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Abstract: Let a, b and k be integers greater than 1. For a tuple of k consecutive integers sorted in
ascending order, denoted by Tk, call Tk a nice k-tuple if each integer of Tk is a sum of two powers
of the form ax + yb and a perfect k-tuple if each integer of Tk is a sum of two perfect powers of the
form ax + yb, respectively. Let Nk(a, b) be the number of nice k-tuples and Ñk(a, b) be the number of
perfect k-tuples. For a given (a, b), it is quite interesting to find out Nk(a, b) and Ñk(a, b). In 2020,
Lin and Cheng obtained the formula for Nk(2, 2). The main goal of this paper is to establish the
formulas for Nk(a, b) and Ñk(a, b). Actually, by using the method of modulo coverage together with
some elementary techniques, the formulas for Ñk(2, 2), Ñk(3, 2) and Nk(3, 2) are derived.
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1. Introduction

Catalan’s conjecture, one of the famous classical problems in number theory, was first enunciated
by Catalan [1] in 1844. It states that the equation

xp − yq = 1

has no solutions in positive integers x and y, other than 32 − 23 = 1, where p and q are different
prime numbers. In 1976, by applying the Gelfond-Baker method Tijdeman [2] succeeded in solving
Catalan’s conjecture (see Mignotte [3] for an excellent survey of developments). Thirty years later,
the conjecture was re-proved by Mihuailesc [4], who used completely different approaches with the
theory of cyclotomic fields. Also, in a series of papers in the 1930s and 1940s, some scholars (see, for
example, [5–8]) studied the solutions to the general equation

ax − by = c, (1.1)
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where a, b and c are fixed positive integers. Furthermore, in 1936 Pillai conjectured that the number of
positive integer solutions (a, b, x, y), with x ≥ 2, y ≥ 2, to (1.1) is finite, which is still open for all c > 1.

Let n be an integer. We say n is a power if n = xy for some nonnegative integers x and y, and a perfect
power if n = uv for some integers u and v with u ≥ 2 and v ≥ 2. Then, Pillai’s conjecture amounts
to saying that the distance between two consecutive terms in the sequence of all perfect powers tends
to infinity. In particular, Catalan’s conjecture is equivalent to the statement that no two consecutive
integers are perfect powers, other than 23 and 32. Note that there are no four consecutive integers with
all of them being perfect powers, since any set of four consecutive integers must contain one integer
congruent to 2 modulo 4 which cannot be a perfect power. Are there three consecutive integers with all
of them being perfect powers? In 1962, Ko [9], by supplying a sufficient and necessary condition for
the equation xp − yq = 1 to be solvable with positive integers x and y, showed that no three consecutive
integers are powers of other positive integers.

Naturally, one shall ask, for a given positive integer k with k ≥ 2, if there exist k consecutive
integers such that each of them is a sum of two powers (or two perfect powers)? If exist, how many
such k-tuples are there? In this paper, we concentrate the investigation on consecutive integers in a
fixed form and would like to give an answer to this question. Let a and b be integers no less than 2. Let
Tk = (t1, t2, · · · , tk) be a k-tuple of k consecutive integers, where ti+1 − ti = 1 for any 1 ≤ i ≤ k − 1. We
call Tk a nice k-tuple with type (a, b) if each integer of Tk is a sum of two powers of the form ax + yb

and a perfect k-tuple with type (a, b) if each integer of Tk is a sum of two perfect powers of the form
ax + yb. Let Nk(a, b) be the number of nice k-tuples with type (a, b) and Ñk(a, b) the number of perfect
k-tuples with type (a, b). It is interesting to study the formulas for Nk(a, b) and Ñk(a, b). In 2020,
Lin and Cheng [10] obtained the formula for Nk(2, 2). In this paper, by using the method of modulo
coverage together with some elementary techniques, we present the formulas for Ñk(2, 2), Ñk(3, 2) and
Nk(3, 2). To be more precise, we report the main results as follows.

