This paper focuses on the long time dynamics for a class stochastic SEI model with standard incidence and infectivity in incubation period. Firstly, we investigate a unique global positive solution almost surely for any positive initial value. Secondly, we obtain a unique stationary measure and the extinction condition of the epidemic based on the technique of Lyapunov function and inequalities. Thirdly, we explore the asymptotic behavior of the solutions around equilibriums of the corresponding deterministic model from different aspects. Finally, we establish some numerical simulations to illustrate the main presented results.
Citation: Ping Zhu, Yongchang Wei. The dynamics of a stochastic SEI model with standard incidence and infectivity in incubation period[J]. AIMS Mathematics, 2022, 7(10): 18218-18238. doi: 10.3934/math.20221002
This paper focuses on the long time dynamics for a class stochastic SEI model with standard incidence and infectivity in incubation period. Firstly, we investigate a unique global positive solution almost surely for any positive initial value. Secondly, we obtain a unique stationary measure and the extinction condition of the epidemic based on the technique of Lyapunov function and inequalities. Thirdly, we explore the asymptotic behavior of the solutions around equilibriums of the corresponding deterministic model from different aspects. Finally, we establish some numerical simulations to illustrate the main presented results.
[1] | P. Arguin, A. Navin, S. Steele, L. Weld, P. Kozarsky, Health communication during SARS, Emerg. Infect. Dis., 10 (2004), 377–380. http://dx.doi.org/10.3201/eid1002.030812 doi: 10.3201/eid1002.030812 |
[2] | J. Lou, T. Ruggeri, The dynamics of spreading and immune strategies of sexually transmitted diseases on scale-free network, J. Math. Anal. Appl., 365 (2010), 210–219. http://dx.doi.org/10.1016/j.jmaa.2009.10.044 doi: 10.1016/j.jmaa.2009.10.044 |
[3] | S. Gao, Y. Liu, J. Nieto, H. Andrade, Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission, Math. Comput. Simulat., 81 (2011), 1855–1868. http://dx.doi.org/10.1016/j.matcom.2010.10.032 doi: 10.1016/j.matcom.2010.10.032 |
[4] | D. Wanduku, G. Ladde, Global stability of two-scale network human epidemic dynamic model, Neural Parallel Sci. Comput., 19 (2011), 65–90. |
[5] | R. Anderson, R. May, Infectious diseases of humans: dynamics and control, New York: Oxford University Press, 1991. |
[6] | K. Cooke, P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240–260. http://dx.doi.org/10.1007/s002850050051 doi: 10.1007/s002850050051 |
[7] | Z. Zhao, L. Chen, X. Song, Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate, Math. Comput. Simulat., 79 (2008), 500–510. http://dx.doi.org/10.1016/j.matcom.2008.02.007 doi: 10.1016/j.matcom.2008.02.007 |
[8] | A. Abta, A. Kaddar, H. Alaoui, Global stability for delay SIR and SEIR epidemic models with saturated incidence rates, Electron. J. Differ. Eq., 2012 (2012), 1–13. |
[9] | M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. http://dx.doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099 |
[10] | N. Sharma, A. Gupta, Impact of time delay on the dynamics of SEIR epidemic model using cellular automata, Physica A, 471 (2017), 114–125. http://dx.doi.org/10.1016/j.physa.2016.12.010 doi: 10.1016/j.physa.2016.12.010 |
[11] | B. Tian, R. Yuan, Traveling waves for a diffusive SEIR epidemic model with non-local reaction and with standard incidences, Nonlinear Anal.-Real, 37 (2017), 162–181. http://dx.doi.org/10.1016/j.nonrwa.2017.02.007 doi: 10.1016/j.nonrwa.2017.02.007 |
[12] | F. Wei, R. Xue, Stability and extinction of SEIR epidemic models with generalized nonlinear incidence, Math. Comput. Simulat., 170 (2020), 1–15. http://dx.doi.org/10.1016/j.matcom.2018.09.029 doi: 10.1016/j.matcom.2018.09.029 |
[13] | S. Han, C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114–120. http://dx.doi.org/10.1016/j.aml.2019.05.045 doi: 10.1016/j.aml.2019.05.045 |
[14] | World Health Organization, Proceedings of coronavirus disease 2019 (COVID-19) situation report, 2020, 51. |
[15] | World Health Organization, Proceedings of coronavirus disease 2019 (COVID-19) situation report, 2020, 94. |
[16] | N. Sharma, A. Verma, A. Gupta, Spatial network based model forecasting transmission and control of COVID-19, Physica A, 581 (2021), 126223. http://dx.doi.org/10.1016/j.physa.2021.126223 doi: 10.1016/j.physa.2021.126223 |
[17] | J. Jiao, Z. Liu, S. Cai, Dynamics of an SEIR model with infectivity in incubation period and homestead-isolation on the susceptible, Appl. Math. Lett., 107 (2020), 106442. http://dx.doi.org/10.1016/j.aml.2020.106442 doi: 10.1016/j.aml.2020.106442 |
[18] | E. White, C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci., 208 (2007), 312–324. http://dx.doi.org/10.1016/j.mbs.2006.10.008 doi: 10.1016/j.mbs.2006.10.008 |
[19] | R. Liptser, A strong law of large numbers for local martingales, Stachastics, 3 (1980), 217–228. http://dx.doi.org/10.1080/17442508008833146 doi: 10.1080/17442508008833146 |
[20] | D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. http://dx.doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302 |
[21] | N. Dalal, Applications of stochastic and ordinary differential equations to HIV dynamics, Ph. D Thesis, University of Strathclyde, 2006. |
[22] | Q. Yang, D. Jiang, N. Shi, C. Ji, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012), 248–271. http://dx.doi.org/10.1016/j.jmaa.2011.11.072 doi: 10.1016/j.jmaa.2011.11.072 |
[23] | M. Liu, C. Bai, K. Wang, Asymptotic stability of a two-group stochastic SEIR model with infinite delays, Commun. Nonlinear Sci., 19 (2014), 3444–3453. http://dx.doi.org/10.1016/j.cnsns.2014.02.025 doi: 10.1016/j.cnsns.2014.02.025 |
[24] | Y. Lin, D. Jiang, T. Liu, Nontrivial periodic solution of a stochastic epidemic model with seasonal variation, Appl. Math. Lett., 45 (2015), 103–107. http://dx.doi.org/10.1016/j.aml.2015.01.021 doi: 10.1016/j.aml.2015.01.021 |
[25] | Q. Liu, D. Jiang, N. Shi, T. Hayatce, A. Alsaedi, Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence, Physica A, 462 (2016), 870–882. http://dx.doi.org/10.1016/j.physa.2016.06.095 doi: 10.1016/j.physa.2016.06.095 |
[26] | Y. Wei, Q. Yang, G. Li, Dynamics of the stochastically perturbed Heroin epidemic model under non-degenerate noises, Physica A, 526 (2019), 120914. http://dx.doi.org/10.1016/j.physa.2019.04.150 doi: 10.1016/j.physa.2019.04.150 |
[27] | Y. Ding, X. Ren, C. Jiang, Q. Zhang, Periodic solution of a stochastic SIQR epidemic model incorporating media coverage, J. Appl. Anal. Comput., 10 (2020), 2439–2458. http://dx.doi.org/10.11948/20190333 doi: 10.11948/20190333 |
[28] | D. Shangguan, Z. Liu, L. Wang, R. Tan, A stochastic epidemic model with infectivity in incubation period and homestead-isolation on the susceptible, J. Appl. Math. Comput., 67 (2021), 785–805. http://dx.doi.org/10.1007/s12190-021-01504-1 doi: 10.1007/s12190-021-01504-1 |
[29] | W. Tan, X. Zhu, A stochastic model of the HIV epidemic for heterosexual transmission involving married couples and prostitutes: Ⅰ. the probabilities of HIV transmission and pair formation, Math. Comput. Model., 24 (1996), 47–107. http://dx.doi.org/10.1016/S0895-7177(96)00172-0 doi: 10.1016/S0895-7177(96)00172-0 |
[30] | W. Tan, Z. Xiang, A state space model for the HIV epidemic in homosexual populations and some applications, Math. Biosci., 152 (1998), 29–61. http://dx.doi.org/10.1016/S0025-5564(98)10013-5 doi: 10.1016/S0025-5564(98)10013-5 |
[31] | N. Dalal, D. Greenhalgh, X. Mao, A stochastic model for internal HIV dynamics, J. Math. Anal. Appl., 341 (2008), 1084–1101. http://dx.doi.org/10.1016/j.jmaa.2007.11.005 doi: 10.1016/j.jmaa.2007.11.005 |
[32] | A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differnetial equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. http://dx.doi.org/10.1137/10081856X doi: 10.1137/10081856X |
[33] | E. Beretta, V. Kolmanovskii, L. Shaikhet, Stability of epidemic model with time delays influenced by stochastic perturbations, Math. Comput. Simulat., 45 (1998), 269–277. http://dx.doi.org/10.1016/S0378-4754(97)00106-7 doi: 10.1016/S0378-4754(97)00106-7 |
[34] | M. Carletti, On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment, Math. Biosci., 175 (2002), 117–131. http://dx.doi.org/10.1016/S0025-5564(01)00089-X doi: 10.1016/S0025-5564(01)00089-X |
[35] | J. Beddington, R. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463–465. http://dx.doi.org/10.1126/science.197.4302.463 doi: 10.1126/science.197.4302.463 |
[36] | L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 217 (2005), 26–53. http://dx.doi.org/10.1016/j.jde.2005.06.017 doi: 10.1016/j.jde.2005.06.017 |
[37] | R. Khasminskii, Stochastic stability of differential equations, Berlin: Springer, 2012. http://dx.doi.org/10.1007/978-3-642-23280-0 |
[38] | X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95–110. http://dx.doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0 |
[39] | X. Mao, Stochastic differential equations and applications, Cambridge: Woodhead Publishing, 2007. |