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Abstract: This paper focuses on the long time dynamics for a class stochastic SEI model with standard
incidence and infectivity in incubation period. Firstly, we investigate a unique global positive solution
almost surely for any positive initial value. Secondly, we obtain a unique stationary measure and the
extinction condition of the epidemic based on the technique of Lyapunov function and inequalities.
Thirdly, we explore the asymptotic behavior of the solutions around equilibriums of the corresponding
deterministic model from different aspects. Finally, we establish some numerical simulations to
illustrate the main presented results.
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1. Introduction

In recent years, the investigation of infectious disease has increased dramatically and became an
hot topic of research, attempts have been made to develop realistic mathematical models for the
transmission dynamics of infectious diseases [1-4]. In the research of epidemic, the related models
have been revealed as very useful tools to predict how the process of disease transmission, and provided
some suggestions for the epidemic prevention and control work. During this period, Anderson and May
first proposed a ordinary differential system to describe a classical SEIR model [5]. Later, Cooke
and Van Den Driessche considered a disease transmission model of SEIRS type with exponential
demographic structure [6]. Zhao et al. studied an SEIR epidemic disease model with time delay
and nonlinear incidence rate [7]. Abta et al. gave a comparison of a delayed SIR model and its
corresponding SEIR model in terms of global stability [8]. Furthermore, there exists a non-exhaustive
list of papers on the epidemic dynamics of deterministic SEIR models (see e.g., [9-13] references
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therein). In addition, as a special epidemic, the propagation force of COVID-19 is extremely high,
which transmit people of all ages, especially those with low immunity or with underlying disease. In
everyday life, the transmission of human-to-human is possible going on quietly and rapidly when a
susceptible individual touches the saliva or droplets sprayed from a person who has positive nucleic
acid tests, symptomatic person, virus carrier et al., and manifest corresponding clinical symptoms,
such as cough, fever et al., this adds great difficulties and obstacles to controlling the spread of
the disease [14—16]. Although the high-risk groups have been quarantined timely, there still posses
contagiousness during the latent period of the COVID-19, therefore, it is significant to investigate the
model on COVID-19 with infectivity in incubation period. Based on the transmission and control of
COVID-19, Jiao et al. put forward a deterministic SEI epidemic model with infectivity in incubation
period as follows

ds

ar =A-p(1-6)SU + 6,E) — pusS,

dE

ar =p(1 - 0)SU + ,E) — (6 + PE, (1.1)
1

%zéE—(y+0'+,u)I,

and investigated the local and global asymptotically stable at equilibrium points by the basic
reproduction number respectively [17]. Besides, in view of the rationality of the variables on the
total population, we consider the standard incidence instead of the bilinear law incidence function that
echoes the classical epidemic model proposed by White and Comiskey [18], which greatly increases
the complexity and challenge in the course of the research for the SEI models. Thus the improved
system can be expressed as

ds -
_A _BA-6)SU + 6E) s,
dt N
dE B(1 -6)SU + 6,E)
— = —(0 E, 1.2
d N O+ (12)
dl
— =0E - (y + 0 + ),

dt

where N represents the total population that include the numbers of the susceptible population S,
exposed population E and infected population /; A stands for the number of individuals entering the
susceptible population during the general population; 8, 6 and y denote by the transition rate from S to
E, E to I and [ to recovered individuals respectively; u, 0 < 6, < 1,0 < 6, < 1 and o are natural death
rate, the homestead-isolation rate of the susceptible, the infective effect of the exposed in incubation

period and the hospitalized rate of I separately. And the basic reproduction number of system (1.2) is
R = BU—OD[6+62(y+o+p) | -6(y+0)
0= H(y+o+u+6) )

However, there exists some shortcomings and limitations in portraying the dynamics of infectious

disease models by deterministic cases, after all, in the process of disease transmission, it is inevitably
restricted and affected by random factors. Therefore, it is necessary to study the stochastic system
on infectious disease models. Based on biological and mathematical perspective, there are some
possible approaches to introduce random factors to the models [19-28]. Here, we mainly refer to
three approaches. The first one is through time Markov chain model as environment noises in HIV
epidemic [29, 30]. The second is through parameters perturbation which is a standard technique in

AIMS Mathematics Volume 7, Issue 10, 18218-18238.