Theorem 1.1. Let k be a positive integer with k ≥ 2. The following statements are true.

(a) Let Ñk(2, 2) and Ñk(3, 2) be the numbers of perfect k-tuples with type (2, 2) and (3, 2), respectively.
Then, we have

Ñk(2, 2) =

+∞, if k = 2,
0, if k ≥ 3.

, Ñk(3, 2) =

+∞, if k = 2,
0, if k ≥ 3.

(b) Let Nk(3, 2) be the number of nice k-tuples with type (3, 2), and we have

Nk(3, 2) =


+∞, if 2 ≤ k ≤ 3,
3, if k = 4,
1, if k = 5,
0, if k ≥ 6.

Moreover, the only 3 nice 4-tuples with type (3, 2) are (1, 2, 3, 4), (2, 3, 4, 5) and (25, 26, 27, 28),
and the only nice 5-tuple with type (3, 2) is (1, 2, 3, 4, 5).

The paper is organized as follows. First, in Section 2, we present some lemmas that will be used to
prove Theorem 1.1. Particularly, by figuring out the 3-adic representation for one of the variables, we
show that a Diophantine equation 32x + 2 · 3x + 9− 12 · 9y = (24z)2 in nonnegative integers x, y, z has no
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solution, other than (x, y, z) = (0, 0, 0) and (x, y, z) = (2, 1, 0). In Section 3, the proof of Theorem 1.1 is
given. Finally, in Section 4, two further research problems are raised for the interested.

2. Lemmas

In this section, some useful lemmas are presented. In fact, we first give the results for 2x + y2

(mod 8), 3x + y2 (mod 8) and 3x + y2 (mod 9), and then we determine the solvability of a
Diophantine equation.

Lemma 2.1. Let m and n be positive integers of the forms m = 3x + y2 and n = 2u + v2 with x, y, u and
v being nonnegative integers. The following statements are true.

(a) If u ≥ 2, then the set of the possible remainders of n modulo 8 is {0, 1, 4, 5}.

(b) The set of the possible remainders of m modulo 8 is {1, 2, 3, 4, 5, 7}. Precisely,

(i) m ≡ 1 (mod 8) if and only if x ≡ 0 (mod 2) and y ≡ 0 (mod 4);

(ii) m ≡ 2 (mod 8) if and only if x ≡ 0 (mod 2) and y ≡ ±1 (mod 4);

(iii) m ≡ 3 (mod 8) if and only if x ≡ 1 (mod 2) and y ≡ 0 (mod 4);

(iv) m ≡ 4 (mod 8) if and only if x ≡ 1 (mod 2) and y ≡ ±1 (mod 4);

(v) m ≡ 5 (mod 8) if and only if x ≡ 0 (mod 2) and y ≡ 2 (mod 4); and

(vi) m ≡ 7 (mod 8) if and only if x ≡ 1 (mod 2) and y ≡ 2 (mod 4).

(c) The set of the possible remainders of m modulo 9 equals {0, 1, 2, 3, 4, 5, 7, 9}. More concretely,

(i) m ≡ 0 (mod 9) if and only if x ≥ 2 and y ≡ 0 (mod 3);

(ii) m ≡ 1 (mod 9) if and only if x = 0 and y ≡ 0 (mod 3), or x = 1 and y ≡ ±4 (mod 9), or
x ≥ 2 and y ≡ ±1 (mod 9);

(iii) m ≡ 2 (mod 9) if and only if x = 0 and y ≡ ±1 (mod 9);

(iv) m ≡ 3 (mod 9) if and only if x = 1 and y ≡ 0 (mod 3);

(v) m ≡ 4 (mod 9) if and only if x = 1 and y ≡ ±1 (mod 9), or x ≥ 2 and y ≡ ±2 (mod 9);

(vi) m ≡ 5 (mod 9) if and only if x = 0 and y ≡ ±2 (mod 9);

(vii) m ≡ 7 (mod 9) if and only if x = 1 and y ≡ ±2 (mod 9), or x ≥ 2 and y ≡ ±4 (mod 9); and

(viii) m ≡ 8 (mod 9) if and only if x = 0 and y ≡ ±4 (mod 9).

