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Abstract: Let a, b and n be positive integers and let S be a set consisting of n distinct positive integers
x1, ..., xn−1 and xn. Let (S a) (resp. [S a]) denote the n × n matrix having gcd(xi, x j)a (resp. lcm(xi, x j)a)
as its (i, j)-entry. For any integer x ∈ S , if (y < x, y|z|x and y, z ∈ S ) ⇒ z ∈ {y, x}, then y is called a
greatest-type divisor of x in S . In this paper, we establish some results about the divisibility between
(S a) and (S b), between (S a) and [S b] and between [S a] and [S b] when a|b, S is gcd closed (i.e.,
gcd(xi, x j) ∈ S for all 1 ≤ i, j ≤ n), and maxx∈S {|{y ∈ S : y is a greatest-type divisor of x in S }|} = 2.
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1. Introduction

For arbitrary integers x and y, we denote by (x, y) (resp. [x, y]) the greatest common divisor (resp.
least common multiple) of integers x and y. Let a, b and n be positive integers. Let S be a set consisting
of n distinct positive integers x1, ..., xn−1 and xn. Let (S a) (resp. [S a]) stand for the n × n matrix with
(xi, x j)a (resp. [xi, x j]a) as its (i, j)-entry, which is called ath power GCD matrix (resp. ath power LCM
matrix). In 1875, Smith [19] proved that

det((i, j))1≤i, j≤n =

n∏
k=1

ϕ(k), (1.1)

where ϕ is the Euler’s phi function. After that, many generalizations of Smith’s determinant (1.1) were
published (see, for instance, [1–18] and [20–27]).

The set S is said to be factor closed (FC) if (x ∈ S , d|x) ⇒ d ∈ S . We say that S is gcd closed if S
contains (xi, x j) ∈ S for all integers i and j with 1 ≤ i, j ≤ n. Obviously, an FC set must be gcd closed,
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but the converse is not true. As usual, let Z and |S | denote the ring of integers and the cardinality of the
set S , respectively. In 1999, Hong [10] introduced the concept of a greatest-type divisor when he [10]
solved completely the renowned Bourque-Ligh conjecture [2]. For any integer x ∈ S , if

(y < x, y|z|x and y, z ∈ S )⇒ z ∈ {y, x},

then y is called a greatest-type divisor of x. One defines a subset GS (x) of S as follows:

GS (x) := {y ∈ S : y is a greatest-type divisor of x in S }.

Let Mn(Z) stand for the ring of n × n matrices over the integers. Bourque and Ligh [2] proved that (S )
divides [S ] in the ring Mn(Z) if S is FC. Namely, ∃ B ∈ Mn(Z) such that [S ] = B(S ) or [S ] = (S )B.
Hong [12] showed that such a factorization is no longer true in general when S is gcd closed and
maxx∈S {|GS (x)|} = 2. The results of Bourque-Ligh and Hong are extended by Korkee and Haukkanen
[17] and by Chen, Hong and Zhao [5]. Feng, Hong and Zhao [6], Zhao [22], Altinisik, Yildiz and
Keskin [1] and Zhao, Chen and Hong [23] used the greatest-type divisor to make important progress
on an open problem of Hong raised in [12].

On the other hand, Hong [15] initially studied the divisibility among power GCD matrices and
among power LCM matrices. It was proved in [15] that (S a)|(S b), (S a)|[S b] and [S a]|[S b] if a|b and S
is a divisor chain (that is, xσ(1)|...|xσ(n) for a permutation σ of {1, ..., n}), and such factorizations are no
longer true if a - b and |S | ≥ 2. Evidently, a divisor chain is gcd closed but not conversely. Recently,
Zhu [24] and Zhu and Li [27] confirmed three conjectures of Hong raised in [15] stating that if a|b
and S is a gcd-closed set with maxx∈S {|GS (x)|} = 1, then the bth power GCD matrix (S b) (resp. the
bth power LCM matrix [S b]) is divisible by the ath power GCD matrix (S a), and the bth power LCM
matrix [S b] is divisible by the ath power LCM matrix (S a). One naturally asks the following question:
If a|b and S is gcd closed and maxx∈S {|GS (x)|} = 2, then is it true that (S a)|(S b), (S a)|[S b] and [S a]|[S b]
hold in Mn(Z)? In particular, the following interesting question arises.
Problem 1.1. Let S be a gcd-closed set with maxx∈S {|GS (x)|} = 2. Is it true that (S )|(S b), (S )|[S b] and
[S ]|[S b] hold in Mn(Z)?

