Let Q be an arbitrary prime factor of Pq,p different from p1 and p2. Then we have Q|D by
assumption. Hence we get from

Pq,p =

(q−1)/2∑
r=0

(
p

2r + 1

)
xq−2r−1

p (Dy2
p)r (4.4)

that Q|qx
q−1

2
1 . This implies that Q = q, whereas q2 does not divide Pq,p. Conversely, if q|D, we can also

get from (4.4) that ordq(Pq,p) = 1. Similarly we can prove that Pp = pµps
1, where µ = 1 or 0 depending

p|D or p 6 |D and s ≤ n1. A prime number P which is not equal to p1 and p2 divides Pp,q if and only if
P = p and p|D with the property ordp(Pp,q) = 1. On the other hand, by Lemma 2.3(4),(5), we know
that gcd(Pq,p, Pp)|q, gcd(Pp,q, Pq)|p and

ordp1(Pq,p) = ordp1(q) =

{
0 q , p1,

1 q = p1.
ordp2(Pp,q) = ordp2(p) =

{
0 p , p2,

1 p = p2.

Therefore we get from (4.2) that

q , p1, p , p2, Pq = qpn2
2 , q|D, Pp,q = ppn1

1 , Pp = ppn1
1 , p|D, Pq,p = qpn2

2 (4.5)

or
q , p1, p , p2, Pq = qpn2

2 , q|D, Pp,q = pn1
1 , Pp = pn1

1 , p 6 |D, Pq,p = qpn2
2 (4.6)
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or
q , p1, p , p2, Pq = pn2

2 , q 6 |D, Pp,q = ppn1
1 , Pp = ppn1

1 , p|D, Pq,p = pn2
2 (4.7)

or
q , p1, p , p2, Pq = pn2

2 , q 6 |D, Pp,q = pn1
1 , Pp = pn1

1 , p 6 |D, Pq,p = pn2
2 (4.8)

or
q , p1, p = p2, Pq = qpn2−1

2 , q|D, Pp2,q = p2 pn1
1 , Pp2 = pn1

1 , Pq,p2 = qpn2
2 (4.9)

or
q , p1, p = p2, Pq = pn2−1

2 , q 6 |D, Pp2,q = p2 pn1
1 , Pp2 = pn1

1 , Pq,p2 = pn2
2 (4.10)

or
q = p1, p , p2, Pp1 = pn2

2 , Pp,p1 = ppn1
1 , Pp = ppn1−1

1 , p|D, Pp1,p = p1 pn2
2 (4.11)

or
q = p1, p , p2, Pp1 = pn2

2 , Pp,p1 = pn1
1 , Pp = pn1−1

1 , p 6 |D, Pp1,p = p1 pn2
2 (4.12)

or
q = p1, p = p2, Pp1 = pn2−1

2 , Pp2,p1 = p2 pn1
1 , Pp2 = pn1−1

1 , Pp1,p2 = p1 pn2
2 . (4.13)

Each of equation (4.5), (4.6), (4.7) and (4.8) implies that Pq = Pq,p, which is impossible. If p1 > p2,
then we get from (4.9) that

yp2 = Pp2y1 = pn1
1 y1 ≥ p1y1, x2

p2
= Dy2

p2
− 1 > p1(Dy2

1 − 1) = p1x2
1.

Hence

qpn2
2 = Pq,p2 =

(q−1)/2∑
r=0

(
q

2r + 1

)
xq−2r−1

p2
(Dy2

p2
)r >

p1

(q−1)/2∑
r=0

(
q

2r + 1

)
xq−2r−1

1 (Dy2
1)r = p1Pq = p1qpn2−1

2 > qpn2
2 ,

which is impossible. If p1 < p2, then we get from (4.9) that

yq = Pqy1 = qpn2−1
2 y1 ≥ p2y1, x2

q = Dy2
q − 1 > p2(Dy2

1 − 1) = p2x2
1.

Hence

p2 pn1
1 = Pp2,q =

(p2−1)/2∑
r=0

(
p2

2r + 1

)
xp2−2r−1

q (Dy2
q)r >

p2

(p2−1)/2∑
r=0

(
p2

2r + 1

)
xp2−2r−1

1 (Dy2
1)r = p2Pp2 = p2 pn1

1 ,

which is also impossible. Similarly we can prove that equations (4.10), (4.11) and (4.12) cannot
satisfied. For (4.13), without loss of generality, we assume that p1 > p2. Then we have that

yp2 = Pp2y1 = pn1−1
1 y1 ≥ p1y1, x2

p2
= Dy2

p2
− 1 > p2

1(Dy2
1 − 1) = p2

1x2
1.
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Hence

p1 pn2
2 = Pp1,p2 =

(p1−1)/2∑
r=0

(
pp1

2r + 1

)
xp1−2r−1

p2
(Dy2

p2
)r >

p2
1

(p1−1)/2∑
r=0

(
pp1

2r + 1

)
xp1−2r−1

1 (Dy2
1)r = p2

1Pp1 = p2
1 pn2−1

2 > p1 pn2
2 ,

which is impossible. Therefore m1 = 1,m = qr as desired.
We now prove r ≤ 2. Otherwise r > 2, then we must have p1|Pq2 , p2|Pq2 by Theorem 1.6 and

