Research article

Sum of some product-type operators from mixed-norm spaces to weighted-type spaces on the unit ball

  • Received: 17 May 2022 Revised: 12 July 2022 Accepted: 26 July 2022 Published: 11 August 2022
  • MSC : 30H05, 47B33, 47B37, 47B38

  • Let $ u_{j} $ be the holomorphic functions on the open unit ball $ \mathbb{B} $ in $ \mathbb{C}^{n} $, $ j = \overline{0, m} $, $ \varphi $ a holomorphic self-map of $ \mathbb{B} $, and $ \Re^{j} $ the $ j $th iterated radial derivative operator. In this paper, the boundedness and compactness of the sum operator $ \mathfrak{S}^m_{\vec{u}, \varphi} = \sum_{j = 0}^m M_{u_j}C_\varphi\Re^j $ from the mixed-norm space $ H(p, q, \phi) $, where $ 0 < p, q < +\infty $, and $ \phi $ is normal, to the weighted-type space $ H^\infty_\mu $ are characterized. For the mixed-norm space $ H(p, q, \phi) $, $ 1\leq p < +\infty $, $ 1 < q < +\infty $, the essential norm estimate of the operator is given, and the Hilbert-Schmidt norm of the operator on the weighted Bergman space $ A^2_\alpha $ is also calculated.

    Citation: Cheng-shi Huang, Zhi-jie Jiang, Yan-fu Xue. Sum of some product-type operators from mixed-norm spaces to weighted-type spaces on the unit ball[J]. AIMS Mathematics, 2022, 7(10): 18194-18217. doi: 10.3934/math.20221001

    Related Papers:

  • Let $ u_{j} $ be the holomorphic functions on the open unit ball $ \mathbb{B} $ in $ \mathbb{C}^{n} $, $ j = \overline{0, m} $, $ \varphi $ a holomorphic self-map of $ \mathbb{B} $, and $ \Re^{j} $ the $ j $th iterated radial derivative operator. In this paper, the boundedness and compactness of the sum operator $ \mathfrak{S}^m_{\vec{u}, \varphi} = \sum_{j = 0}^m M_{u_j}C_\varphi\Re^j $ from the mixed-norm space $ H(p, q, \phi) $, where $ 0 < p, q < +\infty $, and $ \phi $ is normal, to the weighted-type space $ H^\infty_\mu $ are characterized. For the mixed-norm space $ H(p, q, \phi) $, $ 1\leq p < +\infty $, $ 1 < q < +\infty $, the essential norm estimate of the operator is given, and the Hilbert-Schmidt norm of the operator on the weighted Bergman space $ A^2_\alpha $ is also calculated.