In particular, if x ≥ 2, then the remainder of m modulo 9 runs over {0, 1, 4, 7}.

Proof. With some direct computations, the results are immediate. □

Lemma 2.2. The Diophantine equation

32x + 2 · 3x + 9 = 4 · 32y+1 + (24z)2 (2.1)

in nonnegative integers x, y and z does not have any solutions except for (x, y, z) = (0, 0, 0) and
(x, y, z) = (2, 1, 0).
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Proof. Suppose that (x, y, z) is a solution to Eq (2.1) with (x, y, z) , (0, 0, 0), (2, 1, 0). First of all, one
easily checks that (x, y, z) with 0 ≤ x ≤ 2 cannot be the solution to Eq (2.1). So, one lets x ≥ 3, y ≥ 0
and z ≥ 0 in the following. One then claims that

y + 2 ≤ x ≤ 2y. (2.2)

In fact, if y ≥ x − 1, one then checks that

(24z)2 = 32x + 2 · 3x + 9 − 4 · 32y+1 ≤ −
1
3
· 32x + 2 · 3x + 9 = −

1
3

(3x + 3)(3x − 9) < 0

since x ≥ 3, a contradiction. So, the first inequality of (2.2) holds. Next, from (2.1) one finds that

(3x + 1 − 24z)(3x + 1 + 24z) = 4 · 32y+1 − 8 > 0.

This implies 3x + 1− 24z > 0. Note that 3x + 1− 24z ≡ 2 (mod 4), and 3x + 1− 24z ≡ 1 (mod 3). This
implies that 3x + 1 − 24z ≥ 10. Therefore,

10 · 3x < (3x + 1 − 24z)(3x + 1 + 24z) = 4 · 32y+1 − 8 < 4 · 32y+1,

which implies that x < 2y + log3(6
5 ) = 2y + 0.165 · · · , that is, x ≤ 2y as desired. Then, it is immediate

from (2.2) that x ≥ 4. So, we only need to prove that Eq (2.1) has no solutions (x, y, z) for x ≥ 4, which
will be done in what follows. Let x ≥ 4, and rewrite (2.1) as

32x−2 + 2 · 3x−2 − 4 · 32y−1 = (8z + 1)(8z − 1). (2.3)

By (2.2), one has x − 2 < 2y − 1 < 2x − 2. Taking remainders of modulo 3x−2 both sides of (2.3), one
derives that

(8z + 1)(8z − 1) ≡ 0 (mod 3x−2).

It then follows that 8z + λ ≡ 0 (mod 3x−2) for some λ ∈ {±1}. Let

8z = t1 · 3x−2 − λ (2.4)

for a positive integer t1, and then (2.3) becomes

3x + 2 − 4 · 32y−x+1 = t1(t1 · 3x−2 − 2λ). (2.5)

It is also noted that 2y− x+ 1 < x− 2 < x. By taking remainders of modulo 32y−x+1 both sides of (2.5),
one then has that 2t1λ ≡ −2 (mod 32y−x+1), i.e., t1λ ≡ −1 (mod 32y−x+1). So, one may write

t1λ = t2 · 32y−x+1 − 1, (2.6)

where t2 is an integer having the same sign as λ. Putting (2.6) into (2.5), one deduces that

32x−2y−1 − 4 = t2
1 · 3

2x−2y−3 − 2t2, (2.7)

which implies that t2 ≡ 2 (mod 32x−2y−3). Now, let

t2 = t3 · 32x−2y−3 + 2, (2.8)

AIMS Mathematics Volume 8, Issue 8, 17620–17630.