Pq,q2 =

(q−1)/2∑
r=0

(
q

2r + 1

)
xq−2r−1

q2 (Dy2
q2)r. (4.14)

Since gcd(Pq,q2 , Pq2)|q, hence p1 6 |Pq,q2 , p2 6 |Pq,q2 . And thus every prime factor P of Pq,q2 divides D.
Then we get from (4.14) that P|qxq−1

q2 , and so P = q. If q > 3, we contend that Pq,q2 = q. Otherwise we

find from (4.14) that q2|qxq−1
q2 which is impossible. In another point, if q > 3, then we have

Pq,q2 =

(q−1)/2∑
r=0

(
q

2r + 1

)
xq−2r−1

q2 (Dy2
q2)r > q.

This leads to a contradiction. So we obtain that q = 3, whence 3|D. Since x2
q − Dy2

q = −1, we get
−1 = (−1|3) = 1, which is impossible. Thus r ≤ 2 as desired. The proof of Theorem 1.7 is complete.

5. Proof of Theorem 1.8

It is enough to prove the result for the case of p1 not dividing y1 and p2 not dividing y1 by the
Remark of Theorem 1.4 and Theorem 1.6. By Lemma 2.2, we know that

x + y
√

D
2

= (
x1 + y1

√
D

2
)m (5.1)

for some positive integer m. If m = 1, there is nothing to do. Hence we may restrict ourself to m > 1.
Let α =

x1+y1
√

D
2 , β =

x1−y1
√

D
2 and define

xt + yt
√

D
2

=

 x1 + y1
√

D
2

t

, t ∈ N.

Case 1: We assume 2|m. We write m = 2m1. From (5.1) we get

x + y
√

D
2

= (
xm1 + ym1

√
D

2
)2.

Hence
xm1ym1 = pn1

1 pn2
2 y′. (5.2)

Since x2
m1
− Dy2

m1
= 4, we have that gcd(xm1 , ym1) = 1 or 2. If gcd(xm1 , ym1) = 1, then we have

either xm1 = pn1
1 , ym1 = pn2

2 y′, or xm1 = pn2
2 , ym1 = pn1

1 y′. It follows that ym1 satisfies the condition of
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Theorem 1.5. Therefore we obtain that m1 = 1 or 2 or 3, whence m = 2 or 4 or 6. If gcd(xm1 , ym1) = 2,
then we have either

xm1 = 2n1−1, ym1 = 2pn2
2 y′ (5.3)

or
xm1 = 2pn2

2 , ym1 = 2n1−1y′. (5.4)

From (5.3), we get that Qm1 = 2t. This implies that m1 = 3 by Lemma 2.5. So we get that x1|2n1−1 = x3,
which is impossible since x1 is an odd greater than 1. From (5.4), we get that m1 = 3 by Lemma 2.4
and Theorem 1.5, whence m = 6. The result is true.

Case 2: Now we assume 2 does not divide m. We write m = m1qr, where q is a prime factor of
m, gcd(m1, q) = 1, r ∈ N. We divide the proof into three cases.

We first prove that m1 = 1. Otherwise m1 > 1, by Theorem 1.4 we get that p1|Pm1 , p2|Pqr or
p2|Pm1 , p1|Pqr . Without loss of generality, we assume that p1|Pm1 , p2|Pqr . Then by Lemma 2.3, we have
gcd(Pm1 , Pqr ) = Pgcd(m1,qr) = P1 = 1. Hence we have that p2 does not divide Pm1 and that p1 does
not divide Pqr . So both ym1 = Pm1y1 and yqr = Pqr y1 satisfy the condition of Theorem 1.5. We have
m = m1qr = 15,D = 5. But a simple calculation shows that y = y15 = 23 · 5 · 11 · 31 · 61. Thus we have
now shown that m1 = 1.