    加载中


    [1] K. L. Avetisyan, Fractional integro-differentiation in harmonic mixed norm spaces on a half-space, Comment. Math. Univ. Ca., 42 (2001), 691–709.
    [2] K. L. Avetisyan, Continuous inclusions and Bergman type operators in $n$-harmonic mixed norm spaces on the polydisc, J. Math. Anal. Appl., 291 (2004), 727–740. https://doi.org/10.1016/j.jmaa.2003.11.039 doi: 10.1016/j.jmaa.2003.11.039
    [3] F. Colonna, M. Tjani, Operator norms and essential norms of weighted composition operators between Banach spaces of analytic functions, J. Math. Anal. Appl., 434 (2016), 93–124. https://doi.org/10.1016/j.jmaa.2015.08.073 doi: 10.1016/j.jmaa.2015.08.073
    [4] C. C. Cowen, B. D. Maccluer, Composition operators on spaces of analytic functions, Boca Raton: CRC Press, 1995.
    [5] R. A. Hibschweiler, N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain J. Math., 35 (2005), 843–855. https://doi.org/10.1216/rmjm/1181069709 doi: 10.1216/rmjm/1181069709
    [6] Z. J. Hu, Extended Cesàro operators on mixed-norm spaces, Proc. Amer. Math. Soc., 131 (2003), 2171–2179. https://doi.org/10.1090/S0002-9939-02-06777-1 doi: 10.1090/S0002-9939-02-06777-1
    [7] M. Jevitć, Bounded projections and duality in mixed-norm spaces of analytic functions, Complex Var. Theory Appl: Int. J., 8 (1987), 293–301. https://doi.org/10.1080/17476938708814239 doi: 10.1080/17476938708814239
    [8] Z. J. Jiang, X. F. Wang, Products of radial derivative and weighted composition operators from weighted Bergman-Orlicz spaces to weighted-type spaces, Oper. Matrices, 12 (2018), 301–319. https://doi.org/10.7153/oam-2018-12-20 doi: 10.7153/oam-2018-12-20
    [9] Z. J. Jiang, Product-type operators from Zygmund spaces to Bloch-Orlicz spaces, Complex Var. Elliptic, 62 (2017), 1645–1664. https://doi.org/10.1080/17476933.2016.1278436 doi: 10.1080/17476933.2016.1278436
    [10] Z. J. Jiang, Product-type operators from Logarithmic Bergman-type spaces to Zygmund-Orlicz spaces, Mediterr. J. Math., 13 (2016), 4639–4659. https://doi.org/10.1007/s00009-016-0767-8 doi: 10.1007/s00009-016-0767-8
    [11] Z. J. Jiang, Generalized product-type operators from weighted Bergman-Orlicz spaces to Bloch-Orlicz spaces, Appl. Math. Comput., 268 (2015), 966–977. https://doi.org/10.1016/j.amc.2015.06.100 doi: 10.1016/j.amc.2015.06.100
    [12] Z. J. Jiang, On a class of operators from weighted Bergman spaces to some spaces of analytic functions, Taiwan. J. Math., 15 (2011), 2095–2121. https://doi.org/10.11650/twjm/1500406425 doi: 10.11650/twjm/1500406425
    [13] W. Johnson, The curious history of Faà di Bruno's formula, Am. Math. Mon., 109 (2002), 217–234. https://doi.org/10.1080/00029890.2002.11919857 doi: 10.1080/00029890.2002.11919857
    [14] S. X. Li, S. Stević, Weighted differentiation composition operators from the logarithmic Bloch space to the weighted-type space, An. Stiint. Univ. Ovidius Constanta, Ser. Mat., 24 (2016), 223–240. https://doi.org/10.1515/auom-2016-0056 doi: 10.1515/auom-2016-0056
    [15] S. X. Li, S. Stević, Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces, Appl. Math. Comput., 217 (2010), 3144–3154. https://doi.org/10.1016/j.amc.2010.08.047 doi: 10.1016/j.amc.2010.08.047
    [16] S. X. Li, S. Stević, Composition followed by differentiation between $H^{\infty}$ and $\alpha$-Bloch spaces, Houston J. Math., 35 (2009), 327–340.
    [17] S. X. Li, S. Stević, Composition followed by differentiation from mixed norm spaces to $\alpha$-Bloch spaces, Sb. Math., 199 (2008), 1847–1857. https://doi.org/10.1070/SM2008v199n12ABEH003983 doi: 10.1070/SM2008v199n12ABEH003983
    [18] S. X. Li, S. Stević, Composition followed by differentiation between Bloch type spaces, J. Comput. Anal. Appl., 9 (2007), 195–206.
    [19] Y. M. Liu, X. M. Liu, Y. Y. Yu, On an extension of Stević-Sharma operator from the mixed-norm space to weighted-type spaces, Complex Var. Elliptic, 62 (2017), 670–694. https://doi.org/10.1080/17476933.2016.1238465 doi: 10.1080/17476933.2016.1238465
    [20] Y. M. Liu, Y. Y. Yu, On an extension of Stević-Sharma operator from the general spaces to weighted-type spaces on the unit ball, Complex Anal. Oper. Theory, 11 (2017), 261–288. https://doi.org/10.1007/s11785-016-0535-6 doi: 10.1007/s11785-016-0535-6
    [21] Y. M. Liu, Y. Y. Yu, Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball, J. Math. Anal. Appl., 423 (2015), 76–93. https://doi.org/10.1016/j.jmaa.2014.09.069 doi: 10.1016/j.jmaa.2014.09.069
    [22] S. Ohno, Products of composition and differentiation on Bloch spaces, B. Korean Math. Soc., 46 (2009), 1135–1140. https://doi.org/10.4134/BKMS.2009.46.6.1135 doi: 10.4134/BKMS.2009.46.6.1135
    [23] W. Rudin, Function theory in the unit ball of $\mathbb{C}^{n}$, Berlin, Heidelberg: Springer, 2008. https://doi.org/10.1007/978-3-540-68276-9
    [24] B. Sehba, S. Stević, On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces, Appl. Math. Comput., 233 (2014), 565–581. https://doi.org/10.1016/j.amc.2014.01.002 doi: 10.1016/j.amc.2014.01.002
    [25] A. K. Sharma, Products of composition multiplication and differentiation between Bergman and Bloch type spaces, Turk. J. Math., 35 (2011), 275–291. https://doi.org/10.3906/mat-0806-24 doi: 10.3906/mat-0806-24