17624

where either t3 = 0 or t3 is an integer having the same sign as t2. Substituting it into (2.7), we then
obtain t2

1 − 2t3 = 9. Suppose t3 = 0. One then finds t1 = 3, t2 = 2 and λ = 1. By (2.6), we arrive
at 3 = 2 ·32y−x+1 −1 ≥ 5, a contradiction. It then follows that x3

λ
is a positive integer. Now, putting (2.8)

and (2.6) into (2.4), we have that

8z =
t3

λ
· 32x−4 +

2
λ
· 32y−1 − 3x−2 − λ. (2.9)

Note that x3
λ

is a positive integer, and λ ∈ {±1}. It follows from (2.9) that

8z ≥ 32x−6 + 2
2x−7∑
k=0

3k.

Then, one deduces that

32x−2 + 2 · 3x−2−4 · 32y−1 + 1 < 32x−2 + 2 · 3x−2 + 1

<

32x−6 + 2
2x−7∑
k=0

3k

2

≤ (8z)2

for any x ≥ 6. This means that Eq (2.1) has no integral solution (x, y, z) with x ≥ 6. Let (4, y, z)
be a solution to (2.1), and then by (2.2) one has y = 2. This implies that z2 = 10, a contradiction.
Similarly, one can confirm that (5, y, z) cannot be a solution to Eq (2.1). Therefore, Eq (2.1) has no
integral solution (x, y, z) with x ≥ 4.

This finishes the proof of Lemma 2.2. □

3. Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1.
Proof of Theorem 1.1. First of all, we prove Item (a). Let k be an integer with k ≥ 2. From

Lemma 2.1 we know that there do not exist any perfect k-tuples with types (2, 2) and (3, 2) if k ≥ 3,
that is, Ñk(2, 2) = Ñk(3, 2) = 0 for any k ≥ 3. Now, let us compute Ñ2(2, 2), that is, the number of
solutions to the Diophantine equation

2x + y2 + 1 = 2u + v2 (3.1)

in integers x, y, u, v ≥ 2. For any nonnegative integer k, one observes that

2k ≡ Mk (mod 10), (3.2)

where

Mk =


2, if k ≡ 1 (mod 4),
4, if k ≡ 2 (mod 4),
8, if k ≡ 3 (mod 4),
6, if k ≡ 0 (mod 4).
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Let x be any positive integer with x ≡ 1 (mod 4) and x ≥ 9, and take u = x − 6. It then follows
from (3.2) that

505 ≤ 2x − 2u + 1 ≡ 5 (mod 10).

So, we can write
2x − 2u + 1 = 2x − 2x−6 + 1 = 5 · ∆x.

Clearly, ∆x =
2x−2x−6+1

5 is an odd integer no less than 101 depending on x. If one lets v = ∆x+5
2 and

y = ∆x−5
2 , then (3.1) is satisfied. It follows that2x +

 2x−2x−6+1
5 − 5

2

2

, 2x−6 +

 2x−2x−6+1
5 + 5

2

2 (3.3)

is indeed a perfect 2-tuple with type (2, 2). Note that

x 7→ 2x +

 2x−2x−6+1
5 − 5

2

2

is a one-to-one map from N to itself. Thus, there are infinitely many perfect 2-tuples with type (2, 2)
in the form (3.3). This implies that Ñ2(2, 2) = +∞. For the purpose of deriving Ñ2(3, 2), one needs to
consider another Diophantine equation

3m + yn + 1 = 2k + s2 (3.4)

in integers m, n, k, s ≥ 2. For any positive integer z, it is easy to see that

(m, n, s, t) =

4z,
34z−34z−1+1

5 − 5
2

, 4z − 1,
34z−34z−1+1

5 + 5
2


is a solution to (3.4). That is to say,34z +

 34z−34z−1+1
5 − 5

2

2

, 34z−1 +

 34z−34z−1+1
5 + 5

2

2 (3.5)

is a perfect 2-tuple with type (3, 2). Also, one checks that

z 7→ 34z +

 34z−34z−1+1
5 − 5

2

2

is one-to one from N to itself as well. So, there are infinitely many perfect 2-tuples with type (3, 2) as
the form in (3.5). It follows that Ñ2(3, 2) = +∞.