We now prove that r = 1 and gcd(q, p1 p2) = 1 when q > 3. We claim gcd(q, p1 p2) = 1. Otherwise
without loss generality, we may assume p1 = q|yqr = Pq,qr−1yqr−1 . Since

Pq,qr−1 =

(q−1)/2∑
j=0

(
q

2 j + 1

)
(xqr−1/4)q−2 j−1(Dy2

qr−1/4) j,

so we have p1|yqr−1(Dy2
qr−1/4)

q−1
2 . It follows that p1|yqr−1 . Continue this step. We will get that

p1|y1(Dy2
1/4)

q−1
2 , and so p1|y1, which contradicts with the beginning assumption. Hence

gcd(q, p1 p2) = 1, as desired. If r > 1, then we have p1|Pq, p2|Pq by Theorem 1.5. By Lemma 2.3, we
know that gcd(Pqr−1,q, Pq)|qr−1. It follows that p1 does not divide Pqr−1,q and p2 does not divide Pqr−1,q.
Hence every prime factor of Pqr−1,q divides D. Since (Qqr−1,q, Pqr−1,q) is a positive integer solution of
Pell equation x2

qX2 − Dy2
qY2 = 4 and its minimal positive solution is (1, 1), we have Pqr−1,q = 1 by

Theorem 1.4, which is impossible. Thus we have now shown that r = 1.
Finally we prove that r = 1 and 3 does not divide p1 p2 when q = 3. It is easy to prove that 3 does

not divide p1 p2 similarly as above. If r > 1, then by Lemma 2.4 we have

2n1 pn2y′ = y3r = y1P3r−1,3P3, p1 = 2, p2 = p, 2|P3.

According to Lemma 2.3, we have gcd(P3r−1,3, P3)|3r−1. It follows that 2 does not divide P3r−1,3. Thus
we have that p|P3r−1,3 by Theorem 1.4. If p|P3, then we have that p = 3|P3 = Dy2

1 + 3, whence 3|D,
which contradicts with the assumption. And so we have p does not divide P3. If P is an odd prime
divisor of P3, then we have P|D. Hence P|P3 = Dy2

1 + 3, and so P = 3. Thus we have either

P3 = Dy2
1 + 3 = 2n1 , 3 6 |D (5.5)

or
P3 = Dy2

1 + 3 = 2n13t, 3|D. (5.6)
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(5.5) leads that x2
1 = Dy2

1 + 4 = 2n1 + 1. It follows that (x1, n1, y1,D) = (3, 3, 1, 5) by Lemma 2.7.
By a simple calculation we get that y9 = 23 · 17 · 19. This leads to a contradiction. (5.6) leads that
x2

1 = Dy2
1 + 4 = 2n13t + 1. It is easy to see either 2 does not divide n1 or 2 does not divide t. If

2 does not divide n1 and 2 does not divide t, then by x2
1 = 2n13t + 1 and Theorem 1.1 we get that

(x1, n1, t, y1,D) = (5, 3, 1, 1, 21). By a simple calculation we get that y9 = 23 · 32 · 37 · 109. This also
leads to a contradiction. If 2 does not divide n1 and 2 divides t, then by x2

1 = 2n13t + 1 and Lemma 2.6
we get

x1 + 2
n1−1

2 3
t
2
√

2 = 3 + 2
√

2 (5.7)

or
x1 + 2

n1−1
2 3

t
2
√

2 = (3 + 2
√

2)2 (5.8)

or
x1 + 2

n1−1
2 3

t
2
√

2 = (3 + 2
√

2)3. (5.9)

It is easy to see neither (5.7) nor (5.9) is true. From (5.8), we get that (x1, n1, t, y1,D) = (17, 5, 2, 1, 285).
By a simple calculation we get that y9 = 25 · 33 · 1621 · 4861. Hence we know that the case 2 does not
divide n1 and 2 divides t are impossible. If 2 divides n1 and 2 does not divide t, then by x2

1 = 2n13t + 1
and Lemma 2.6 we get we get

x1 + 2
n1
2 3

t−1
2
√

3 = 2 +
√

3 (5.10)

or
x1 + 2

n1
2 3

t−1
2
√

3 = (2 +
√

3)2 (5.11)

or
x1 + 2

n1
2 3

t−1
2
√

3 = (2 +
√

3)3. (5.12)

It is easy to see neither (5.10) nor (5.12) is true. From (5.11), we get that
(x1, n1, t, y1,D) = (7, 4, 1, 1, 45). By a simple calculation we get that y9 = 24 · 32 · 17 · 19 · 107. Hence
we have shown that 2 divide n1 and 2 does not divide t are also impossible. Therefore r = 1, as
desired. This finishes the proof of Theorem 1.8.
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