Let $ a, b $ and $ n $ be positive integers and let $ S $ be a set consisting of $ n $ distinct positive integers $ x_1, ..., x_{n-1} $ and $ x_n $. Let $ (S^a) $ (resp. $ [S^a] $) denote the $ n\times n $ matrix having $ \gcd(x_i, x_j)^a $ (resp. $ {\rm lcm}(x_i, x_j)^a $) as its $ (i, j) $-entry. For any integer $ x\in S $, if $ (y < x, y|z|x \ {\rm and} \ y, z\in S)\Rightarrow z\in\{y, x\} $, then $ y $ is called a greatest-type divisor of $ x $ in $ S $. In this paper, we establish some results about the divisibility between $ (S^a) $ and $ (S^b) $, between $ (S^a) $ and $ [S^b] $ and between $ [S^a] $ and $ [S^b] $ when $ a|b $, $ S $ is gcd closed (i.e., $ \gcd(x_i, x_j)\in S $ for all $ 1\le i, j\le n $), and $ \max_{x\in S}\{|\{y\in S: y \ \text{is a greatest-type divisor of} \ x \ {\rm in} \ S\}|\} = 2 $.
Citation: Guangyan Zhu, Mao Li, Xiaofan Xu. New results on the divisibility of power GCD and power LCM matrices[J]. AIMS Mathematics, 2022, 7(10): 18239-18252. doi: 10.3934/math.20221003
Let $ a, b $ and $ n $ be positive integers and let $ S $ be a set consisting of $ n $ distinct positive integers $ x_1, ..., x_{n-1} $ and $ x_n $. Let $ (S^a) $ (resp. $ [S^a] $) denote the $ n\times n $ matrix having $ \gcd(x_i, x_j)^a $ (resp. $ {\rm lcm}(x_i, x_j)^a $) as its $ (i, j) $-entry. For any integer $ x\in S $, if $ (y < x, y|z|x \ {\rm and} \ y, z\in S)\Rightarrow z\in\{y, x\} $, then $ y $ is called a greatest-type divisor of $ x $ in $ S $. In this paper, we establish some results about the divisibility between $ (S^a) $ and $ (S^b) $, between $ (S^a) $ and $ [S^b] $ and between $ [S^a] $ and $ [S^b] $ when $ a|b $, $ S $ is gcd closed (i.e., $ \gcd(x_i, x_j)\in S $ for all $ 1\le i, j\le n $), and $ \max_{x\in S}\{|\{y\in S: y \ \text{is a greatest-type divisor of} \ x \ {\rm in} \ S\}|\} = 2 $.
[1] |
E. Altinisik, M. Yildiz, A. Keskin, Non-divisibility of LCM matrices by GCD matrices on gcd-closed sets, Linear Algebra Appl., 516 (2017), 47–68. https://doi.org/10.1016/j.laa.2016.11.028 doi: 10.1016/j.laa.2016.11.028
![]() |
[2] | K. Bourque, S. Ligh, On GCD and LCM matrices, Linear Algebra Appl., 174 (1992), 65–74. https://doi.org/10.1016/0024-3795(92)90042-9 |
[3] |
K. Bourque, S. Ligh, Matrices associated with arithmetical functions, Linear Multilinear A., 34 (1993), 261–267. https://doi.org/10.1080/03081089308818225 doi: 10.1080/03081089308818225
![]() |
[4] |
K. Bourque, S. Ligh, Matrices associated with multiplicative functions, Linear Algebra Appl., 216 (1995), 267–275. https://doi.org/10.1016/0024-3795(93)00154-R doi: 10.1016/0024-3795(93)00154-R
![]() |
[5] |
L. Chen, Y. L. Feng, S. F. Hong, M. Qiu, On the divisibility of matrices associated with multiplicative functions, Publ. Math. Debrecen, 100 (2022), 323–335. https://doi.org/10.5486/PMD.2022.9014 doi: 10.5486/PMD.2022.9014
![]() |
[6] |
W. D. Feng, S. F. Hong, J. R. Zhao, Divisibility properties of power LCM matrices by power GCD matrices on gcd-closed sets, Discrete Math., 309 (2009), 2627–2639. https://doi.org/10.1016/j.disc.2008.06.014 doi: 10.1016/j.disc.2008.06.014
![]() |
[7] |
Y. L. Feng, M. Qiu, G. Y. Zhu, S. F. Hong, Divisibility among power matrices associated with classes of arithmetic functions, Discrete Math., 345 (2022), 112993. https://doi.org/10.1016/j.disc.2022.112993 doi: 10.1016/j.disc.2022.112993
![]() |
[8] |
S. A. Hong, S. N. Hu, Z. B. Lin, On a certain arithmetical determinant, Acta Math. Hungar., 150 (2016), 372–382. https://doi.org/10.1007/s10474-016-0664-4 doi: 10.1007/s10474-016-0664-4
![]() |
[9] | S. F. Hong, LCM matrices on an $r$-fold gcd-closed set, J. Sichuan Univ. Nat. Sci. Ed. 33 (1996), 650–657. |