Next, we turn our attention to the proof of item (b). Let k be any positive integer with k ≥ 2. First,
it is immediate that N2(3, 2) = +∞ since N2(3, 2) ≥ Ñ2(3, 2) = +∞.

Second, let k = 3 and y be a nonnegative integer. Then, (y2 + 30, y2 + 2, y2 + 31) is a nice 3-tuple
with type (3, 2) if and only if the equation

y2 + 2 = u2 + 3v (3.6)
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in nonnegative integers y, u and v has at least one solution. Note that

y2 + 2 = u2 + 3v ⇔ y2 − u2 = 3v − 2⇔ (y + u)(y − u) = 3v − 2.

Then, one may take y + u = 3v − 2 and y − u = 1 and infer that

(y, u, v) =
(
3v − 1

2
,

3v − 3
2
, v

)
is a solution to (3.6) for any positive integer v. It then follows that(3v − 1

2

)2

+ 30,

(
3v − 3

2

)2

+ 3v,

(
3v − 1

2

)2

+ 31


is a nice 3-tuple with type (3, 2) for any positive integer v. Together with v 7→

(
3v−1

2

)2
+ 30 being

injective from Z+ to itself, this implies that there exist infinitely many nice 3-tuples with type (3, 2),
i.e., N3(3, 2) = +∞.

Third, let k = 4. Let (A, A + 1, A + 2, A + 3) be a nice 4-tuple with type (3, 2), and A = 3x0 + y2
0 with

x0, y0 being nonnegative integers. From Item (a) of Lemma 2.1, one knows that

(A, A + 1, A + 2, A + 3) ≡ (1, 2, 3, 4) or (2, 3, 4, 5) (mod 8).

Case 1. (A, A + 1, A + 2, A + 3) ≡ (1, 2, 3, 4) (mod 8). By Item (b-i) of Lemma 2.1, we have that x0

is even, and y0 ≡ 0 (mod 4). Now, we split all possible values of x0 into the following subcases.
Subcase 1.1. x0 = 0. Item (c) of Lemma 2.1 tells us that only three kinds of results for (A, A+1, A+

2, A + 3) modulo 9 would happen, that is,

(A, A + 1, A + 2, A + 3) ≡ (1, 2, 3, 4), or (2, 3, 4, 5), or (8, 0, 1, 2) (mod 9),

which will be handled one by one in what follows.
Subcase 1.1.1. (A, A + 1, A + 2, A + 3) ≡ (1, 2, 3, 4) (mod 9). Let

A + 1 = y2
0 + 2 = y2

1 + 3x1 ,

which is congruent to 2 modulo 9. It follows from Item (c-iii) of Lemma 2.1 that x1 = 0. Then, we
have

y2
1 − y2

0 = 1.

This gives us that y1 = 1 and y0 = 0. So, (A, A+ 1, A+ 2, A+ 3) = (1, 2, 3, 4). It is indeed a nice 4-tuple
with type (3, 2) since (1, 2, 3, 4) = (02 + 30, 12 + 30, 02 + 31, 12 + 31).

Subcase 1.1.2. (A, A + 1, A + 2, A + 3) ≡ (2, 3, 4, 5) (mod 9). Let A + 1 = y2
1 + 3x1 , that is,

y2
0 + 2 = y2

1 + 3x1 . (3.7)

Clearly, y2
1 + 3x1 ≡ 3 (mod 9). By Item (c-iv) of Lemma 2.1, one has x1 = 1. Then, (3.7) becomes

(y0 + y1)(y0 − y1) = 1, i.e., y0 = 1 and y1 = 0, contradicting y0 ≡ 0 (mod 4). Therefore, in this subcase
there are no nice 4-tuples with type (3, 2).
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Subcase 1.1.3. (A, A+ 1, A+ 2, A+ 3) ≡ (8, 0, 1, 2) (mod 9). Let A+ 3 = y2
3 + 3x3 . On the one hand,

y2
3 + 3x3 ≡ 4 (mod 8). It follows from Item (b-iv) of Lemma 2.1 that

x3 ≡ 1 (mod 2). (3.8)

On the other hand, one notes that y2
3 + 3x3 ≡ 2 (mod 9). By Item (c-iii) of Lemma 2.1, one then derives

that x3 = 0, a contradiction with (3.8). Thus, there does not exist any nice 4-tuple with type (3, 2) in
the subcase.