In this paper, our main goal is to study Problem 1.1. To state our main result, we need the following
concept, also due to Hong.
Definition 1.2. ( [9, 14]) Let S be a finite set of distinct positive integers, and let r be an integer with
1 ≤ r ≤ |S | − 1. The set S is called 0-fold gcd closed if S is gcd closed. The set S is called r-fold gcd
closed if there is a divisor chain R ⊂ S with |R| = r such that max(R)|min(S \ R), and the set S \ R is
gcd closed.

Clearly, any r-fold gcd-closed set must be an (r − 1)-fold gcd-closed set, and the converse is not
true. We can now state the main result of this paper.
Theorem 1.3 Let a, b and n be positive integers. Then, each of the following is true:

(i). If a|b and n ≤ 3, then for any gcd-closed set S with |S | = n, one has (S a)|(S b), (S a)|[S b] and
[S a]|[S b].

(ii). If a|b and n ≥ 4, then for any (n − 3)-fold gcd-closed set S with |S | = n, one has (S a)|(S b),
(S a)|[S b] and [S a]|[S b].

(iii). Let n ≥ 4 and b ≥ 2. If 36 - b, then there exists an (n − 4)-fold gcd-closed set S 1 with |S 1| = n
and maxx∈S 1{|GS 1(x)|} = 2 such that (S 1) - (S b

1). If b . 0, 35 (mod 36), then there exists an (n−4)-fold
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gcd-closed set S 2 with |S 2| = n and maxx∈S 2{|GS 2(x)|} = 2 such that (S 2) - [S b
2]. If b . 0, 11, 100

(mod 110), then there exists an (n − 4)-fold gcd-closed set S 3 with |S 3| = n and maxx∈S 3{|GS 3(x)|} = 2
such that [S 3] - [S b

3].
It is obvious that

(S a)|(S b)⇐⇒ (S a
σ)|(S b

σ), (S a)|[S b]⇐⇒ (S a
σ)|[S b

σ], and [S a]|[S b]⇐⇒ [S a
σ]|[S b

σ]

for any permutation σ on the set {1, ..., n}, where S σ := {xσ(1), ..., xσ(n)}. Thus, without loss of generality,
we may let x1 < · · · < xn in what follows.

This paper is organized as follows. In Section 2, we supply some preliminary results that are needed
in the proof of Theorem 1.3. Then, in Section 3, we present the proof of Theorem 1.3.

2. Preliminary lemmas

At first, for any arithmetic function f , we define the reciprocal arithmetic function
1
f

for any positive

integer m by

1
f

(m) :=


0 if f (m) = 0,

1
f (m)

otherwise.

We need two known results which give the formulas for the determinants of the power LCM matrix
and power GCD matrix on gcd-closed sets.

Lemma 2.1. [13, Lemma 2.1] If S is gcd closed, then

det[S a] =

n∏
k=1

x2a
k αa,k, (2.1)

where

αa,k :=
∑
d|xk

d-xt ,xt<xk

(
1
ξa
∗ µ

)
(d), (2.2)

where µ is the Möbius function, ξa is defined by ξa(x) = xa, and
1
ξa
∗ µ is the Dirichlet product of

1
ξa

and µ.

Lemma 2.2. If S is gcd closed, then

det(S a) =

n∏
k=1

ηa,k, (2.3)

where

ηa,k :=
∑
d|xk

d-xt ,xt<xk

(ξa ∗ µ)(d). (2.4)
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Proof. This follows immediately from [3, Theorem 2] applied to f = ξa. �

Lemma 2.3. Let u be a positive integer. Then,∑
d|u

(ξa ∗ µ)(d) = ua,

and ∑
d|u

(
1
ξa
∗ µ

)
(d) = u−a.

Proof. The results follow immediately from [11, Lemma 7] applied to f = ξa and f =
1
ξa

respectively.
�

Lemma 2.4. Let αa,k and ηa,k be defined as in (2.2) and (2.4), respectively. Then, αa,1 = x−a
1 and

ηa,1 = xa
1.

Proof. Lemma 2.4 follows immediately from Lemma 2.3. �

Lemma 2.5. [24, Theorem 1.3] Let S be gcd closed and maxx∈S |GS (x)| = 1 and let a and b be positive
integers with a|b. Then, in the ring Mn(Z), we have (S a)|(S b) and (S a)|[S b].