[10] |
S. F. Hong, On Bourque-Ligh conjecture of least common multiple matrices, J. Algebra, 218 (1999), 216–228. https://doi.org/10.1006/jabr.1998.7844 doi: 10.1006/jabr.1998.7844
![]() |
[11] |
S. F. Hong, Gcd-closed sets and determinants of matrices associated with arithmetical functions, Acta Arith., 101 (2002), 321–332. https://doi.org/ 10.4064/aa101-4-2 doi: 10.4064/aa101-4-2
![]() |
[12] |
S. F. Hong, On the factorization of LCM matrices on gcd-closed sets, Linear Algebra Appl., 345 (2002), 225–233. https://doi.org/10.1016/S0024-3795(01)00499-2 doi: 10.1016/S0024-3795(01)00499-2
![]() |
[13] | S. F. Hong, Notes on power LCM matrices, Acta Arith., 111 (2004), 165–177. https://doi.org/10.4064/aa111-2-5 |
[14] |
S. F. Hong, Nonsingularity of matrices associated with classes of arithmetical functions on lcm-closed sets, Linear Algebra Appl., 416 (2006), 124–134. https://doi.org/10.1016/j.laa.2005.10.009 doi: 10.1016/j.laa.2005.10.009
![]() |
[15] |
S. F. Hong, Divisibility properties of power GCD matrices and power LCM matrices, Linear Algebra Appl., 428 (2008), 1001–1008. https://doi.org/10.1016/j.laa.2007.08.037 doi: 10.1016/j.laa.2007.08.037
![]() |
[16] |
S. F. Hong, J. R. Zhao, Y. Z. Yin, Divisibility properties of Smith matrices, Acta Arith., 132 (2008), 161–175. https://doi.org/10.4064/aa132-2-4 doi: 10.4064/aa132-2-4
![]() |
[17] |
I. Korkee, P. Haukkanen, On the divisibility of meet and join matrices, Linear Algebra Appl., 429 (2008), 1929–1943. https://doi.org/10.1016/j.laa.2008.05.025 doi: 10.1016/j.laa.2008.05.025
![]() |
[18] |
M. Li, Q. R. Tan, Divisibility of matrices associated with multiplicative functions, Discrete Math., 311 (2011), 2276–2282. https://doi.org/10.1016/j.disc.2011.07.015 doi: 10.1016/j.disc.2011.07.015
![]() |
[19] |
H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc., s1-7 (1875), 208–213. https://doi.org/10.1112/plms/s1-7.1.208 doi: 10.1112/plms/s1-7.1.208
![]() |
[20] |
Q. R. Tan, Z. B. Lin, Divisibility of determinants of power GCD matrices and power LCM matrices on finitely many quasi-coprime divisor chains, Appl. Math. Comput., 217 (2010), 3910–3915. https://doi.org/10.1016/j.amc.2010.09.053 doi: 10.1016/j.amc.2010.09.053
![]() |
[21] |
Q. R. Tan, Z. B. Lin, L. Liu, Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains II, Linear Multilinear A., 59 (2011), 969–983. https://doi.org/10.1080/03081087.2010.509721 doi: 10.1080/03081087.2010.509721
![]() |
[22] |
J. R. Zhao, Divisibility of power LCM matrices by power GCD matrices on gcd-closed sets, Linear Multilinear A., 62 (2014), 735–748. https://doi.org/10.1080/03081087.2013.786717 doi: 10.1080/03081087.2013.786717
![]() |
[23] |
J. R. Zhao, L. Chen, S. F. Hong, Gcd-closed sets and divisibility of Smith matrices, J. Comb. Theory A, 188 (2022), 105581. https://doi.org/10.1016/j.jcta.2021.105581 doi: 10.1016/j.jcta.2021.105581
![]() |
[24] |
G. Y. Zhu, On the divisibility among power GCD and power LCM matrices on gcd-closed sets, Int. J. Number Theory, 18 (2022), 1397–1408. https://doi.org/10.1142/S1793042122500701 doi: 10.1142/S1793042122500701
![]() |
[25] | G. Y. Zhu, On a certain determinant for a U.F.D., Colloq. Math., 2022. https://doi.org/10.4064/cm8722-1-2022 |
[26] |
G. Y. Zhu, K. M. Cheng, W. Zhao, Notes on Hong's conjecture on nonsingularity of power LCM matrices, AIMS Mathematics, 7 (2022), 10276–10285. https://doi.org/10.3934/math.2022572 doi: 10.3934/math.2022572
![]() |
[27] | G. Y. Zhu, M. Li, On the divisibility among power LCM matrices on gcd-closed sets, B. Aust. Math. Soc., 2022, 1–9. https://doi.org/10.1017/S0004972722000491 |