Subcase 1.2. x0 ≥ 2 is an even number. By Item (c) of Lemma 2.1, one checks that

(A, A + 1, A + 2, A + 3) ≡ (0, 1, 2, 3), or (1, 2, 3, 4), or (7, 8, 0, 1) (mod 9).

Then, we have the following discussions.
Subcase 1.2.1. (A, A + 1, A + 2, A + 3) ≡ (0, 1, 2, 3) (mod 9). Let A + 2 = 3x2 + y2

2. Note that

3x2 + y2
2 ≡ 3 (mod 8), and 3x2 + y2

2 ≡ 2 (mod 9).

It then follows from Items (b-iii) and (c-iii) of Lemma 2.1 that x2 ≡ 1 (mod 2) and x2 = 0, a
contradiction. So, in this subcase we have no nice 4-tuples with type (3, 2).

Subcase 1.2.2. (A, A+1, A+2, A+3) ≡ (1, 2, 3, 4) (mod 9). First, applying Item (c-ii) of Lemma 2.1
to the fact 3x0 + y2

0 ≡ 1 (mod 9), we know that

y0 ≡ ±1 (mod 9). (3.9)

Next, we let

A + 1 = y2
1 + 3x1 , (3.10)

which is congruent to 2 modulo 9. By Item (c-iii) of Lemma 2.1, one then has x1 = 0 and y1 ≡ ±1
(mod 9). Putting x1 = 0 into (3.10), one has y2

1 − y2
0 = 3x0 , i.e.,

(y1 + y0)(y1 − y0) = 3x0 . (3.11)

If x0 = 2, then (3.11) implies that
(y1, y0) = (3, 0), or (5, 4),

which contradicts (3.9). In the following, let x0 ≥ 4. By (3.11), one may let y1 + y0 = 3t and
y1 − y0 = 3x0−t with t ≤ x0 being a nonnegative integer. Note that x0 ≥ 4 and y0 , 0. Then, y0 =

3t−3x0−t

2
with 2 ≤ x0

2 < t ≤ x0. Write y0 =
3t−1

2 −
3x0−t−1

2 , and one computes that

y0 =

t−1∑
k=0

3k −

x0−t−1∑
j=0

≡ 0 (mod 9) if
x0

2
+ 1 ≤ t ≤ x0 − 2, (3.12)

y0 =

t−1∑
k=0

3k − 1 ≡ 3 (mod 9) if t = x0 − 1, and (3.13)

y0 =

t−1∑
k=0

3k ≡ 4 (mod 9) if t = x0. (3.14)
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Obviously, all the results of (3.12)–(3.14) contradict with (3.9). Hence, we have no nice 4-tuples with
type (3, 2) in this subcase.

Subcase 1.2.3. (A, A + 1, A + 2, A + 3) ≡ (7, 8, 0, 1) (mod 9). In this subcase, 3x0 + y2
0 ≡ 7 (mod 9),

which gives us y0 ≡ ±4 (mod 9). Let A + 1 = 3x1 + y2
1, i.e.,

3x0 + y2
0 + 1 = 3x1 + y2

1. (3.15)