Lemma 2.6. [6, Lemma 2.2] Let S be a gcd-closed set with maxx∈S {|GS (x)|} = 2. Let αa,k and ηa,k be
defined as in (2.2) and (2.4), respectively. Then, for any 2 ≤ k ≤ n, we have

αa,k =


1
xa

k

−
1

xa
k0

, if GS (xk) = {xk0},

1
xa

k

−
1

xa
k1

−
1

xa
k2

+
1

xa
k3

, if GS (xk) = {xk1 , xk2} and (xk1 , xk2) = xk3 ,

(2.5)

and

ηa,k =

xa
k − xa

k0
, if GS (xk) = {xk0},

xa
k − xa

k1
− xa

k2
+ xa

k3
, if GS (xk) = {xk1 , xk2} and (xk1 , xk2) = xk3 .

(2.6)

Lemma 2.7. [27, Theorem 1.1] Let S be gcd closed and maxx∈S |GS (x)| = 1 and let a and b be positive
integers with a|b. Then, in the ring Mn(Z), one has [S a]|[S b].

3. Proof of Theorem 1.3

In this section, we use the lemmas presented in the previous section to give the proof of Theorem 1.3.
Proof of Theorem 1.3. First, we prove part (i). The conditions n ≤ 3 and S being gcd closed imply that
S satisfies maxx∈S {|GS (x)|} = 1. It then follows immediately from Lemmas 2.5 and 2.7 that part (i) is
true. Part (i) is proved.

Subsequently, we prove part (ii). First of all, any (n − 3)-fold gcd-closed set S must satisfy either

x1|x2|...|xn−3|xn−2|xn−1|xn,
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or
x1|x2|...|xn−3|xn−2 and (xn, xn−1) = xn−2.

So, any (n − 3)-fold gcd-closed set S also satisfies maxx∈S {|GS (x)|} = 1. Part (ii) follows immediately
from Lemmas 2.5 and 2.7. Part (ii) is proved.

Finally, we show part (iii). To do so, it is sufficient to prove that there exist (n − 4)-fold gcd-closed
sets S 1, S 2 and S 3 with |S i| = n and maxx∈S i{|GS i(x)|} = 2 (1 ≤ i ≤ 3) such that

det(S 1) - det(S b
1), det(S 2) - det[S b

2], det[S 3] - det[S b
3].

Let us continue the proof of part (iii) of Theorem 1.3, which is divided into the following cases.
Case 1-1. b ≡ 2, 3 (mod 4). Let n be an integer with n ≥ 4 and S 1 = S (h) = {x1, ..., xn} with

xk = hk−1, 1 ≤ k ≤ n − 3, xn−2 = 2hn−4, xn−1 = 7hn−4, xn = 28hn−4

and h ≡ 2, 3 (mod 5). By Definition 1.2, we know that S 1 is (n− 4)-fold gcd closed. Since GS (h)(xk) =

{hk−2} for all integers k with 2 ≤ k ≤ n − 3, GS (h)(xn−2) = {hn−4}, GS (h)(xn−1) = {hn−4}, GS (h)(xn) =

{2hn−4, 7hn−4}, and (2hn−4, 7hn−4) = hn−4, by Lemmas 2.2, 2.4 and (2.6), one has

det(S (h)b) = (2b − 1)(7b − 1)(28b − 2b − 7b + 1)h
b(n−4)(n+1)

2 (hb − 1)n−4.

So,
det(S (h)) = 23 × 3 × 5h

(n−4)(n+1)
2 (h − 1)n−4.

We claim that 5 - det(S (h)b).
First, b ≡ 2, 3 (mod 4) yields 2b − 1 . 0 (mod 5), 7b − 1 ≡ 2b − 1 . 0 (mod 5) and

28b − 2b − 7b + 1 ≡ 3b − 2 · 2b + 1 ≡ 32 − 2 × 22 + 1 ≡ 2 . 0 (mod 5)
or ≡ 33 − 2 × 23 + 1 ≡ 2 . 0 (mod 5).

Also, h ≡ 2, 3 (mod 5) implies that h is a primitive root modulo 5. So h4 ≡ 1 (mod 5). Thus

hb − 1 ≡ h2 − 1 ≡ 3 . 0 (mod 5)
or ≡ h3 − 1 ≡ 2 (or 1) . 0 (mod 5).

Hence,
det(S b

1)
det(S 1)

< Z holds in this case.

Case 1-2. b ≡ 0, 1 (mod 4) and b . 0 (mod 36), namely,

b ≡ 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33 (mod 36).