18220

stochastic population modelling, and there is an intensive papers on this approach. For example,
Dalal et al. analysed a stochastic HIV model and the stochasticity is introduced by the death rate of
healthy cells, the death rate of infected cells and the death rate of infective virus particles perturbation
respectively [31]. Gray et al. extended the classical SIS epidemic model from a deterministic
framework to a stochastic one by considering the the disease transmission coefficient affected by the
noises [32]. The last one to consider stochastic epidemic system is to robust the positive equilibria of
deterministic models [33, 34].

Inspired by existing literatures [35,36], by replacing —u, =5, —y by —u+a B, =6+ a,B,, —y+a3B;
respectively. This is only one simple approach in introducing stochasticity into this model. Ideally we
would also like to introduce stochastic environmental variation into the other parameters, but to do
this would make the analysis much too difficult. Therefore, we present a stochastic SEI system with
standard incidence and infectivity in incubation period in this paper as follows:

1= 6)S(I + 6,E
ds :[A—ﬁ( Hl)i( *0E) _ s |d+ aisdBy),
1= 6)S( + 6,E
dE = ['8( Ql); TH0E) _ 54 E|dt + ey EdBy (1) + arEdByo), (1.3
dl =[6E — (y + o + p)I|dt + a;1dB;(t) + a31dB;(1),

where @; > 0 and B; are independent Brownian motions for i = 1,2,3. Based on some stochastic
analysis technique and Lyapunov functions [37-39], we explore some dynamics for this model.

This paper is organized as follows. In Section 2, some necessary preliminaries are recalled and
the theorem concerning the uniquely existence of the global positive solution for the system (1.3) is
proved. In Section 3, the sufficient conditions of the unique stationary measure, the extinction and
the asymptotic behavior around the two equilibriums are established. In Section 4, the numerical
simulations are obtained to illustrate the presented results.

2. Preliminaries

Let (QQ, 7, P) be a complete probability space endowed with a filtration {F,},»( that satisfies the usual
conditions. Denote by R? = {xT = (x;, x2, x3) € R3|x; > 0,i = 1,2, 3} for real set R and C>(R?,R) the
family of all real-valued functions V(x, 1): R? — R such that they are twice differentiable in x and once
in f.

Assume E,; denotes d-dimensional Euclidean space, and X(¢) € E, be a time-homogeneous strong
Markov process such that

k
dX(t) = bX(D)dt + ) f(X(D)dB,(1),
s=1

and its diffusion matrix is (a;;) with a;; = 3*_, fi(x) 11 (x).

Lemma 2.1. [37] Assume that there exists a bounded domain U C E; with regular boundary Y,
having the following properties:

(i) there is a constant C > 0 such that ijzl a;[(x)¢; = CiliLll for any x € U, ¢ € R

(i) there is a nonnegative C,-function V such that LV < —C, for any x € E;/U and positive
constant C,.
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Then the Markov process X(t) has a stationary measure n(-) with density in E,; satisfies
lim P,(x, B) = n(B) for any B € B(E,) and for any x € E,, let f(x) be a function integrable with
t—00

respect to the measure 7, it yields

T
P"{lim lf f(X(t))dtzf f(x)ﬂ(dx)} =
= T Jo E,

Next, we investigate the existence and uniqueness of the global solution in R3.

Theorem 2.1. For any initial value (S (0), E(0), 1(0)) € Ri, the system (1.3) exists a unique global
solution (S (1), E(2), I(1)) € R} for t > 0 almost surely.

Proof. Define V(S,E,I) € C*(R3,R,) by
V(S,E,T)=(S —1-nS)+(E—~1-TnE)+(I” =1—plnl), 0<p< 1.

From It6 formula, it follows

dV:[A_,B(I—Gl)S(I+92E) —,uS}(l—l)dt
N S
+ [ﬁ(l — 605U +6.F) —(5+,U)E](l - l)dr
N E

+ [0E = (y + o + ] (p]‘"—1 - ?)dl
1
+ > {201% + 0/% + p(cx% + cx%)[(p - DI + 1]}dt

+ al(S +E+1- 3)dBl(t) + (Zz(E - l)de(t) + a3(1 - 1)ng(t)
<Lodt + a;(S + E+1-3)dB(t) + ap(E — 1)dB,(1)

+ a3(I — 1)dBs(1), (2.1)

where Lo = A + B(1 — 6y) + § + L2
Based on the fact that drift coefficients satisfy the locally Lipschitz conditions, hence, there exists a

unique local solution (S (¢), E(¢), I(?)) (¢ € [0, 7.]) for any given positive initial value (S (0), E£(0), 1(0))
and explosion time 7,. One claims 7, = co. In fact, let m( be sufficiently large to make sure the initial
value entirely belongs to the interval [H%O, mo]. In addition, define a stopping time for each m > my as
follows:

T, =inf {t € [0,7,) : max{S (¢), E(¢), I(t)} = m. or min{S (¢), E(¢), I(£)} < nlfz}

It is not difficult to verify the sequence {7,} is increasing against the variable m, denote by 7., =
lim 7, further, 7, < 7, a.s., next, one will present 7., = oo, which indicates the global existence of

m—00

(S (1), E(1), 1(t)). To fulfill the judgment, by integrating (2.1) from O to 7,, AT and taking the expectation
of both sides, it yields

EV S AT),E(ty NT),I(t,, NT))
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T AT

T AT
SalEf SO+ E@)+1(t)-3)dB(t) + aszf (E(t) — 1)dBs (1)
0 0

T AT T AT
+ a3Ef (I(r) = 1)dB5(t) + V(S5 (0), E(0), 1(0)) + Ef Lodt
0 0

<V(S5(0), E(0), 1(0)) + LoT.
Meanwhile, together with
EVESt,AT),E(t, NT),I(t,, NT))

2P(1), < T){Z[(m— 1 —lnm)/\(l —1 _1nl)]

m m

1 1
+(mp—l—plnm)/\(—p—l—pln—)},
m m

one comes to a conclusion that P(r,, = co0) = 1, which implies (1.3) exists a unique global solution [38].
m]

3. The dynamics

For system (1.2), by complicated calculations, there exist two equilibriums with Qy(S, 0, 0)
for Sy = %, and Q.(S., E., L.) (see Appendix A) provided the basic reproduction number R, > 1,
where

B Aly+o+u+o)

B =60)[6+6:(y + o+ W] =6y +0)

CABA-0)[6+0(y + T+ W] =6y +0) —uly + o+ u+6)}

- O+ w{B(L = 0) [6 + .(y + 0 + W] — 6(y + o)} ’

; IMBA-6D[6+ 6,0+ o+ W]~y +0) —uly + 0 +p+6))
(y+o+w@+wBA—-0)[6+60:(y + o +w)] -6y +0)}

S

E,

Next, we research the stationary distribution of system (1.3).

Theorem 3.1. Assume Ry > 1 and 0 < Lj < min{L]§ f,L;Ef,L;If}, then system (1.3) possesses a
unique stationary measure provided

p PUZO0S. ot 3
1 w7 26 ’
100 + 1) +h
L} =u(1 = hy) = B(1 = 6)S. — a(1 + 3hy) 2 1)(2+2)+ v +a)
ha6 1 - 6,6
o 1-6
‘mdL§=h2(7+0'+/1+E—Olf—ozﬁ)—hl(,u+3af+a§)—’3—( 5 D,
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Proof. Let (S(¢), E(t),1(¢)) is the unique positive solution of system (1.3) with the initial value
(5(0), E(0),1(0)) € R3. If Ry > 1, obviously, system (1.2) has equilibrium (S ,, E., I.) that satisfies

1-6))S.(I.+6,E.
B 1)N( +6, )—uS*:O,

B — 01)51:](1* H0E) _ s 0E. =0, (3.1)

A

OE,.—(y+o+wl, =0.

Define
V(S,E, I) = V1 + h1V2 + ]’lz(V3 + V4),

where V; >0 fori=1,---,4,h; >0for j=1,2 and

S -8S,)? S-S, +E-E.+1-1)
Vie———2,  V,= )
: 2 : 2

(I - 1) I

= 5 :I—I*—Ikl I
V3 5 V4 IlI*

By applying the Itd6 formula and (3.1), it obtains

LV,
_ [ (1 -6)U, +6E,) B B -6)S.(I. +6,E,) 2 e
= »lu + N N*N CYI](S S*)
B -6)S6, (1 =6)S.(I +6:E.)
[BA =608 - 6)S.(L +92E*)]<s S L)+ alS,
N N.N

similarly, one gives

LV;=—(y+o+u—al—a3)I - L)Y +8E-E)I-1L)+(a] +a3)I7,

2 2
_(y+o +u)(1 A S(E-ENI-1) . (a} + )L

LV: 9
4 I I 2

and

LV, =—(u—3a?)S - S.)* — (u—-3a} — a?)(E - E.)*
—(y+0o+pu-3a; - ) - 1) = 2u(S - S.)(E - E.)
—(y+o+2uW) S -S)UI-L)—(y+0+2u)E-E)I-1,)
+3a28? + 3t + ad)E? + 3t + ad)I2.

Further, by the expression of LV, fori = 1,--- ,4, it follows

LV <= A((S =S.) = M(E - E.)’ = As(I = L) = ¥1(S = S.)(E - E.)
—¥o(§ —SIU - 1) —V5(E - E)U - 1) + Ly,
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where

Ay = - B —0)S., —a?+h(u—3a?), A =h(u-3al-a3),
As =hi(y + 0+ p=3a] = a3) + ho(y + 0+ — @} - @3),
:,8(1 - 91)592 _ ,8(1 - 91)5*(1* + QzE*)

\Pl +2h1,u,
N N.N
1-6)S  B(1—0)S.(I. +6,E,
v, _B( - DS B I)N*S\] p )+h1(y+0_+2'u),

Wy =hi(y + 0 +2p) — hod(1 + 17,

a’ + o),
LE‘) :4&%55 + (3@% + a/%)Ef + 2(20,% 4 a’%)lf + ( 1 . 3) '
Since hl = [3(1_2—?11)&‘, h2 = W, therefore’ \Pi Z 0 for l — 1,2’ 3.

In order to present a better estimate of LV, one divides R? into eight domains:

{(S,E,N€ER?:8 -5, >0,E~-E, >0,1-1, >0},
{(S,E,)eR}:85~-S,<0,E-E, <0,I-1, <0},
{(S,E,DER? :8-S,>0,E-E, >0,1-1, <0},
{(S,E,NeR?:8 -S§,<0,E-E, <0,1-1, >0},
{(S,E,D€ER?:8 -5, >0,E-E, <0,1-1, >0},
{ }
{ }
{ }

(S,E,)eR}:8-S,<0,E-E,>0,1-1, <0},
(S,E,)eR}:85-S,<0,E-E,>0,1-1, >0},
(S,E,N€eR?:8S~-S5,>0,E-E,<0,I-1,<0}.

3
3>
NE
34
NP
Js
37
Js

Case 1. (S,E,I) € 3, i = 1,2. Further, it deduces (S —S.)E -E,) >0, (S -S)U-1,) >0,

LV <=A(S =S.)* - M(E-E) - AU - L)Y + L.

Case2. (S,E,I) € 3,,i = 3,4. One obtains (S-S.)(E-E,) >0, (S=-S,)(I-1,) <0, (E-E)(I-1,) <0,
together with 2ab < a*> + b* for a,b € R, it follows
-¥a(S -SH)U-L)-Y5(E-E)U - L)
=¥,[—(S = S)U - L)] +¥3[—(E - E.)( - 1)]

S—-S.)+U-1)
S[ﬁ(l—91)+h1(7+0'+2#)]( )2+( )

(E-E)+-1)

+ [hi(y + 0 + 2u) — hyd]

2 b
and
1-0)+h 2
LV <— Al—’B( D+ ;(YHH il (S - S.)
h(y+o+2u) —h)o
—[Az— 144 02“) 2](E—E*)2—L§(I—I*)2+L§.
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Case3. (S,E,I) € 3, i =5,6. One obtains (S-S . )(E-E,) <0, (S-S.)(I-1) >0, (E-E.,)(I-1.) <0,
together with 2ab < a* + b* for a, b € R, it yields

Bl —01)0> + 2hu
2
hi(y + 0 +2u) — ho
2

LV <—|A -

] (S - S*)z - L;(E - E*)2

- [A3 —~ ] (I-L)7*+L;.

Cased. (S,E,I) € 3,,i=1,8. One obtains (S-S.)(E-E,) <0, (S-S,)(I-1,) <0, (E-E,)(I-1,) >0,
similarly

LV <—Li(S _S)P— [Az _,3(1 - 91);92 + 2h1'u](E—E*)2
_ [A3 _Bd _01)+hé(7+0-+2ﬂ) U= L)+ L

Based on the above discussion of different situations, one comes to a conclusion that
LV <-Li(S -S.)* - Ly(E-E)* - Ly(I- L) + L,

In view of Lj < min{L;S?, L}E?, L;I2}, therefore, the ellipsoid

_ 2 _ 2 R AY
‘R:{(S,E,I):(S S.) +(E E.) +(I L) :1}eRi.

L;/L: Ly, Ly/L;

Assume U be a any bounded neighborhood of the ellipsoid R satisfies the closure U C R3, further,
there exists a constant C, > 0 such that LV < —-C,.

Let ¢ = min{S2, E?, I>,SE,SI,EI : (S,E,I) € U}, denote the diffusion matrix of system (1.3) by
A, for any n = (71,2, m3)7, it deduces n” An > én’ Ayn, where

a;S? aiSE asS1
A=| &3SE (af +a))E? aiEl ,
a%SI CL’%EI (a/% + a/g)l2

and

2 2 2
a; a; (o +CZ3

o @ e
Ao = a/i att+a; @ )
By complicated calculations, it claims that the matrix A is positive definite endowed with three positive
real characteristic roots A; for i = 1,2, 3, this implies that there exists a £ = ({1, {2, 53)! € R3andC, >0
such that {TAZ > C||Z||. From above discussion, it obtains according to Lemma 2.1 that system (1.3)

possesses a unique stationary measure. O

(12 . . . .
Theorem 3.2. Assume A—u— = < 0, then the disease of system (1.3) will become extinct exponentially
with probability one.
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Proof. Let V(t) = In(S + E + I), by applying It6 formula, it follows

E
dV =LVdi + a1dBi(1) + @

2
———dB(t dBx(t
TE+1 2()+S 7 3(1),

as
+ E+
where
212 272
@ E” + a5l

1
LV =[A-u(s +E>—<V+“+”>’]m‘5[“?+—<s YE+ P

@
SA—,U—?.

By comparison theorem, it has

2

E 1
dV < (A — - C;—‘)dt + adB;(?) + e dB (1) + a—3ng(t).

S+E+1 S+E+1
Integrating the above inequality from O to z, it follows from the strong law of large numbers for local

martingales in [19] that

1 E+1
n(S + +)<

lim sup 0, a.s.,

t—00
which implies that lim S (#) = lim E(¢) = lim I(¥) = 0, a.s..
While Q(S, O,Z(_)))Ooand Q*(?:o, E.,L) Ia_r?:o no longer the equilibriums of system (1.3), we still can
explore the asymptotic behavior of the solutions of system (1.3) around these two equilibriums of the
deterministic system (1.2) from different aspects, the result is obtained as follows. O

Theorem 3.3. Assume Ry < 1 and K. = min{K, K>, K53} > 0 with

3B(1 -6
KIZ,U_ :8(2 1)_a€’
9 B —-60)+al+a3
K, = - —
255 + U 3 ,
o+ a% + 01%
and K3 :y+0'+,u—T,
then the solution (S (t), E(t), (1)) of (1.3) with the initial value (S (0), E(0), 1(0)) € R? satisfies
1 ¢ S 2 1-—
lim sup ;Ef (S(p) = So)* + E*(p) + I*(p)dp S?o M + a%] .
t—oo 0 %

Proof. Ry < 1 indicates the system (1.2) admits a unique equilibrium (S,0,0). To consider the
asymptotic behavior of system (1.2) around (S, 0, 0), define V = V| + V, € C*(R3,R,) with

_ (S-S0 |, _E+P

2 2= '

Vi 2

From the It6 formula and (3.1), it obtains

p-6,)SU + 6,E)
N

1
LV, =|-u(S = Sy) - (S —So) + 5a%SZ

AIMS Mathematics Volume 7, Issue 10, 18218-18238.
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<—u(S =S +B1—6,)S =SS +B(1-6)S5+ ;a/lSz

(1-6)) 3B(1 - 6))
S—[u £ — - %}(5—50)2 [ﬁz — +a7| 83,
and
1-0)SU + 6,E
Lv, = | A 1)N( F0E) 5+ E|E+[6E - (y+ o+ wi]I
1 2 2
5[(a1+012)E + (@} +a)P|
) 1 —6)) + a? + a?
Sﬁ(l—Gl)[(S—So)2+SS]—[§+,u—ﬁ( 1)2‘ 2| E?
S+aj+aj
—|ly+to+uy—-—m
2
Combine (3.2) with (3.3), one obtains
58(1-6 3p-0
LV < ﬁ( 1) %S%— ﬁ( 1) %(S—So)z

2 2

5 1-6)+a*+a? S+ai+ad
_[§+u_ﬁ( 1)2 ay + a5 B 7+O’+ﬂ—¥ 7
58(1 -6
[ A > ) a%]sg—l(l(s ~ S0 — K, E? - K312

In view of Ky = min{K;, K;, K3} > 0, it is not difficult to give

avis (0, E, 1)
<[P ot s

+ a1 [S (S (1) — So) + EX(0) + IP(1)1dB1 (1) + a2 E*())dBs(¢).
Integrating and taking expectation both sides of (3.4), one derives

0 <EV(S (1), E(), I(t)) <V(S(0), E(0), I(0)) + Sﬁ(lz o) af]sgt

_ KE f (S(p) = So)? + EXp) + P(p)dp,
0

furthermore, it yields

lim sup —E f (S(p) = So)* + E*(p) + P(p)dp <

t—o0

[5,3(1 01) azl

0

— Kol(S (1) = S0)* + EX(1) + P()] + a3 *(1)dB3(1)

2 -

(3.2)

(3.3)

(3.4)

O
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Remark 3.1. Theorem 3.3 illustrates that the solution of system (1.3) fluctuates near the equilibrium
00(S0,0,0) of system (1.2), and decreases as the variable a, and 3 decrease, which means that the
epidemic is dying out and will not further spread in the society.