Note that 3x1 + y2
1 ≡ 8 (mod 9). By Item (c-viii) of Lemma 2.1, one has x1 = 0. Then, (3.15)

can be simplified to y2
1 − y2

0 = 3x0 . If x0 = 2, one then deduces that y1 = 5 and y0 = 4. This
gives a nice 4-tuple (A, A + 1, A + 2, A + 3) = (25, 26, 27, 28) with type (3, 2), since (25, 26, 27, 28) =
(42 + 32, 52 + 30, 02 + 33, 52 + 31). Now, let x0 ≥ 4. As in Subcase 1.2.2, (3.12)–(3.14) can also be
derived. Note that y0 ≡ ±4 (mod 9). It then follows that only (3.14) would occur among (3.12)–(3.14).
So, we have

y0 =
3x0 − 1

2
and y1 =

3x0 + 1
2
,

implying that

(A, A + 1, A + 2, A + 3) =
(3x0 − 1

2

)2

+ 3x0 ,

(
3x0 + 1

2

)2

+ 30, A + 2,
(
3x0 + 1

2

)2

+ 31

 .
Let A + 2 = 3x2 + y2

2. We know that 3x2 + y2
2 ≡ 0 (mod 9) and 3x2 + y2

2 ≡ 3 (mod 8). It follows from
Items (b-iii) and (c-i) of Lemma 2.1 that y2 ≡ 0 (mod 12) and x2 ≡ 1 (mod 2). Write y2 = 12t and
x2 = 2k + 1 with t ≥ 0 and k ≥ 1 being integers. Hence, we have that (A, A + 1, A + 2, A + 3) is a
nice 4-tuple with type (3, 2) if and only if the equation(

3x0 − 1
2

)2

+ 3x0 + 2 = (12t)2 + 32k+1 (3.16)

in nonnegative integers x0, t, k with x0 ≥ 4 being even and k ≥ 1 has at least one solution. However,
Lemma 2.2 tells that (3.16) has no solutions. So, (A, A + 1, A + 2, A + 3) is not a nice 4-tuple with
type (3, 2) in this subcase.

Next, we discuss the second case.
Case 2. (A, A+ 1, A+ 2, A+ 3) ≡ (2, 3, 4, 5) (mod 8). In this case, A = 3x0 + y2

0 ≡ 2 (mod 8). From
Item (b-ii) of Lemma 2.1, one has x0 ≡ 0 (mod 2) and y0 ≡ ±4 (mod 4). Then, the following subcases
are considered.

Subcase 2.1. x0 = 0. Item (c) of Lemma 2.1 tells us that

(A, A + 1, A + 2, A + 3) ≡ (1, 2, 3, 4), (2, 3, 4, 5) or (8, 0, 1, 2) (mod 9).

First, we assume that (A, A + 1, A + 2, A + 3) ≡ (1, 2, 3, 4) (mod 9). If let A + 1 = 3x1 + y2
1,

then 3x1 + y2
1 ≡ 2 (mod 9). It follows from Item (c-iii) of Lemma 2.1 that x1 = 0. So, one derives that

y2
1 − y2

0 = 1, which implies that y0 = 0. This is impossible since y0 ≡ ±1 (mod 4).
Second, assume that (A, A + 1, A + 2, A + 3) ≡ (2, 3, 4, 5) (mod 9). Let A + 1 = 3x1 + y2

1, which
is 3 modulo 9. Then, by Item (c-iv) of Lemma 2.1, one has x1 = 1. Now, putting x1 = 1 and x0 = 0
into 3x0+y2

0+1 = 3x1+y2
1, one derives y1 = 0 and y0 = 1. This is to say (A, A+1, A+2, A+3) = (2, 3, 4, 5),

which is really a nice 4-tuple with type (3, 2) since (2, 3, 4, 5) = (30 + 12, 31 + 02, 31 + 12, 30 + 22).
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Finally, assume that (A, A+1, A+2, A+3) ≡ (8, 0, 1, 2) (mod 9). In this case, 3x0 +y2
0 ≡ 8 (mod 9).

It is implied from Item (c-viii) of Lemma 2.1 that

y0 ≡ ±4 (mod 9). (3.17)

Let A+ 3 = 3x3 + y2
3, which clearly is 2 modulo 9. Then, by Item (c-iii) of Lemma 2.1, one gets x3 = 0.

Substituting x0 = x3 = 0 into 3x0 +y2
0+3 = 3x3 +y2

3, one deduces that y2
3−y2

0 = 3. Consequently, y0 = 1,
and y3 = 2, which contradicts (3.17).

Subcase 2.2. x0 ≥ 2 is an even number. By Item (c) of Lemma 2.1 we have that

(A, A + 1, A + 2, A + 3) ≡ (0, 1, 2, 3), (1, 2, 3, 4) or (7, 8, 0, 1) (mod 9). (3.18)

Now, one claims that all the congruences in (3.18) cannot happen, so there is not any nice 4-tuple
with type (3, 2) in this subcase. First, suppose (A, A + 1, A + 2, A + 3) ≡ (0, 1, 2, 3) (mod 9). Let
A + 2 = 3x2 + y2

2, and we then know that 3x2 + y2
2 ≡ 4 (mod 8) and 3x2 + y2

2 ≡ 2 (mod 9). It follows
from Items (b-iv) and (c-iii) of Lemma 2.1 that x2 ≡ 1 (mod 2) and x2 = 0, a contradiction. Second,
suppose (A, A + 1, A + 2, A + 3) ≡ (1, 2, 3, 4) (mod 9). Let A + 1 = 3x1 + y2

1. Note that 3x1 + y2
1 ≡ 3

(mod 8) and 3x1 + y2
1 ≡ 2 (mod 9). From Items (b-iii) and (c-iii) of Lemma 2.1, one derives that x1 ≡ 1

(mod 2) and x1 = 0, a contradiction as well. Third, suppose (A, A + 1, A + 2, A + 3) ≡ (7, 8, 0, 1)
(mod 9). If A + 1 = 3x1 + y2

1, one then finds that 3x1 + y2
1 ≡ 3 (mod 8) and 3x1 + y2

1 ≡ 8 (mod 9). From
Items (b-iii) and (c-viii) of Lemma 2.1, it follows that x1 ≡ 1 (mod 2) and x1 = 0, still a contradiction.

Combining all cases above, we have that there are only three nice 4-tuples with type (3, 2). More
precisely, all of the nice 4-tuples with type (3, 2) are (1, 2, 3, 4), (2, 3, 4, 5) and (25, 26, 27, 28). From
this, we see that (1, 2, 3, 4, 5) is the only nice 5-tuple with type (3, 2), and there is no nice k-tuple with
type (3, 2) for any k ≥ 6.

The proof of Theorem 1.1 is complete. 2

4. Conclusions

The gaps in integer sequences are wide problems in number theory. The gap of primes |pn − pn+1|

is one of the most important topics in analytic Number Theory. In the field of Diophantine analysis,
there are many open questions on the gap of the powers |xm − yn|. In this paper, we considered the gap
|(ax1+yb

1)− (ax2+yb
2)|. In fact, we studied k-tuples of consecutive integers (a1, a2, · · · , ak) such that each

of them is the sum of powers. We used the method of modulo coverage together with some elementary
techniques to present the formulas for Ñk(2, 2), Ñk(3, 2) and Nk(3, 2). Note that in this paper we obtain
that Ñ2(2, 2) = +∞ and N2(3, 2) = +∞. However, we neither give all perfect 2-tuples with types (2, 2)
and (3, 2) nor present all nice k-tuples with type (3, 2) when k ≥ 6. It seems a little difficult to do this.
Here, we post a problem as future research.

Problem 4.1. Let a, b and k be integers with k, a, b ≥ 2. Let Nk(a, b) be the number of nice k-tuples
with type (a, b).

(A) Find (a, b) such that Nk(a, b) can be completely determined.

(B) For fixed a, b and k, figure out the set of nice k-tuples with type (a, b) completely if Nk(a, b) = +∞.
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