    [26] J. H. Shi, G. B. Ren, Boundedness of the Cesàro operator on mixed norm spaces, Proc. Amer. Math. Soc., 126 (1998), 3553–3560. https://doi.org/10.1090/S0002-9939-98-04514-6 doi: 10.1090/S0002-9939-98-04514-6
    [27] J. H. Shi, Duality and multipliers for mixed norm spaces in the ball (I), Complex Var. Theory Appl: Int. J., 25 (1994), 119–130. https://doi.org/10.1080/17476939408814736 doi: 10.1080/17476939408814736
    [28] A. L. Shields, D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, T. Am. Math. Soc., 162 (1971), 287–302. https://doi.org/10.2307/1995754 doi: 10.2307/1995754
    [29] S. Stević, Essential norm of some extensions of the generalized composition operators between $k$th weighted-type spaces, J. Inequal. Appl., 2017 (2017), 220. https://doi.org/10.1186/s13660-017-1493-x doi: 10.1186/s13660-017-1493-x
    [30] S. Stević, Weighted radial operator from the mixed-norm space to the $n$th weighted-type space on the unit ball, Appl. Math. Comput., 218 (2012), 9241–9247. https://doi.org/10.1016/j.amc.2012.03.001 doi: 10.1016/j.amc.2012.03.001
    [31] S. Stević, On some integral-type operators between a general space and Bloch-type spaces, Appl. Math. Comput., 218 (2011), 2600–2618. https://doi.org/10.1016/j.amc.2011.07.077 doi: 10.1016/j.amc.2011.07.077
    [32] S. Stevć, Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball, Abstr. Appl. Anal., 2010 (2010), 801264. https://doi.org/10.1155/2010/801264 doi: 10.1155/2010/801264
    [33] S. Stević, Composition followed by differentiation from $H^{\infty}$ and the Bloch space to $n$th weighted-type spaces on the unit disk, Appl. Math. Comput., 216 (2010), 3450–3458. https://doi.org/10.1016/j.amc.2010.03.117 doi: 10.1016/j.amc.2010.03.117
    [34] S. Stević, Norm and essential norm of composition followed by differentiation from $\alpha$-Bloch spaces to $H_{\mu}^{\infty}$, Appl. Math. Comput., 207 (2009), 225–229. https://doi.org/10.1016/j.amc.2008.10.032 doi: 10.1016/j.amc.2008.10.032
    [35] S. Stević, Products of composition and differentiation operators on the weighted Bergman space, Bull. Belg. Math. Soc. Simon Stevin, 16 (2009), 623–635. https://doi.org/10.36045/bbms/1257776238 doi: 10.36045/bbms/1257776238
    [36] S. Stević, Weighted composition operators between mixed norm spaces and $H_{\alpha}^{\infty}$ spaces in the unit ball, J. Inequal. Appl., 2007 (2007), 28629. https://doi.org/10.1155/2007/28629 doi: 10.1155/2007/28629
    [37] S. Stević, Continuity with respect to symbols of composition operators on the weighted Bergman space, Taiwan. J. Math., 11 (2007), 1177–1188. https://doi.org/10.11650/twjm/1500404811 doi: 10.11650/twjm/1500404811
    [38] S. Stević, Z. J. Jiang, Weighted iterated radial composition operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball, Math. Methods Appl. Sci., 45 (2021), 3083–3097. https://doi.org/10.1002/mma.7978 doi: 10.1002/mma.7978
    [39] S. Stević, Z. J. Jiang, Weighted iterated radial composition operators from weighted Bergman-Orlicz spaces to weighted-type spaces on the unit ball, Math. Methods Appl. Sci., 44 (2021), 8684–8696. https://doi.org/10.1002/mma.7298 doi: 10.1002/mma.7298
    [40] S. Stević, A. K. Sharma, A. Bhat, Essential norm of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 218 (2011), 2386–2397. https://doi.org/10.1016/j.amc.2011.06.055 doi: 10.1016/j.amc.2011.06.055
    [41] S. Stević, A. K. Sharma, A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 217 (2011), 8115–8125. https://doi.org/10.1016/j.amc.2011.03.014 doi: 10.1016/j.amc.2011.03.014
    [42] M. Tjani, Compact composition operators on some Möbius invariant Banach space, PhD Thesis, Michigan State University, 1996.
    [43] S. I. Ueki, Hilbert-Schmidt weighted composition operator on the Fock space, Int. J. Math. Anal., 1 (2007), 769–774.
    [44] S. M. Wang, M. F. Wang, X. Guo, Products of composition, multiplication and iterated differentiation operators between Banach spaces of holomorphic functions, Taiwan. J. Math., 24 (2020), 355–376. https://doi.org/10.11650/tjm/190405 doi: 10.11650/tjm/190405
    [45] S. Wang, M. F. Wang, X. Guo, Products of composition, multiplication and radial derivative operators between Banach spaces of holomorphic functions on the unit ball, Complex Var. Elliptic, 65 (2020), 2026–2055. https://doi.org/10.1080/17476933.2019.1687455 doi: 10.1080/17476933.2019.1687455
    [46] W. F. Yang, W. R. Yan, Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces, B. Korean Math. Soc., 48 (2011), 1195–1205. https://doi.org/10.4134/BKMS.2011.48.6.1195 doi: 10.4134/BKMS.2011.48.6.1195
    [47] J. Zhou, Y. M. Liu, Products of radial derivative and multiplication operators from $F(p, q, s)$ to weighted-type spaces on the unit ball, Taiwan. J. Math., 17 (2013), 161–178. https://doi.org/10.11650/tjm.17.2013.2127 doi: 10.11650/tjm.17.2013.2127
    [48] K. H. Zhu, Spaces of holomorphic functions in the unit ball, New York: Springer, 2005. https://doi.org/10.1007/0-387-27539-8
    [49] X. L. Zhu, On an integral-type operator from Privalov spaces to Bloch-type spaces, Ann. Pol. Math., 101 (2011), 139–147. https://doi.org/10.4064/ap101-2-4 doi: 10.4064/ap101-2-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1543) PDF downloads(100) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog