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1. Introduction

Let N = {1, 2, 3, . . .}, N0 = N ∪ {0}, B(a, r) = {z ∈ Cn : |z − a| < r} the open ball in the complex
vector space Cn centered at a with radius r, Bn = B = B(0, 1), S the boundary of B and n ∈ N. Let
z = (z1, z2, . . . , zn) and w = (w1,w2, . . . ,wn) be two points in Cn, then 〈z,w〉 = z1w1 + z2w2 + · · · + znwn

and |z|2 = 〈z, z〉.
Let H(B) be the set of all holomorphic functions on B and S (B) the set of all holomorphic self-

maps of B. If ϕ ∈ S (B), then by Cϕ f (z) = f (ϕ(z)), z ∈ B, is defined a operator, usually called the
composition operator. If u ∈ H(B), then by Mu f (z) = u(z) f (z), z ∈ B, is defined a operator, usually
called the multiplication operator.

When n = 1, the open unit ball B is reduced to the open unit disk D. Let m ∈ N0, the mth
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differentiation operator Dm on some subspaces of H(D) is defined by

Dm f (z) = f (m)(z),

where f (0) = f . If m = 1, it is the classical differentiation operator, denoted by D. There have
been a lot of studies on the products related to one of the differentiation operators. For example,
products DCϕ and CϕD were first studied (see, for example, [5, 15–18, 22, 33–35]) containing the
differentiation operator. What followed was the following six products of the operators were studied
(see, for example, [25, 40, 41])

DMuCϕ, DCϕMu, CϕDMu, CϕMuD, MuCϕD, MuDCϕ. (1.1)

Afterwards, operators in (1.1) were studied in terms of replacing D by Dm (see, for example, [9,10,44]),
that is, the following six products of the operators were studied

DmMuCϕ, DmCϕMu, CϕDmMu, CϕMuDm, MuCϕDm, MuDmCϕ. (1.2)

For some other products of the operators containing differentiation operators can be found in [11, 12,
29, 46] and the related references therein.

There are other ways to extend differentiation operators on domains in Cn. For example, the radial
derivative operator

< f (z) =

n∑
j=1

z j
∂ f
∂z j

(z)

is one of natural extensions of the differentiation operators. The products of the composition,
multiplication, and radial derivative operators

MuCϕ<, Cϕ<Mu, CϕMu<, <MuCϕ, Mu<Cϕ, <CϕMu (1.3)

were studied in [19–21, 47]. Operators MuCϕ< and <MuCϕ were also studied in [8]. Operators in
(1.3) naturally generalize operators in (1.1) from the unit disk setting to the unit ball setting. Recently,
they have been continuously studied in [45]. Some other products of the operators containing the radial
derivative operators can be found, for example, in [31, 49].

An advantage of the radial derivative operator is that it can be employed iteratively, that is, if<m−1 f
is defined for some m ∈ N \ {1}, then <m f is naturally defined by <m f = <(<m−1 f ). If m = 0, then
we regard that <0 f = f . By using the mth iterated radial derivative operator, we obtain the related
product-type operators

MuCϕ<
m, Cϕ<

mMu, CϕMu<
m, <mMuCϕ, Mu<

mCϕ, <
mCϕMu. (1.4)

Operators in (1.4) are more complicated than those in (1.3). Clearly, the operator MuCϕ<
m can be

regarded as the simplest one in (1.4), which was first studied and denoted by <m
u,ϕ in [32]. Recently,

we have been reconsidered such operator in [38, 39]. The reason why we consider the operator <m
u,ϕ

again is that we need to get more information on the related function spaces in order to characterize its
properties.
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Operators in (1.4) generalize operators in (1.2) from the unit disk case to the unit ball case. For the
unit disk case, by using the famous Faà di Bruno’s formula of ( f ◦ ϕ)(m) (see [13]), operators DmMuCϕ,
DmCϕMu and MuDmCϕ have been studied (see, for example, [9, 10]). But, we don’t find any result on
the operators<mMuCϕ,<mCϕMu and Mu<

mCϕ. By a direct calculation, it is easy to see that

CϕMu<
m = <m

u◦ϕ,ϕ and Cϕ<
mMu =

m∑
i=0

Ci
m<

i
(<m−iu)◦ϕ,ϕ. (1.5)

Motivated by this interesting observation, we directly define the operator

S
m
~u,ϕ =

m∑
j=0

< j
u j,ϕ

(1.6)

on some subspaces of H(B), where u j ∈ H(B), j ∈ {0, 1, . . . ,m} and ϕ ∈ S (B).
In this paper, the boundedness and compactness of the operator Sm

~u,ϕ =
∑m

j=0<
j
u j,ϕ from the

mixed-norm space to the weighted-type space on B are characterized. The essential norm estimate of
the operator from the mixed-norm space to the weighted-type space on B is given, and the
Hilbert-Schmidt norm of the operator on the weighted Hilbert-Bergman space is calculated. As
corollaries, the corresponding results of the operator Cϕ<

mMu from mixed-norm space to
weighted-type space are also obtained. This study can be viewed as a continuation and extension of
our previous work.

A positive continuous function φ on the interval [0, 1) is called normal (see [28]), if there are λ ∈
[0, 1), a and b (0 < a < b) such that

φ(r)
(1 − r)a is decreasing on [λ, 1), lim

r→1

φ(r)
(1 − r)a = 0;

φ(r)
(1 − r)b is increasing on [λ, 1), lim

r→1

φ(r)
(1 − r)b = +∞.

The functions {φ, ψ} will be called a normal pair if φ is normal and for b in above definition of
normal function, there exists β > b, such that

φ(r)ψ(r) = (1 − r2)β.

If φ is normal, then there exists ψ such that {φ, ψ} is normal pair (see [28]). Note that if {φ, ψ} is normal
pair, then ψ is also normal.

For 0 < p, q < +∞ and a normal function φ, the mixed-norm space H(p, q, φ)(B) := H(p, q, φ)
consists of all f ∈ H(B) such that

‖ f ‖p
H(p,q,φ) =

∫ 1

0
Mp

q ( f , r)
φp(r)
1 − r

dr < +∞,

where

Mq( f , r) =

(∫
S

| f (rζ)|qdσ(ζ)
) 1

q

,
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and dσ is the normalized surface measure on S.
If p = q, φ(r) = (1 − r2)(α+1)/p and α > −1, then it is equivalent with the weighted Bergman space

Ap
α (see [48]), which is defined by

Ap
α =

{
f ∈ H(B) : ‖ f ‖p

Ap
α

=

∫
B

| f (z)|p
(
1 − |z|2

)α
dv(z) < +∞

}
,

where dv denotes the normalized volume measure on B. Some facts can be found about the mixed-
norm spaces, for example, in [1, 2, 26, 27, 36] (see also the references therein).

A positive continuous function µ on B is called weight. The weighted-type space H∞µ (B) := H∞µ
consists of all f ∈ H(B) such that

‖ f ‖H∞µ = sup
z∈B

µ(z)| f (z)| < +∞.

With the norm ‖ · ‖H∞µ , H∞µ is a Banach space. In particular, if µ(z) = (1 − |z|2)σ (σ > 0), then the space
H∞µ is called the classical weighted-type space H∞σ . If µ ≡ 1, then the space H∞µ is reduced to the space
H∞ of bounded holomorphic functions on B. Many operators acting from or to the weighted-type
spaces have been studied (see, for example, [14, 16, 24, 46] and the related references therein).

Let X and Y be two Banach spaces. It is said that a linear operator T : X → Y is bounded if there
exists a positive constant K such that ‖T f ‖Y ≤ K‖ f ‖X for all f ∈ X. The bounded operator T : X → Y
is compact if it maps bounded sets into relatively compact sets. The norm of the operator T : X → Y ,
usually denoted by ‖T‖X→Y , is defined by

‖T‖X→Y = sup
‖ f ‖X≤1

‖T f ‖Y .

In this paper, we use the notation j = k, l instead of writing j = k, ..., l, where k, l ∈ N0 and k ≤ l.
Some positive constants are denoted by C, and they may differ from one occurrence to the other. The
notation a . b (resp. a & b) means that there is a positive constant C such that a ≤ Cb (resp. a ≥ Cb).
When a . b and b & a, we write a � b.

2. Preliminary results

Here, we give several lemmas which are used in the proofs of the main results. First, we have the
following point-evaluation estimate for the functions in H(p, q, φ) (see [36]).

Lemma 2.1. Let 0 < p, q < +∞ and φ normal. Then there is a positive constant C independent of
f ∈ H(p, q, φ) and z ∈ B such that

| f (z)| ≤
C

φ(|z|)(1 − |z|2)
n
q
‖ f ‖H(p,q,φ). (2.1)

Now, we cite a point-evaluation estimate for the jth iterated radial derivatives of the functions in
H(p, q, φ) (see [32]).
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Lemma 2.2. Let j ∈ N, 0 < p, q < +∞ and φ normal. Then there is a positive constant C independent
of f ∈ H(p, q, φ) and z ∈ B such that

|< j f (z)| ≤
C|z|

φ(|z|)(1 − |z|2)
n
q + j
‖ f ‖H(p,q,φ). (2.2)

Remark 2.1. From (2.1) and (2.2), it follows that if { fk} is bounded in H(p, q, φ), then { fk} and {< j fk}

are uniformly bounded on any compact subset of B, and if { fk} converges to zero in H(p, q, φ), then
{ fk} and {< j fk} converge to zero uniformly on any compact subset of B as k → ∞.

To obtain a criterion for the compactness of a bounded linear operator T : H(p, q, φ) → H∞µ , we
need to cite the following result, which can be found in [3] for the unit disk version. For the unit ball
case, whose proof can be directly obtained by replacing the unit disk by the unit ball, and so the proof
is omitted.

Lemma 2.3. Let X be a reflexive Banach space of holomorphic functions on B, and Y a Banach space.
Then a bounded linear operator T : X → Y is compact if and only if for any bounded sequence { fk} in
X such that fk → 0 uniformly on any compact subset of B as k → ∞, it follows that {T fk} converges to
zero in the norm of Y as k → ∞.

To give the conditions such that H(p, q, φ) is reflexive, we recall some studies of the dual spaces of
H(p, q, φ). Jevtić in [7] showed that the dual space of H(p, q, φ), where 1 ≤ p ≤ +∞ and 1 ≤ q < +∞,
is topologically isomorphic to H(p′, q′, ψ), where 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1. Shi in [27]
considered the dual spaces of H(p, q, φ) for two cases: (i) if 0 < p ≤ 1 and 1 < q ≤ +∞, then the dual
space of H(p, q, φ) is topologically isomorphic to H(+∞, q′, ψ); (ii) if 0 < p ≤ 1 and 0 < q ≤ 1, then
the dual space of H(p, q, φ) is topologically isomorphic to H(+∞,+∞, ψ).

From above facts, we obtain the following remark.

Remark 2.2. Considering the assumption 0 < p, q < +∞, we see that if 1 ≤ p < +∞ and 1 < q < +∞,
then H(p, q, φ) is reflexive.

In Lemma 2.3, Banach space X is assumed to be reflexive. The author in [42] gave the following
general result.

Lemma 2.4. Let X, Y be Banach spaces of holomorphic functions on B. Suppose that
(a) The point evaluation functionals on X are continuous.
(b) The closed unit ball of X is a compact subset of X in the topology of uniform convergence on

compact sets.
(c) T : X → Y is continuous when X and Y are given the topology of uniform convergence on

compact sets.
Then the bounded operator T : X → Y is compact if and only if for every bounded sequence { fk} in X
such that fk → 0 uniformly on compact sets as k → ∞, it follows that {T fk} converges to zero in the
norm of Y as k → ∞.

We obtain the following result, which can be proved similar to Proposition 3.11 in [4]. However,
here we prove this result by using Lemma 2.4.
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Lemma 2.5. Let 0 < p, q < +∞, φ normal, and T be one of the operators in (1.4) and (1.6). Then
the bounded operator T : H(p, q, φ) → H∞µ is compact if and only if for any bounded sequence { fk}

in H(p, q, φ) such that fk → 0 uniformly on any compact subset of B as k → ∞, it follows that {T fk}

converges to zero in the norm of H∞µ as k → ∞.

Proof. Without lose of generality, we choose T = MuCϕ<
m to prove this result. Let X = H(p, q, φ)

and Y = H∞µ . By Remark 2.1, it is easy to see that conditions (a) and (c) in Lemma 2.4 hold (here, we
would like to mention that, for an abstract bounded linear operator T : H(p, q, φ)→ H∞µ , condition (c)
may not be valid.)

Let { fk} be a sequence in the closed unit ball of X. From (2.1), we see that { fk} is uniformly bounded
on every compact subset of B. Therefore, by Montel’s theorem, there is a subsequence { fki} such that
fki → g uniformly on every compact subset of B for some g ∈ H(B) as i → ∞. By the definition of
Mp

q ( f , r) and Fatou’s theorem, we have

Mp
q (g, r) =

(∫
S

|g(rζ)|qdσ(ζ)
) p

q

=

(∫
S

lim
k→∞
| fki(rζ)|qdσ(ζ)

) p
q

≤ lim inf
i→∞

(∫
S

| fki(rζ)|qdσ(ζ)
) p

q

= lim inf
i→∞

Mp
q ( fki , r). (2.3)

Hence, from (2.3) it follows that∫ 1

0
Mp

q (g, r)
φp(r)
1 − r

dr ≤ lim inf
i→∞

∫ 1

0
Mp

q ( fki , r)
φp(r)
1 − r

dr = lim inf
i→∞

‖ fki‖H(p,q,φ) = 1,

which shows that g ∈ H(p, q, φ), that is, condition (b) in Lemma 2.4 holds. From Lemma 2.4, the
desired result follows. �

The following result was proved in [6] (also see [36]). Hence, its proof is omitted.

Lemma 2.6. Let τ > b. Then for each t ≥ 0 and fixed w ∈ B, the following function is in H(p, q, φ)

fw,t(z) =
(1 − |w|2)t+1+τ

φ(|w|)(1 − 〈z,w〉)
n
q +t+1+τ

. (2.4)

Moreover,

sup
w∈B
‖ fw,t‖H(p,q,φ) . 1.

We need the following result, which can be found in [30].

Lemma 2.7. Let s > 0, w ∈ B, and

gw,s(z) =
1

(1 − 〈z,w〉)s , z ∈ B.

Then

<kgw,s(z) =

k∑
t=1

a(k)
t

( t−1∏
j=0

(s + j)
) 〈z,w〉t

(1 − 〈z,w〉)s+t ,
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where the sequences {a(k)
t }t=1,k, k ∈ N, are defined by the relations

a(k)
k = a(k)

1 = 1 (2.5)

for k ∈ N and

a(k)
t = ta(k−1)

t + a(k−1)
t−1 (2.6)

for 2 ≤ t ≤ k − 1, k ≥ 3.

We use the idea essentially obtained in [30] to construct some suitable linear combinations of the
functions in Lemma 2.6, which will be used in the proofs of the main results.

Lemma 2.8. Let m ∈ N and w ∈ B, fw,t be the set of functions in (2.4), and the sequences {a(k)
t }t=1,k,

k = 1,m, are defined by the relations in (2.5) and (2.6). Then, for each l ∈ {1, 2, ...,m}, there are
constants c j = c(l)

j , j = 0,m such that the function

h(l)
w (z) =

m∑
k=0

c(l)
k fw,k(z)

satisfies

< jh(l)
w (w) = 0, 0 ≤ j < l, (2.7)

and

<ih(l)
w (w) = a(i)

l

|w|2l

φ(|w|)(1 − |w|2)
n
q +l
, l ≤ i ≤ m. (2.8)

Moreover,

sup
w∈B
‖h(l)

w ‖H(p,q,φ) < +∞. (2.9)

Proof. For the sake of simplicity, we write dk = n
q + k + 1 + τ. By some calculations and using

AIMS Mathematics Volume 7, Issue 10, 18194–18217.
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Lemma 2.7, we have

h(l)
w (w) =

c0 + c1 + · · · + cm

φ(|w|)(1 − |w|2)
n
q

<h(l)
w (w) =

(d0c0 + d1c1 + · · · dmcm) |w|2

φ(|w|)(1 − |w|2)
n
q +1

<2h(l)
w (w) =

(d0c0 + d1c1 + · · · + dmcm) |w|2

φ(|w|)(1 − |w|2)
n
q +1

+
(d0d1c0 + d1d2c1 + · · · + dmdm+1cm) |w|4

φ(|w|)(1 − |w|2)
n
q +2

...

<mh(l)
w (w) =a(m)

1

(d0c0 + d1c1 + · · · + dmcm) |w|2

φ(|w|)(1 − |w|2)
n
q +1

+ a(m)
2

(d0d1c0 + d1d2c1 + · · · + dmdm+1cm) |w|4

φ(|w|)(1 − |w|2)
n
q +2

+ · · ·

+ a(m)
l

(d0 · · · dl−1c0 + d1 · · · dlc1 + · · · + dm · · · dm+l−1cm) |w|2l

φ(|w|)(1 − |w|2)
n
q +l

+ · · ·

+ a(m)
m

(d0 · · · dm−1c0 + d1 · · · dmc1 + · · · + dm · · · d2m−1cm) |w|2m

φ(|w|)(1 − |w|2)
n
q +m

.

(2.10)

From (2.10), we obtain that the system consists of (2.7) and (2.8) is equivalent to the following m + 1
linear equations 

1 1 · · · 1
d0 d1 · · · dm
...

...
. . .

...
l−1∏
k=0

dk

l−1∏
k=0

dk+1 · · ·

l−1∏
k=0

dm+k

...
...

. . .
...

m−1∏
k=0

dk

m−1∏
k=0

dk+1 · · ·

m−1∏
k=0

dm+k





c0

c1
...

cl

...

cm



=



0
0
...

1

...

0



. (2.11)

Since dk > 0, k = 0,m, by Lemma 5 in [35], the determinant of system (2.11) is Dm+1(d0) =
∏m

j=1 j!,
which is different from zero. Hence, there are unique constants c j = c(l)

j , j = 0,m such that the
system (2.11) holds. Moreover, we have that the relations in (2.7) and (2.8) hold when such obtained
constants c j, j = 0,m, are used in (2.11). Finally, by Lemma 2.6, it is clear that (2.9) holds. The proof
is finished. �

Lemma 2.9. Let m ∈ N and w ∈ B, fw,t be the set of functions in (2.4), and the sequences {a(k)
t }t=1,k,

k = 1,m, are defined by the relations in (2.5) and (2.6). Then, there are constants c j = c(0)
j , j = 0,m,

AIMS Mathematics Volume 7, Issue 10, 18194–18217.
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such that the function

h(0)
w (z) =

m∑
k=0

c(0)
k fw,k(z)

satisfies
<ih(0)

w (w) = 0, i = 1,m, (2.12)

and
h(0)

w (w) =
1

φ(|w|)(1 − |w|2)
n
q
. (2.13)

Moreover,

sup
w∈B
‖h(0)

w ‖H(p,q,φ) < +∞. (2.14)

Proof. From the proof of Lemma 2.8, we know that the determinant of system consists of (2.12) and
(2.13) is not zero. Therefore, there are unique constants c(0)

j , j = 0,m, in the system of (2.12) and
(2.13). For the same reason, we also have that the relations in (2.12) and (2.13) hold, and moreover,
(2.14) holds. �

3. Boundedness and compactness of the operator Sm
~u,ϕ : H(p, q, φ)→ H∞µ

First, we need to characterize the boundedness of the operator<0
u,ϕ : H(p, q, φ)→ H∞µ . Although it

is a folklore, we still give a proof for the completeness and benefit of the reader.

Theorem 3.1. Let 0 < p, q < +∞, φ normal, u ∈ H(B), ϕ ∈ S (B) and µ a weight function on B. Then
the operator<0

u,ϕ : H(p, q, φ)→ H∞µ is bounded if and only if

I0 := sup
z∈B

µ(z)|u(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q
< +∞. (3.1)

Moreover, if the operator <0
u,ϕ : H(p, q, φ) → H∞µ is bounded, then the following asymptotic

relationship holds ∥∥∥<0
u,ϕ

∥∥∥
H(p,q,φ)→H∞µ

� I0. (3.2)

Proof. Assume (3.1) holds. By Lemma 2.1, for every f ∈ H(p, q, φ) and z ∈ B, we have

µ(z)
∣∣∣<0

u,ϕ f (z)
∣∣∣ = µ(z)|u(z) f (ϕ(z))| ≤ C

µ(z)|u(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q
‖ f ‖H(p,q,φ). (3.3)

By taking the supremum in inequality (3.3) over the unit ball in the space H(p, q, φ), and using (3.1),
we obtain that the operator<0

u,ϕ : H(p, q, φ)→ H∞µ is bounded. Moreover, we have∥∥∥<0
u,ϕ

∥∥∥
H(p,q,φ)→H∞µ

≤ CI0. (3.4)

AIMS Mathematics Volume 7, Issue 10, 18194–18217.
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Assume that the operator <0
u,ϕ : H(p, q, φ) → H∞µ is bounded. Let gw(z) = fϕ(w),1(z) and w ∈ B.

Then we have
L := sup

w∈B
‖gw‖H(p,q,φ) < +∞,

and ∥∥∥<0
u,ϕgw

∥∥∥
H∞µ

= sup
z∈B

µ(z)
∣∣∣<0

u,ϕgw(z)
∣∣∣ ≥ µ(w) |u(w)gw(ϕ(w))| =

µ(w)|u(w)|

φ(|ϕ(w)|)(1 − |ϕ(w)|2)
n
q
. (3.5)

From (3.5) and the boundedness of the operator<0
u,ϕ : H(p, q, φ)→ H∞µ , we have

L
∥∥∥<0

u,ϕ

∥∥∥
H(p,q,φ)→H∞µ

≥ sup
z∈B

µ(z)|u(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q
. (3.6)

From (3.6), condition (3.1) follows, and moreover,

I0 ≤ L
∥∥∥<0

u,ϕ

∥∥∥
H(p,q,φ)→H∞µ

. (3.7)

Also (3.4) and (3.7) imply asymptotic relationship (3.2), finishing the proof. �

Remark 3.1. When k ∈ N, from [32] it follows that the operator<k
u,ϕ : H(p, q, φ)→ H∞µ is bounded if

and only if

Ik := sup
z∈B

µ(z)|u(z)||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q +k

< +∞.

Now, we consider the boundedness of the operator Sm
~u,ϕ : H(p, q, φ)→ H∞µ .

Theorem 3.2. Let m ∈ N, 0 < p, q < +∞, φ normal, u j ∈ H(B), j = 0,m, ϕ ∈ S (B) and µ a weight
function on B. Then the operators < j

u j,ϕ : H(p, q, φ) → H∞µ , j = 0,m, are bounded if and only if the
operator Sm

~u,ϕ : H(p, q, φ)→ H∞µ is bounded and

sup
z∈B

µ(z)|u j(z)||ϕ(z)| < +∞, j = 1,m. (3.8)

Proof. Assume that the operators < j
u j,ϕ : H(p, q, φ) → H∞µ , j = 0,m, are bounded, then the operator

Sm
~u,ϕ : H(p, q, φ) → H∞µ is obviously bounded. By using the functions fi(z) = zi ∈ H(p, q, φ), i = 1, n,

we have that< j
u j,ϕ fi ∈ H(p, q, φ), i = 1, n. From this and since< fi = fi, i = 1, n, we have

‖< j
u j,ϕ

fi‖H∞µ = sup
z∈B

µ(z)|u j(z)||ϕi(z)| ≤ ‖< j
u j,ϕ
‖H(p,q,φ)→H∞µ ‖zi‖H(p,q,φ),

which shows that

sup
z∈B

µ(z)|u j(z)||ϕ(z)| ≤ ‖< j
u j,ϕ
‖H(p,q,φ)→H∞µ

n∑
i=1

‖zi‖H(p,q,φ) < +∞. (3.9)
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From (3.9), we have that (3.8) holds.
Assume that the operator Sm

~u,ϕ : H(p, q, φ) → H∞µ is bounded and (3.8) holds. Then there exists a
positive constant C such that

‖Sm
~u,ϕ f ‖H∞µ ≤ C‖ f ‖H(p,q,φ) (3.10)

for each f ∈ H(p, q, φ). By Theorem 3.1 and Remark 3.1, we need to prove

M j = sup
z∈B

µ(z)|u j(z)||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q + j

< +∞, j = 1,m, (3.11)

and

M0 = sup
z∈B

µ(z)|u0(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q
< +∞. (3.12)

By Lemma 2.8, if ϕ(w) , 0, then there is a function h(m)
ϕ(w) ∈ H(p, q, φ) such that

<ih(m)
ϕ(w)(ϕ(w)) = 0, 0 ≤ i < m, (3.13)

and

<mh(m)
ϕ(w)(ϕ(w)) = a(m)

m
|ϕ(w)|2m

φ(|ϕ(w)|)(1 − |ϕ(w)|2)
n
q +m

. (3.14)

Let Lm = supw∈B ‖h
(m)
ϕ(w)‖H(p,q,φ). Then Lm < +∞. From this, (3.10), (3.13) and (3.14), we have that

Lm‖S
m
~u,ϕ‖H(p,q,φ)→H∞µ ≥ ‖S

m
~u,ϕh(m)

ϕ(w)‖H∞µ = sup
z∈B

µ(z)
∣∣∣∣ m∑

j=0

< j
u j,ϕ

h(m)
ϕ(w)(z)

∣∣∣∣
≥ µ(w)

∣∣∣∣ m∑
j=0

u j(w)< jh(m)
ϕ(w)(ϕ(w))

∣∣∣∣
≥ µ(w)

∣∣∣∣um(w)<mh(m)
ϕ(w)(ϕ(w))

∣∣∣∣
=

µ(w)|um(w)||ϕ(w)|2m

φ(|ϕ(w)|)(1 − |ϕ(w)|2)
n
q +m

. (3.15)

From (3.15), we have

Lm‖S
m
~u,ϕ‖H(p,q,φ)→H∞µ ≥ sup

|ϕ(z)|>1/2

µ(z)|um(z)||ϕ(z)|2m

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q +m

≥
1

22m−1 sup
|ϕ(z)|>1/2

µ(z)|um(z)||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q +m

. (3.16)

From (3.16) and (3.8) with j = m, since φ is normal, we have

sup
|ϕ(z)|≤1/2

µ(z)|um(z)||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q +m
≤ (4/3)

n
q +m max

|z|≤1/2
φ(|z|) sup

|ϕ(z)|≤1/2
µ(z)|um(z)||ϕ(z)|
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≤ (4/3)
n
q +m max

|z|≤1/2
φ(|z|) sup

z∈B
µ(z)|um(z)||ϕ(z)|

< +∞. (3.17)

From (3.16) and (3.17), it follows that Mm < +∞.
Assume that (3.11) holds for j = s + 1,m, for some s ∈ {1, 2, . . . ,m − 1}. By using the function

h(s)
ϕ(w)(z) in Lemma 2.8, we have Ls := supw∈B ‖h

(s)
ϕ(w)‖H(p,q,φ) < +∞ and

Ls‖S
m
~u,ϕ‖H(p,q,φ)→H∞µ ≥ sup

z∈B
µ(z)

∣∣∣∣ m∑
j=s

u j(z)< jh(s)
ϕ(w)(ϕ(z))

∣∣∣∣
≥ µ(w)

∣∣∣∣ m∑
j=s

a( j)
s u j(w)

|ϕ(w)|2s

φ(|ϕ(w)|)(1 − |ϕ(w)|2)
n
q +s

∣∣∣∣
≥ a(s)

s
µ(w)|us(w)||ϕ(w)|2s

φ(|ϕ(w)|)(1 − |ϕ(w)|2)
n
q +s

−

m∑
j=s+1

a( j)
s

µ(w)|u j(w)||ϕ(w)|2s

φ(|ϕ(w)|)(1 − |ϕ(w)|2)
n
q +s
,

from which along with (2.5) we obtain

µ(w)|us(w)||ϕ(w)|2s

φ(|ϕ(w)|)(1 − |ϕ(w)|2)
n
q +s
≤ Ls

∥∥∥Sm
~u,ϕ

∥∥∥
H(p,q,φ)→H∞µ

+

m∑
j=s+1

a( j)
s

µ(w)|u j(w)||ϕ(w)|2s

φ(|ϕ(w)|)(1 − |ϕ(w)|2)
n
q +s
. (3.18)

From (3.18) and since s ≥ 1, it follows that

sup
|ϕ(z)|>1/2

µ(z)|us(z)||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q +s
≤ 22s−1 sup

|ϕ(z)|>1/2

µ(z)|us(z)||ϕ(z)|2s

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q +s

≤ 22s−1Ls

∥∥∥Sm
~u,ϕ

∥∥∥
H(p,q,φ)→H∞µ

+ 22s−1
m∑

j=s+1

a( j)
s sup
|ϕ(z)|>1/2

µ(z)|u j(z)||ϕ(z)|2s

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q +s

≤ 22s−1Ls

∥∥∥Sm
~u,ϕ

∥∥∥
H(p,q,φ)→H∞µ

+ 22s−1
m∑

j=s+1

a( j)
s M j. (3.19)

From (3.8) with j = s and (3.19), we have

sup
|ϕ(z)|≤1/2

µ(z)|us(z)||ϕ(z)|

φ(|ϕ(z)|)
(
1 − |ϕ(z)|2

) n
q +s
≤ (4/3)

n
q +s max
|z|≤1/2

φ(|z|) sup
|ϕ(z)|≤1/2

µ(z)|us(z)||ϕ(z)|

≤ (4/3)
n
q +s max
|z|≤1/2

φ(|z|) sup
z∈B

µ(z)|us(z)||ϕ(z)|

< +∞. (3.20)

So, (3.19) and (3.20) imply that Ms < +∞. Hence, from induction it follows that for each
j ∈ {1, . . . ,m}, (3.11) holds.
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By Lemma 2.9, we have that for each w ∈ B there exists a function h(0)
ϕ(w) ∈ H(p, q, φ) such that

h(0)
ϕ(w)(ϕ(w)) =

1

φ(|ϕ(w)|)(1 − |ϕ(w)|2)
n
q
, < jh(0)

ϕ(w)(ϕ(w)) = 0, j = 1,m, (3.21)

and
L0 := sup

w∈B
‖h(0)

ϕ(w)‖H(p,q,φ) < +∞.

From this, (3.10) and (3.21), we have

L0‖S
m
~u,ϕ‖H(p,q,φ)→H∞µ ≥ ‖S

m
~u,ϕh(0)

ϕ(w)‖H∞µ = sup
z∈B

µ(z)
∣∣∣∣ m∑

j=0

< j
u j,ϕ

h(0)
ϕ(w)(z)

∣∣∣∣
≥ µ(w)

∣∣∣∣ m∑
j=0

u j(w)< jh(0)
ϕ(w)(ϕ(w))

∣∣∣∣
≥ µ(w)|u0(w)h(0)

ϕ(w)(ϕ(w))|

=
µ(w)|u0(w)|

φ(|ϕ(w)|)(1 − |ϕ(w)|2)
n
q
. (3.22)

Hence,

L0

∥∥∥∥Sm
~u,ϕ

∥∥∥∥
H(p,q,φ)→H∞µ

≥ sup
z∈B

µ(z)|u0(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q
. (3.23)

From (3.23), we see that (3.12) holds. This completes the proof. �

From Theorem 3.2 and (1.5), we obtain the following result.

Corollary 3.1. Let m ∈ N, 0 < p, q < +∞, φ normal, u ∈ H(B), ϕ ∈ S (B) and µ a weight function
on B. Then the operators M(<m− ju)◦ϕCϕ<

j : H(p, q, φ) → H∞µ , j = 0,m, are bounded if and only if the
operator Cϕ<

mMu : H(p, q, φ)→ H∞µ is bounded and

sup
z∈B

µ(z)|<m− ju(ϕ(z))||ϕ(z)| < +∞, j = 1,m. (3.24)

Remark 3.2. When k ∈ N, the author in [32] proved that the operator <k
u,ϕ : H(p, q, φ) → H∞µ is

compact if and only if<k
u,ϕ : H(p, q, φ)→ H∞µ is bounded and

lim
|ϕ(z)|→1

µ(z)|u(z)||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q +k

= 0.

Here, we need to characterize the compactness of the operator<0
u,ϕ : H(p, q, φ)→ H∞µ .

Theorem 3.3. Let 0 < p, q < +∞, φ normal, u ∈ H(B), ϕ ∈ S (B) and µ a weight function on B. Then
the operator<0

u,ϕ : H(p, q, φ)→ H∞µ is compact if and only if<0
u,ϕ : H(p, q, φ)→ H∞µ is bounded and

lim
|ϕ(z)|→1

µ(z)|u(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q

= 0. (3.25)

AIMS Mathematics Volume 7, Issue 10, 18194–18217.



18207

Proof. Suppose that the operator<0
u,ϕ : H(p, q, φ)→ H∞µ is compact. Then, it is bounded. If ‖ϕ‖∞ < 1,

then (3.25) holds. Let ‖ϕ‖∞ = 1 and {zi}i∈N be a sequence in B such that |ϕ (zi)| → 1 as i → ∞, and
hi(z) = fϕ(zi),1(z), where fw,t is defined in Lemma 2.6. Then supi∈N ‖hi‖H(p,q,φ) < +∞. Since limi→∞(1 −
|ϕ(zi)|2)t+1+τ = 0, we see that hi → 0 uniformly on compact subsets of B as i → ∞. Hence, by
Lemma 2.5 we have

lim
i→∞

∥∥∥<0
u,ϕhi

∥∥∥
H∞µ

= 0. (3.26)

On the other hand, by (3.5), we see that sufficiently large i

µ(zi)|u(zi)|

φ(|ϕ(zi)|)(1 − |ϕ(zi)|2)
n
q
≤ C‖<0

u,ϕhi‖H∞µ . (3.27)

Letting i→ ∞ in (3.27) and using (3.26), equality (3.25) follows.
Assume that the operator <0

u,ϕ : H(p, q, φ) → H∞µ is bounded and (3.25) holds. By using the
function f (z) ≡ 1 , we obtain that

M̂ := sup
z∈B

µ(z)|u(z)| ≤ ‖<0
u,ϕ‖H(p,q,φ)→H∞µ ‖1‖H(p,q,φ) < +∞. (3.28)

From (3.25), we have that for each ε > 0 there is a δ ∈ (0, 1) such that

µ(z)|u(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q
< ε (3.29)

on the set {z ∈ B : δ < |ϕ(z)| < 1}. Suppose that { fi} is a sequence such that supi∈N ‖ fi‖H(p,q,φ) ≤ M, and
fi → 0 uniformly on compacts of B as i → ∞. Then, by Lemma 2.1 and using (3.28) and (3.29), we
have

∥∥∥<0
u,ϕ fi

∥∥∥
H∞µ

= sup
z∈B

µ(z)
∣∣∣u(z)<0 fi(ϕ(z))

∣∣∣
≤ sup

z∈K
µ(z) |u(z) fi(ϕ(z))| + sup

z∈B\K
µ(z) |u(z) fi(ϕ(z))|

≤ sup
z∈K

µ(z)|u(z)| | fi(ϕ(z))|

+ C ‖ fi‖H(p,q,φ) sup
z∈B\K

µ(z)|u(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q

≤ M̂ sup
|z|≤δ
| fi(z)| + CMε, (3.30)

where K = {z ∈ B : |ϕ(z)| ≤ δ}. Since {z : |z| ≤ δ} is a compact subset of B and fi → 0 uniformly on
compacts of B as i→ ∞, we have

lim
i→∞

∥∥∥<0
u,ϕ fi

∥∥∥
H∞µ

= 0. (3.31)

From (3.31) and Lemma 2.5, it follows that the operator<0
u,ϕ : H(p, q, φ)→ H∞µ is compact. �
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Next, we characterize the compactness of the operator Sm
~u,ϕ : H(p, q, φ)→ H∞µ .

Theorem 3.4. Let m ∈ N, 0 < p, q < +∞, φ normal, u j ∈ H(B), j = 0,m, ϕ ∈ S (B) and µ a weight
function on B. Then the operator Sm

~u,ϕ : H(p, q, φ) → H∞µ is compact and (3.8) holds if and only if the

operators< j
u j,ϕ : H(p, q, φ)→ H∞µ are compact for j = 0,m.

Proof. Assume that every operator< j
u j,ϕ : H(p, q, φ)→ H∞µ is compact, then we have that the operator

Sm
~u,ϕ : H(p, q, φ)→ H∞µ is clearly compact. Furthermore, from Theorem 3.2 it follows that (3.8) holds.

Now, assume that the operator Sm
~u,ϕ : H(p, q, φ) → H∞µ is compact and (3.8) holds. Then the

operator Sm
~u,ϕ : H(p, q, φ)→ H∞µ is bounded. In order to prove the operator< j

u j,ϕ : H(p, q, φ)→ H∞µ is
compact, from Remark 3.2 and Theorem 3.3, we only need to prove

lim
|ϕ(z)|→1

µ(z)|u j(z)||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q + j

= 0, j = 1,m, (3.32)

and

lim
|ϕ(z)|→1

µ(z)|u0(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q

= 0. (3.33)

If ‖ϕ‖∞ < 1, then (3.32) and (3.33) are obviously true. Hence, assume that ‖ϕ‖∞ = 1. Let {zk}k∈N be a
sequence in B such that |ϕ(zk)| → 1 as k → ∞, and h(s)

k (z) = h(s)
ϕ(zk)(z), where h(s)

w is defined in Lemma 2.8
for a fixed s ∈ {1, 2, . . . ,m}. Then, we have supk∈N ‖h

(s)
k ‖H(p,q,φ) < +∞. Since limk→∞(1 − |ϕ(zk)|2)t+1+τ =

0, we see that h(s)
k → 0 uniformly on any compact subset of B as k → ∞. Hence, by Lemma 2.5 we

have

lim
k→∞
‖Sm

~u,ϕh(s)
k ‖H∞µ = 0. (3.34)

On the other hand, from (3.15) we have that for sufficiently large k

µ(zk)|um(zk)||ϕ(zk)|

φ(|ϕ(zk)|)(1 − |ϕ(zk)|2)
n
q +m
≤ C‖Sm

~u,ϕh(m)
k ‖H∞µ . (3.35)

Letting k → ∞ in (3.35) and using (3.34) with s = m, then we obtain that (3.32) holds for j = m.
Now, suppose that (3.32) holds for j = s + 1,m, for some s ∈ N. Then, from (3.18), we easily have

that

µ(zk)|us(zk)||ϕ(zk)|

φ(|ϕ(zk)|)(1 − |ϕ(zk)|2)
n
q +s
.

∥∥∥∥Sm
~u,ϕh(s)

k

∥∥∥∥
H(p,q,φ)→H∞µ

+

m∑
j=s+1

µ(zk)|u j(zk)||ϕ(zk)|

φ(|ϕ(zk)|)(1 − |ϕ(zk)|2)
n
q + j

(3.36)

for sufficiently large k. Letting k → ∞ in (3.36), using (3.34) and the induction hypothesis, we have that
(3.32) holds for j = s, from which by induction it follows that (3.32) holds for each s ∈ {1, 2, . . . ,m}.

Let h(0)
k (z) = h(0)

ϕ(zk)(z), where h(0)
w is defined in Lemma 2.9. Then we have that supk∈N ‖h

(0)
k ‖H(p,q,φ) <

+∞ and h(0)
k → 0 uniformly on any compact subset of B as k → ∞. Hence, by Lemma 2.5 we have

lim
k→∞
‖Sm

~u,ϕh(0)
k ‖H∞µ = 0. (3.37)
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From (3.22), for sufficiently large k it follows that

µ(zk)|u0(zk)|

φ(|ϕ(zk)|)(1 − |ϕ(zk)|2)
n
q
≤ C‖Sm

~u,ϕh(0)
k ‖H∞µ . (3.38)

Letting k → ∞ in (3.38) and using (3.37), (3.33) follows. The proof is finished. �

We also have the following result.

Corollary 3.2. Let m ∈ N, 0 < p, q < +∞, φ normal, u ∈ H(B), ϕ ∈ S (B) and µ a weight function
on B. Then the operator Cϕ<

mMu : H(p, q, φ) → H∞µ is compact and (3.24) holds if and only if the
operators M(<m− ju)◦ϕCϕ<

j : H(p, q, φ)→ H∞µ , j = 0,m, are compact.

4. Essential norm estimate of the operator Sm
~u,ϕ : H(p, q, φ)→ H∞µ

In this section, we estimate the essential norm ofSm
~u,ϕ : H(p, q, φ)→ H∞µ . Let us recall the definition

of the essential norm of the bounded linear operators. Assume that X and Y are Banach spaces and
T : X → Y is a bounded linear operator, then the essential norm of the operator T : X → Y is defined
by

‖T‖e,X→Y = inf{‖T − K‖X→Y : K ∈ K},

whereK denotes the set of all compact linear operators from X to Y . It is easy to see that ‖T‖e,X→Y = 0
if and only if the bounded operator T : X → Y is compact.

Theorem 4.1. Let m ∈ N, 1 ≤ p < +∞, 1 < q < +∞, u j ∈ H(B), j = 0,m, ϕ ∈ S (B), φ normal, µ a
weight function on B and (3.8) hold. If the operator Sm

~u,ϕ : H(p, q, φ)→ H∞µ is bounded, then

‖Sm
~u,ϕ‖e,H(p,q,φ)→H∞µ � lim sup

|ϕ(z)|→1

(
µ(z)|u0(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q

+

m∑
j=1

µ(z)|u j(z)||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q + j

)
.

Proof. Assume that {zi}i∈N is a sequence in B such that |ϕ (zi)| → 1 as i → ∞. Take the function
h(s)

i = h(s)
ϕ(zi)

, where h(s)
w is defined in Lemma 2.8 for a fixed s ∈ {1, 2, . . . ,m}. Then we have

supi∈N ‖h
(s)
i ‖H(p,q,φ) < +∞ and h(s)

i → 0 uniformly on compacts of B as i → ∞. Hence, by Lemma 2.3
and Remark 2.2 we have ‖Kh(s)

i ‖H(p,q,φ) → 0 as i→ ∞. Thus, from (3.15) it follows that

‖Sm
~u,ϕ − K‖H(p,q,φ)→H∞µ = sup

‖h‖H(p,q,φ)=1
‖(Sm

~u,ϕ − K)h‖H∞µ

≥ lim sup
i→∞

‖(Sm
~u,ϕ − K)h(m)

i ‖H∞µ

‖h(m)
i ‖H(p,q,φ)

≥ lim sup
i→∞

‖Sm
~u,ϕh(m)

i ‖H∞µ − ‖Kh(m)
i ‖H∞µ

‖h(m)
i ‖H(p,q,φ)

≥ lim sup
i→∞

µ(zi)|um(zi)||ϕ(zi)|

φ(|ϕ(zi)|)(1 − |ϕ(zi)|2)
n
q +m

.
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From induction and combining these inequalities, it follows that

‖Sm
~u,ϕ − K‖H(p,q,φ)→H∞µ & lim sup

i→∞

m∑
j=1

µ(zi)|u j(zi)||ϕ(zi)|

φ(|ϕ(zi)|)(1 − |ϕ(zi)|2)
n
q + j
. (4.1)

Take the function h(0)
i = h(0)

ϕ(zi)
, where h(0)

w is defined in Lemma 2.9. Then we have that
supi∈N

∥∥∥h(0)
i

∥∥∥
H(p,q,φ)

< +∞, and h(0)
i → 0 uniformly on compacts of B as i → ∞. Then from (3.22), we

have

‖Sm
~u,ϕ − K‖H(p,q,φ)→H∞µ & lim sup

i→∞

µ(zi)|u0(zi)|

φ(|ϕ(zi)|)(1 − |ϕ(zi)|2)
n
q
. (4.2)

By taking the infimum in (4.1) and (4.2) over the set of all compact operators K : H(p, q, φ) → H∞µ ,
we have

‖Sm
~u,ϕ‖e,H(p,q,φ)→H∞µ & lim sup

|ϕ(zi)|→1

(
µ(zi)|u0(zi)|

φ(|ϕ(zi)|)(1 − |ϕ(zi)|2)
n
q

+

m∑
j=1

µ(zi)|u j(zi)||ϕ(zi)|

φ(|ϕ(zi)|)(1 − |ϕ(zi)|2)
n
q + j

)
.

Now, assume that {ri}i∈N is a positive sequence which increasingly converges to 1. For each ri, we
define the operator by

S
m
~u,riϕ

=

m∑
j=0

< j
u j,riϕ

.

Since the operatorSm
~u,ϕ : H(p, q, φ)→ H∞µ is bounded, by Theorem 3.2 one can obtain that the operator

Sm
~u,riϕ

: H(p, q, φ) → H∞µ is bounded. Since |riϕ(z)| ≤ ri < 1, by Lemma 2.5 the operator Sm
~u,riϕ

:
H(p, q, φ)→ H∞µ is also compact. Hence, from Lemmas 2.1 and 2.2, we have∥∥∥Sm

~u,ϕ −S
m
~u,riϕ

∥∥∥
H(p,q,φ)→H∞µ

= sup
‖ f ‖H(p,q,φ)=1

∥∥∥(Sm
~u,ϕ −S

m
~u,riϕ

)
f
∥∥∥

H∞µ

= sup
‖ f ‖H(p,q,φ)=1

sup
z∈B

µ(z)
∣∣∣∣ m∑

j=0

< j
u j,ϕ

f −
m∑

j=0

< j
u j,riϕ

f
∣∣∣∣

≤ sup
‖ f ‖H(p,q,φ)=1

sup
z∈B

m∑
j=0

µ(z)
∣∣∣u j(z)

∣∣∣∣∣∣< j f (ϕ(z)) −< j f (riϕ(z))
∣∣∣

≤ sup
‖ f ‖H(p,q,φ)=1

sup
|ϕ(z)|≤δ

m∑
j=0

µ(z)
∣∣∣u j(z)

∣∣∣∣∣∣< j f (ϕ(z)) −< j f (riϕ(z))
∣∣∣

+ sup
‖ f ‖H(p,q,φ)=1

sup
|ϕ(z)|>δ

m∑
j=0

µ(z)
∣∣∣u j(z)

∣∣∣∣∣∣< j f (ϕ(z)) −< j f (riϕ(z))
∣∣∣

≤ sup
‖ f ‖H(p,q,φ)=1

sup
|ϕ(z)|≤δ

m∑
j=0

µ(z)
∣∣∣u j(z)

∣∣∣∣∣∣< j f (ϕ(z)) −< j f (riϕ(z))
∣∣∣

+ sup
|ϕ(z)|>δ

(
µ(z)|u0(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q

+

m∑
j=1

µ(z)|u j(z)||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q + j

)
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+ sup
|ϕ(z)|>δ

(
µ(z)|u0(z)|

φ(|riϕ(z)|)(1 − |riϕ(z)|2)
n
q

+

m∑
j=1

µ(z)|u j(z)||riϕ(z)|

φ(|riϕ(z)|)(1 − |riϕ(z)|2)
n
q + j

)
.

(4.3)

For each f ∈ H(B) and |ϕ(z)| ≤ δ, we have∣∣∣ f (ϕ(z)) − f (riϕ(z))
∣∣∣ =

∣∣∣ f (ϕ1(z), ϕ2(z), . . . , ϕn(z)) − f (riϕ1(z), riϕ2(z), . . . , riϕn(z))
∣∣∣

≤

n∑
k=1

| f (riϕ1(z), . . . , riϕk−1(z), ϕk(z), ϕk+1(z) . . . , ϕn(z))

− f (riϕ1(z), . . . , riϕk−1(z), riϕk(z), ϕk+1(z) . . . , ϕn(z)) |

=

n∑
k=1

∣∣∣∣(1 − ri)ϕk(z)
∫ 1

0

∂ f
∂zk

(riϕ1(z), . . . , riϕk−1(z), θk(t), ϕk+1(z) . . . , ϕn(z)) dt
∣∣∣∣

≤ (1 − ri)
n∑

k=1

∫ 1

0

∣∣∣∣ ∂ f
∂zk

(riϕ1(z), . . . , riϕk−1(z), θk(t), ϕk+1(z) . . . , ϕn(z))
∣∣∣∣dt

≤ (1 − ri)
n∑

k=1

sup
|w|≤δ

∣∣∣∣ ∂ f
∂zk

(w)
∣∣∣∣

≤ C(1 − ri), (4.4)

where θk(t) = (1 − t)riϕk(z) + tϕk(z). Let g = ∇< j−1 f , j = 1,m, from (4.4) and |ϕ(z)| ≤ δ, we have that

|< j f (ϕ(z)) −< j f (riϕ(z))| ≤ |g(ϕ(z)) − g(riϕ(z))||ϕ(z)| ≤ (1 − ri)|ϕ(z)|
n∑

k=1

sup
|w|≤δ

∣∣∣∣ ∂g
∂zk

(w)
∣∣∣∣ ≤ C(1 − ri)|ϕ(z)|.

(4.5)

By letting i→ ∞ in (4.3), from (3.8), (3.28), (4.4) and (4.5), we obtain

∥∥∥Sm
~u,ϕ −S

m
~u,riϕ

∥∥∥
H(p,q,φ)→H∞µ

. sup
|ϕ(z)|>δ

(
µ(z)|u0(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q

+

m∑
j=1

µ(z)|u j(z)||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q + j

)
as i→ ∞. Since ∥∥∥Sm

~u,ϕ

∥∥∥
e,H(p,q,φ)→H∞µ

≤
∥∥∥Sm

~u,ϕ −S
m
~u,riϕ

∥∥∥
H(p,q,φ)→H∞µ

,

we finish the proof. �

From Theorem 4.1 and (1.5), we obtain the following result.

Corollary 4.1. Let m ∈ N, 1 ≤ p < +∞, 1 < q < +∞, φ normal, u ∈ H(B), ϕ ∈ S (B), µ a weight
function on B and (3.24) hold. If the operator Cϕ<

mMu : H(p, q, φ)→ H∞µ is bounded, then

‖Cϕ<
mMu‖e,H(p,q,φ)→H∞µ � lim sup

|ϕ(z)|→1

(
µ(z)|<mu(ϕ(z))|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q

+

m∑
j=1

µ(z)|<m− ju(ϕ(z))||ϕ(z)|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)
n
q + j

)
.
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5. Hilbert-Schmidt norm of the operator Sm
~u,ϕ : A2

α → A2
α

In this section, we calculate Hilbert-Schmidt norm of the operator Sm
~u,ϕ : A2

α → A2
α. For some

related results, one can see [37, 43]. If H is a separable Hilbert space, then the Hilbert-Schmidt norm
‖T‖HS,H→H of an operator T : H → H is defined by

‖T‖HS,H→H =

( ∞∑
n=1

‖Ten‖
2
) 1

2

, (5.1)

where {en}n∈N is an orthonormal basis onH . The right-hand side in (5.1) does not depend on the choice
of basis. Hence, we have that ‖T‖HS,H→H ≥ ‖T‖H→H the operator norm.

Theorem 5.1. Let m ∈ N and α > −1. Then Hilbert-Schmidt norm of the operator Sm
~u,ϕ on A2

α is

∥∥∥Sm
~u,ϕ

∥∥∥
HS,A2

α→A2
α

=

( m∑
j=0

∫
B

|u j(z)|2
(
< j 1(

1 −
∑n

i=1 wi
)n+α+1

)∣∣∣∣∣
wi=|ϕi(z)|2

dvα(z)
) 1

2

.

Proof. From Proposition 1.4.9 in [23] (or Lemma 1.11 in [48]), for each multi-index β = (β1, . . . , βn),
we have ∫

B

∣∣∣zβ∣∣∣2 dvα(z) =
β! Γ(n + α + 1)

Γ(n + |β| + α + 1)
,

where β! = β1! · · · βn!, and ∫
B

zβzγdvα(z) = 0, β , γ.

From this, we have that the vectors

eβ(z) =

√
Γ(n + |β| + α + 1)
β! Γ(n + α + 1)

zβ

form an orthonormal basis in A2
α. By using the definition of the Hilbert-Schmidt norm and the

monotone convergence theorem, we have∥∥∥∥Sm
~u,ϕ

∥∥∥∥2

HS,A2
α→A2

α

=
∑
β

∥∥∥∥Sm
~u,ϕeβ

∥∥∥∥2

A2
α

=
∑
β

Γ(n + |β| + α + 1)
β! Γ(n + α + 1)

∥∥∥∥Sm
~u,ϕzβ

∥∥∥∥2

A2
α

=
∑
β

Γ(n + |β| + α + 1)
β! Γ(n + α + 1)

m∑
j=0

|β| j
∫
B

|u j(z)|2
n∏

i=1

|ϕi(z)|2βidvα(z)

=

m∑
j=0

∫
B

|u j(z)|2
∑
β

|β| j
Γ(n + |β| + α + 1)
β! Γ(n + α + 1)

n∏
i=1

|ϕi(z)|2βidvα(z). (5.2)

For each f ∈ H(B), by using the Taylor expansion

f (z) =
∑
|β|≥0

aβzβ,
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and taking the jth radial derivatives, we have

< j f (z) =
∑
|β|≥0

|β| jaβzβ, (5.3)

where β = (β1, β2, . . . , βn) is a multi-index, |β| = β1 + · · · + βn and zβ = zβ1
1 · · · z

βn
n .

On the other hand, from Proposition 1.14 in [48] (also see [32]), we have(
1 −

n∑
i=1

wi

)−(n+α+1)

=
∑

l

Γ(n + α + |l| + 1)
l! Γ(n + α + 1)

n∏
i=1

wli
i . (5.4)

Hence, from (5.3) and (5.4), we have

< j 1(
1 −

∑n
i=1 wi

)n+α+1 =
∑

l

|l| j
Γ(n + α + |l| + 1)
l! Γ(n + α + 1)

n∏
i=1

wli
i . (5.5)

From (5.2) and (5.5), the desired result follows. �

From Theorem 5.1 and (1.5), we obtain the following result.

Corollary 5.1. Let m ∈ N and α > −1. Then Hilbert-Schmidt norm of the operator Cϕ<
mMu on A2

α is

∥∥∥Cϕ<
mMu

∥∥∥
HS,A2

α→A2
α

=

( m∑
j=0

∫
B

|<m− ju(ϕ(z))|2
(
< j 1(

1 −
∑n

i=1 wi
)n+α+1

)∣∣∣∣∣
wi=|ϕi(z)|2

dvα(z)
) 1

2

.

6. Conclusions

In this paper, we define the operator Sm
~u,ϕ =

∑m
j=0 Mu jCϕ<

j on some subspaces of H(B), where u j ∈

H(B), j ∈ {0, 1, . . . ,m} and ϕ ∈ S (B). We completely characterized the boundedness and compactness
of the operator Sm

~u,ϕ : H(p, q, φ)→ H∞µ in terms of the behaviours of the symbols u j and ϕ. In order to
study the essential norm estimate of the operatorSm

~u,ϕ : H(p, q, φ)→ H∞µ , we considered the conditions
for the reflexivity of H(p, q, φ). By using a criterion of the compactness for a bounded linear operator
T : X → Y , where X is a reflexive Banach space of holomorphic functions on B and Y is any Banach
space, we obtained the essential norm estimate of the operator Sm

~u,ϕ : H(p, q, φ) → H∞µ . Moreover, we
also calculated the Hilbert-Schmidt norm of the operator on the weighted Bergman space A2

α. As an
application, the corresponding results of the operator Cϕ<

mMu : H(p, q, φ) → H∞µ are obtained. This
paper can be viewed as a continuation and extension of our previous work. We hope that this study can
attract people’s more attention for such operators and mixed-norm spaces.
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to weighted-type spaces on the unit ball, Complex Anal. Oper. Theory, 11 (2017), 261–288.
https://doi.org/10.1007/s11785-016-0535-6

21. Y. M. Liu, Y. Y. Yu, Products of composition, multiplication and radial derivative operators from
logarithmic Bloch spaces to weighted-type spaces on the unit ball, J. Math. Anal. Appl., 423 (2015),
76–93. https://doi.org/10.1016/j.jmaa.2014.09.069

22. S. Ohno, Products of composition and differentiation on Bloch spaces, B. Korean Math. Soc., 46
(2009), 1135–1140. https://doi.org/10.4134/BKMS.2009.46.6.1135

23. W. Rudin, Function theory in the unit ball of Cn, Berlin, Heidelberg: Springer, 2008.
https://doi.org/10.1007/978-3-540-68276-9
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