Let n be an integer with n ≥ 4 and S 1 = S (l) = {x1, ..., xn} with

xk = lk−1, 1 ≤ k ≤ n − 3, xn−2 = 2ln−4, xn−1 = 13ln−4, xn = 52ln−4

and l ≡ 2, 3, 10, 13, 14, 15 (mod 19). By Definition 1.2, one knows that S 1 is (n − 4)-fold gcd closed.
Since GS (l)(xk) = {lk−2} for all integers k with 2 ≤ k ≤ n − 3, GS (l)(xn−2) = {ln−4}, GS (l)(xn−1) = {ln−4},
GS (l)(xn) = {2ln−4, 13ln−4}, and (2ln−4, 13ln−4) = ln−4, by Lemmas 2.2, 2.4 and (2.6), one derives that

det(S (l)b) = (2b − 1)(13b − 1)(52b − 2b − 13b + 1)l
b(n−4)(n+1)

2 (lb − 1)n−4.
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So,
det(S (l)) = 23 × 3 × 19l

(n−4)(n+1)
2 (l − 1)n−4.

We assert that 19 - det(S (l)b).
Since

b ≡ 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33 (mod 36),

one deduces that 2b − 1 . 0 (mod 19), 13b − 1 . 0 (mod 19), and

52b − 2b − 13b + 1 ≡ 14b − 2b − 13b + 1 ≡ 144 − 24 − 134 + 1 ≡ 17 . 0 (mod 19)
or ≡ 145 − 25 − 135 + 1 ≡ 3 . 0 (mod 19)
or ≡ 148 − 28 − 138 + 1 ≡ 18 . 0 (mod 19)
or ≡ 149 − 29 − 139 + 1 ≡ 2 . 0 (mod 19)
or ≡ 1412 − 212 − 1312 + 1 ≡ 13 . 0 (mod 19)
or ≡ 1413 − 213 − 1313 + 1 ≡ 4 . 0 (mod 19)
or ≡ 1416 − 216 − 1316 + 1 ≡ 3 . 0 (mod 19)
or ≡ 1417 − 217 − 1317 + 1 ≡ 3 . 0 (mod 19)
or ≡ 1420 − 220 − 1320 + 1 ≡ 5 . 0 (mod 19)
or ≡ 1421 − 221 − 1321 + 1 ≡ 8 . 0 (mod 19)
or ≡ 1424 − 224 − 1324 + 1 ≡ 9 . 0 (mod 19)
or ≡ 1425 − 225 − 1325 + 1 ≡ 18 . 0 (mod 19)
or ≡ 1428 − 228 − 1328 + 1 ≡ 2 . 0 (mod 19)
or ≡ 1429 − 229 − 1329 + 1 ≡ 16 . 0 (mod 19)
or ≡ 1432 − 232 − 1332 + 1 ≡ 18 . 0 (mod 19)
or ≡ 1433 − 233 − 1333 + 1 ≡ 12 . 0 (mod 19).

The condition l ≡ 2, 3, 10, 13, 14, 15 (mod 19) implies that l is a primitive root modulo 19. So, l18 ≡ 1
(mod 19). Thus,

lb − 1 ≡ l4 − 1 ≡ 15, 4, 5, 3, 16, 8 . 0 (mod 19)
or ≡ l5 − 1 ≡ 12, 14, 2, 13, 9, 1 . 0 (mod 19)
or ≡ l8 − 1 ≡ 8, 5, 16, 15, 3, 4 . 0 (mod 19)
or ≡ l9 − 1 ≡ 17 . 0 (mod 19)
or ≡ l12 − 1 ≡ 10, 6 . 0 (mod 19)
or ≡ l13 − 1 ≡ 2, 13, 12, 14, 1, 9 . 0 (mod 19)
or ≡ l16 − 1 ≡ 4, 16, 3, 8, 15, 5 . 0 (mod 19)
or ≡ l17 − 1 ≡ 9, 12, 1, 2, 14, 13 . 0 (mod 19)
or ≡ l20 − 1 ≡ 3, 8, 4, 16, 5, 15 . 0 (mod 19)
or ≡ l21 − 1 ≡ 7, 11 . 0 (mod 19)
or ≡ l24 − 1 ≡ 6, 10 . 0 (mod 19)

AIMS Mathematics Volume 7, Issue 10, 18239–18252.



18245

or ≡ l25 − 1 ≡ 13, 1, 14, 9, 2, 12 . 0 (mod 19)
or ≡ l28 − 1 ≡ 16, 15, 8, 5, 4, 3 . 0 (mod 19)
or ≡ l29 − 1 ≡ 14, 9, 13, 1, 12, 2 . 0 (mod 19)
or ≡ l32 − 1 ≡ 5, 3, 6, 4, 8, 16 . 0 (mod 19)
or ≡ l33 − 1 ≡ 11, 12, 7 . 0 (mod 19).

Hence,
det(S b

1)
det(S 1)

< Z holds as expected in this case.

Case 2-1 b ≡ 1, 2 (mod 4). Let n ≥ 4 and S 2 = S (r) = {x1, ..., xn} with

xk = rk−1, 1 ≤ k ≤ n − 3, xn−2 = 2rn−4, xn−1 = 17rn−4, xn = 68rn−4

and r ≡ 2, 3 (mod 5). Since GS (r)(xk) = {rk−2} for all integers k with 2 ≤ k ≤ n− 3, GS (r)(xn−2) = {rn−4},
GS (r)(xn−1) = {rn−4}, GS (r)(xn) = {2rn−4, 17rn−4}, and (2rn−4, 17rn−4) = rn−4, by Lemmas 2.1, 2.4 and
(2.5), we have

det[S (r)b] = (−1)n−42b × 17b × 68b(2b − 1)(17b − 1)(1 − 34b − 4b + 68b)r
b(n−4)(n+3)

2 (rb − 1)n−4.

From Lemmas 2.2, 2.4 and (2.6), one derives that

det(S (r)b) = (2b − 1)(17b − 1)(68b − 2b − 17b + 1)r
b(n−4)(n+1)

2 (rb − 1)n−4.

So,
det(S (r)) = 25 × 52r

(n−4)(n+1)
2 (r − 1)n−4.

One claims that 5 - det[S (r)b].
First, b ≡ 1, 2 (mod 4) yields 2b − 1 . 0 (mod 5), 17b − 1 ≡ 2b − 1 . 0 (mod 5) and

68b − 34b − 4b + 1 ≡ 3b − 2 · 4b + 1 ≡ 3 − 2 × 22 + 1 ≡ 1 . 0 (mod 5)
or ≡ 32 − 2 × 24 + 1 ≡ 3 . 0 (mod 5).

Also, r ≡ 2, 3 (mod 5) implies that r is a primitive root modulo 5. So, r4 ≡ 1 (mod 5). Thus,

rb − 1 ≡ r − 1 ≡ 1 (or 2) . 0 (mod 5)
or ≡ r2 − 1 ≡ 3 . 0 (mod 5).

Hence,
det[S b

2]
det(S 2)

< Z holds as required in this case.

Case 2-2. b ≡ 0, 3 (mod 4) and b . 0, 35 (mod 36), namely,

b ≡ 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28, 31, 32 (mod 36).

Let n be an integer with n ≥ 4 and S 2 = S (l) = {x1, ..., xn} with

xk = lk−1, 1 ≤ k ≤ n − 3, xn−2 = 2ln−4, xn−1 = 13ln−4, xn = 52ln−4
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and l ≡ 2, 3, 10, 13, 14, 15 (mod 19). Since GS (l)(xk) = {lk−2} for all integers k with 2 ≤ k ≤ n −
3, GS (l)(xn−2) = {ln−4}, GS (l)(xn−1) = {ln−4}, GS (l)(xn) = {2ln−4, 13ln−4}, and (2ln−4, 13ln−4) = ln−4, by
Lemmas 2.1, 2.4 and (2.5), one has

det[S (l)b] = (−1)n−42b × 13b × 52b(2b − 1)(13b − 1)(1 − 26b − 4b + 52b)l
b(n−4)(n+3)

2 (lb − 1)n−4.

By Lemmas 2.2, 2.4 and (2.6), one has

det(S (l)b) = (2b − 1)(13b − 1)(52b − 2b − 13b + 1)l
b(n−4)(n+1)

2 (lb − 1)n−4.

So,
det(S (l)) = 23 × 3 × 19l

(n−4)(n+1)
2 (l − 1)n−4.

One asserts that 19 - det[S (l)b].
Since

b ≡ 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28, 31, 32 (mod 36),

we have 2b − 1 . 0 (mod 19), 13b − 1 . 0 (mod 19) and

52b − 26b − 4b + 1 ≡ 14b − 7b − 4b + 1 ≡ 144 − 74 − 44 + 1 ≡ 2 . 0 (mod 19)
or ≡ 147 − 77 − 47 + 1 ≡ 10 . 0 (mod 19)
or ≡ 148 − 78 − 48 + 1 ≡ 8 . 0 (mod 19)
or ≡ 1411 − 711 − 411 + 1 ≡ 6 . 0 (mod 19)
or ≡ 1412 − 712 − 412 + 1 ≡ 4 . 0 (mod 19)
or ≡ 1415 − 715 − 415 + 1 ≡ 1 . 0 (mod 19)
or ≡ 1416 − 716 − 416 + 1 ≡ 4 . 0 (mod 19)
or ≡ 1419 − 719 − 419 + 1 ≡ 4 . 0 (mod 19)
or ≡ 1420 − 720 − 420 + 1 ≡ 18 . 0 (mod 19)
or ≡ 1423 − 723 − 423 + 1 ≡ 2 . 0 (mod 19)
or ≡ 1424 − 724 − 424 + 1 ≡ 15 . 0 (mod 19)
or ≡ 1427 − 727 − 427 + 1 ≡ 17 . 0 (mod 19)
or ≡ 1428 − 728 − 428 + 1 ≡ 14 . 0 (mod 19)
or ≡ 1431 − 731 − 431 + 1 ≡ 6 . 0 (mod 19)
or ≡ 1432 − 732 − 432 + 1 ≡ 1 . 0 mod 19.

The condition l ≡ 2, 3, 10, 13, 14, 15 (mod 19) means that l is a primitive root modulo 19. So, l18 ≡ 1
(mod 19). Therefore,
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lb − 1 ≡ l4 − 1 ≡ 15, 4, 5, 3, 16, 8 . 0 (mod 19)
or ≡ l7 − 1 ≡ 13, 1, 14, 9, 2, 12 . 0 (mod 19)
or ≡ l8 − 1 ≡ 8, 5, 16, 15, 3, 4 . 0 (mod 19)
or ≡ l11 − 1 ≡ 14, 9, 13, 1, 12, 2 . 0 (mod 19)
or ≡ l12 − 1 ≡ 10, 6 . 0 (mod 19)
or ≡ l15 − 1 ≡ 11, 7 . 0 (mod 19)
or ≡ l16 − 1 ≡ 4, 16, 3, 8, 15, 5 . 0 (mod 19)
or ≡ l19 − 1 ≡ 1, 2, 9, 12, 13, 14 . 0 mod 19)
or ≡ l20 − 1 ≡ 3, 8, 4, 16, 5, 15 . 0 (mod 19)
or ≡ l23 − 1 ≡ 12, 14, 2, 13, 9, 1 . 0 (mod 19)
or ≡ l24 − 1 ≡ 6, 10 . 0 (mod 19)
or ≡ l27 − 1 ≡ 17 . 0 (mod 19)
or ≡ l28 − 1 ≡ 16, 15, 8, 5, 4, 3 . 0 (mod 19)
or ≡ l31 − 1 ≡ 2, 13, 12, 14, 1, 9 . 0 (mod 19)
or ≡ l32 − 1 ≡ 5, 3, 6, 4, 8, 16 . 0 (mod 19).

Hence,
det[S b

2]
det(S 2)

< Z holds as desired in this case.

Case 3-1. b ≡ 2, 3, 4, 5, 6, 7, 8, 9 (mod 10). Let n be an integer with n ≥ 4 and S 3 = S (h) = {x1, ..., xn}

with
xk = hk−1, 1 ≤ k ≤ n − 3, xn−2 = 2hn−4, xn−1 = 7hn−4, xn = 28hn−4

and h ≡ 2, 6, 7, 8 (mod 11). Since GS (h)(xk) = {hk−2} for all integers k with 2 ≤ k ≤ n− 3, GS (h)(xn−2) =

{hn−4},GS (h)(xn−1) = {hn−4},GS (h)(xn) = {2hn−4, 7hn−4}, and (2hn−4, 7hn−4) = hn−4, by Lemmas 2.1, 2.4
and (2.5), it can be derived that

det[S (h)b] = (−1)n−42b × 7b × 28b(2b − 1)(7b − 1)(1 − 14b − 4b + 28b)h
b(n−4)(n+3)

2 (hb − 1)n−4.

So,
det[S (h)] = (−1)n−424 × 3 × 72 × 11h

(n−4)(n+3)
2 (h − 1)n−4.

We claim that 11 - det[S (h)b].
First, we have 2b − 1 . 0 (mod 11), 7b − 1 . 0 (mod 11) and

28b − 14b − 4b + 1 ≡ 6b − 3b − 4b + 1 ≡ 62 − 32 − 42 + 1 ≡ 1 . 0 (mod 11)
or ≡ 63 − 33 − 43 + 1 ≡ 5 . 0 (mod 11)
or ≡ 64 − 34 − 44 + 1 ≡ 3 . 0 (mod 11)
or ≡ 65 − 35 − 45 + 1 ≡ 9 . 0 (mod 11)
or ≡ 66 − 36 − 46 + 1 ≡ 10 . 0 (mod 11)
or ≡ 67 − 37 − 47 + 1 ≡ 6 . 0 (mod 11)
or ≡ 68 − 38 − 48 + 1 ≡ 2 . 0 (mod 11)
or ≡ 69 − 39 − 49 + 1 ≡ 7 . 0 (mod 11),
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since b ≡ 2, 3, 4, 5, 6, 7, 8, 9 (mod 10). Also, h ≡ 2, 6, 7, 8 (mod 11) implies that h is a primitive root
modulo 11. So, h10 ≡ 1 (mod 11). Thus,

hb − 1 ≡ h2 − 1 ≡ 3, 2, 4, 8 . 0 (mod 11)
or ≡ h3 − 1 ≡ 7, 6, 1, 5 . 0 (mod 11)
or ≡ h4 − 1 ≡ 4, 8, 2, 3 . 0 (mod 11)
or ≡ h5 − 1 ≡ 9 . 0 (mod 11)
or ≡ h6 − 1 ≡ 8, 4, 3, 2 . 0 (mod 11)
or ≡ h7 − 1 ≡ 6, 7, 5, 1 . 0 (mod 11)
or ≡ h8 − 1 ≡ 2, 3, 8, 4 . 0 (mod 11)
or ≡ h9 − 1 ≡ 5, 1, 7, 6 . 0 (mod 11).

Hence,
det[S b

3]
det[S 3]

< Z holds in this case.

Case 3-2. b ≡ 0, 1 (mod 10) and b . 0, 11, 100 (mod 110), namely,

b ≡ 10, 20, 21, 30, 31, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 101 (mod 110).

Let n ≥ 4 and S 3 = S (l) = {x1, ..., xn} with

xk = lk−1, 1 ≤ k ≤ n − 3, xn−2 = 2ln−4, xn−1 = 13ln−4, xn = 52ln−4

and
l ≡ 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21 (mod 23).

Since GS (l)(xk) = {lk−2} for all integers k with 2 ≤ k ≤ n − 3, GS (l)(xn−2) = {ln−4}, GS (l)(xn−1) = {ln−4},
GS (l)(xn) = {2ln−4, 13ln−4}, and (2ln−4, 13ln−4) = ln−4, from Lemmas 2.1, 2.4 and (2.5), one has

det[S (l)b] = (−1)n−42b × 13b × 52b(2b − 1)(13b − 1)(1 − 26b − 4b + 52b)l
b(n−4)(n+3)

2 (lb − 1)n−4.

So,
det[S (l)] = (−1)n−425 × 3 × 132 × 23l

(n−4)(n+3)
2 (l − 1)n−4.

We assert that 23 - det[S (l)b].
The condition

b ≡ 10, 20, 21, 30, 31, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 101 (mod 110)

yields 2b − 1 . 0 (mod 110), 13b − 1 . 0 (mod 110) and
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52b − 26b − 4b + 1 ≡ 6b − 3b − 4b + 1 ≡ 610 − 310 − 410 + 1 ≡ 14 . 0 (mod 23)
or ≡ 620 − 320 − 420 + 1 ≡ 9 . 0 (mod 23)
or ≡ 621 − 321 − 421 + 1 ≡ 14 . 0 (mod 23)
or ≡ 630 − 330 − 430 + 1 ≡ 4 . 0 (mod 23)
or ≡ 631 − 331 − 431 + 1 ≡ 9 . 0 (mod 23)
or ≡ 640 − 340 − 440 + 1 ≡ 17 . 0 (mod 23)
or ≡ 641 − 341 − 441 + 1 ≡ 4 . 0 (mod 23)
or ≡ 650 − 350 − 450 + 1 ≡ 18 . 0 (mod 23)
or ≡ 651 − 351 − 451 + 1 ≡ 17 . 0 (mod 23)
or ≡ 660 − 360 − 460 + 1 ≡ 1 . 0 (mod 23)
or ≡ 661 − 361 − 461 + 1 ≡ 18 . 0 (mod 23)
or ≡ 670 − 370 − 470 + 1 ≡ 17 . 0 (mod 23)
or ≡ 671 − 371 − 471 + 1 ≡ 1 . 0 (mod 23)
or ≡ 680 − 380 − 480 + 1 ≡ 11 . 0 (mod 23)
or ≡ 681 − 381 − 481 + 1 ≡ 17 . 0 (mod 23)
or ≡ 690 − 390 − 490 + 1 ≡ 12 . 0 (mod 23)
or ≡ 691 − 391 − 491 + 1 ≡ 11 . 0 (mod 23)
or ≡ 6101 − 3101 − 4101 + 1 ≡ 12 . 0 (mod 23).

Since
l ≡ 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21 (mod 23),

one can derive that

lb − 1 ≡ l10 − 1 ≡ 11, 7, 5, 8, 12, 17, 15, 2 . 0 (mod 23)
or ≡ l20 − 1 ≡ 5, 17, 12, 11, 7, 1, 2, 8 . 0 (mod 23)
or ≡ l21 − 1 ≡ 11, 7, 5, 13, 9, 17, 6, 16, 15, 4, 19, 12, 10, 8, 14 . 0 (mod 23)
or ≡ l30 − 1 ≡ 2, 5, 8, 15, 11, 12, 1, 3 . 0 (mod 23)
or ≡ l31 − 1 ≡ 5, 17, 12, 10, 14, 19, 2, 20, 13, 7, 11, 9, 4, 16 . 0 (mod 23)
or ≡ l40 − 1 ≡ 12, 1, 7, 5, 17, 3, 8, 11 . 0 (mod 23)
or ≡ l41 − 1 ≡ 2, 5, 8, 6, 10, 12, 20, 19, 1, 9, 18, 11, 21, 15, 13, 16 . 0 (mod 23)
or ≡ l50 − 1 ≡ 17, 15, 1, 7, 3, 2, 5, 12 . 0 (mod 23)
or ≡ l51 − 1 ≡ 12, 1, 7, 16, 4, 3, 13, 18, 8, 10, 17, 5, 14, 20, 9 . 0 (mod 23)
or ≡ l60 − 1 ≡ 8, 12, 11, 2, 5, 7, 3, 2, 15 . 0 (mod 23)
or ≡ l61 − 1 ≡ 17, 15, 1, 14, 18, 2, 16, 9, 19, 3, 20, 7, 6, 4 . 0 (mod 23)
or ≡ l70 − 1 ≡ 15, 11, 2, 3, 8, 5, 17, 1 . 0 (mod 23)
or ≡ l71 − 1 ≡ 8, 12, 11, 19, 16, 7, 18, 20, 3, 14, 6, 5, 9, 2, 10, 13 . 0 (mod 23)
or ≡ l80 − 1 ≡ 7, 3, 17, 12, 1, 15, 11, 5 . 0 (mod 23)
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or ≡ l81 − 1 ≡ 15, 11, 2, 18, 13, 5, 4, 17, 16, 20, 8, 3, 19, 10, 6 . 0 (mod 23)
or ≡ l90 − 1 ≡ 3, 8, 15, 1, 2, 11, 7, 17 . 0 (mod 23)
or ≡ l91 − 1 ≡ 7, 3, 17, 9, 20, 15, 10, 21, 11, 6, 16, 1, 19, 12, 4, 18, 14 . 0 (mod 23)
or ≡ l101 − 1 ≡ 3, 8, 15, 20, 19, 11, 14, 13, 7, 10, 4, 2, 1, 6, 18 . 0 (mod 23).

So,
det[S b

3]
det[S 3]

< Z holds as one expects in this case.

This finishes the proof of Theorem 1.3. �

4. Conclusions

Let a, b and n be positive integers. Parts (i) and (ii) of Theorem 1.3 in this paper tell us that if
a|b and n ≤ 3, then for any gcd-closed set S with |S | = n, one has (S a)|(S b), (S a)|[S b] and [S a]|[S b].
Furthermore, if a|b and n ≥ 4, then for any (n−3)-fold gcd-closed set S with |S | = n, one has (S a)|(S b),
(S a)|[S b] and [S a]|[S b].

On the other hand, let n ≥ 4, b ≥ 2 be integers with 36 - b (resp. b . 0, 35 (mod 36), or
b . 0, 11, 100 (mod 110)). By part (iii) of Theorem 1.3 in this paper, we know that there exist some
(n−4)-fold gcd-closed sets S with maxx∈S {|GS (x)|} = 2 such that in the ring M|S |(Z), one has (S ) - (S b)
(resp. (S ) - [S b], or [S ] - [S b]). However, when 36|b (resp. b ≡ 0, 35 (mod 36), or b ≡ 0, 11, 100
(mod 110)), does there exist an (n − 4)-fold gcd-closed set S with maxx∈S {|GS (x)|} = 2 such that in the
ring M|S |(Z), we have (S ) - (S b) (resp. (S ) - [S b], or [S ] - [S b])? This question remains open.
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