Theorem 3.4. Assume Ry > 1 and H, = min{H,, H,, H3} > 0, then the solution (S (t), E(t), (1)) of
system (1.3) with the initial value (S (0), E(0), I(0)) € Ri has the property

lim sup %]E fo [(S(p) —S)?+(E(p) - E)* +U(p) - 1*)2] dp < % (3.5)

t—oo *
where
1
Hy = 3a7S2 + 2a] + @3)E? + 5(a% + o)z,

1.1
Hy=u-3a;—=6— 81 - 0,)(@4S, + 6, + 1),

2
2 ) , 1
H, = 56—2011 —-a; - 5,8(1 -0, +S.),
1 5 5 1 1
and H; = g()/+0'+,u—a/1 —a3)—E6—§ﬁ(l—01)(1+S*).

Proof. System (1.2) admits the equilibrium (S ., E., I.) since Ry > 1. Define

1
V:V1+V2+§V3,

where | 1 1
Vi=3(S =S+ E=-E)’, Va=5(8 =S.)" and V3 = 5(I - L)".

Based on the It6 formula, it obtains

LV, =[-u(S = S§.) = (6 +u)E - E)](S ~S.+E~-E)
201S? + 207 + a3)E?
2
<—(u=-2a))(S =8, = (6 +u—2a;—a5)E-E,)
— (6 +2u)(S = S)(E - E,) +2a3S? + 207 + a3)E”.

Similarly, it deduces

LV, <= |u-B(1-0)S. - 7| (S - S.)
B [,3(1 — 0056, B -60)S.(. + 6:E.)

N NN,
~ [/3(1 -0)S B -60S.(L + 92E*)] (S =S - 1) +a’S>.
N NN,

and

LV; <— ()/ +0+u— a/f - a%) (I-1)+8E-E)I-1)+ (a/% + a%)lf.
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Therefore, it follows

LV
<—[2u—3a} - B(1 - 0)S.|(S = S.) = 6+ — 20} - B)(E - E.)?

1 1
—§(y+a+y—a%—a§)(1—1*)2+ga(E—E*)(I—I*)

B -60)56, B —-6)S.(L + 6:E,)
—|0+2u+ N - NN ](S—S*)(E—E*)
_ [ﬁ(l - QI)S _ 18(1 - el)S*(I* + HZE*):| (S _ S*)(I _ I*)
N NN,

1
+3a35% + (2at + a3)E + §(a§ + a2

(3.6)

Since the uncertainty of § —= 5. >0,S -S.<0,E-E. >0, E - E, <0, for a better estimate of LV,

one derives

B -6)S6, B(1-6)S.(.+6E,)
—[6+2u+ N - NI ](S—S*)(E—E*)
< [5 o2y BUZO0SO: | B(L= 6050 + QZE*)] (S —S.2+(E - E.)?
N NN, 2

1
<5 [6 +2u+B(1 - 6,)(6, +S,)] [(S - S.)?+(E - E*)Z] .
By adoptting the same principle in (3.7), one yields
1 2 2
O(E - E)I 1) < 56|(E~E.Y + (= L),

and

B -6)S B —6))S.(L + 6:E,)
N NN,

](S -SJ)U - L)
s%ﬁ(l —0D(1+S)[S =850+ U - L)].
Substituting (3.7)—(3.9) into (3.6), it follows
LV <= H\(S = S.)’ = Hy(E - E.)’ = H3(I - .)* + H,
Since H, = min{H,, H,, H3} > 0, then
dV <Hy - H.|(S =S.7 +(E—~E) + (I - 17|

+

S -S)QS+E)+(S+EXE-E,)+ %I(l - I*)] dB(1)

1
+aE(S -S.+ E—-E,)dB)(t) + §a3l(1 — 1,)dBs(1).
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Integrating from O to ¢, taking expectation both sides of (3.11), and combining with 0 <
EV(S (t), E(t), I(t)), one deduces

0<- H*Ef [(S ) —S.)? +(E(p) — E)* + ((p) - 1*)2] dp
0
+ Hot + V(S (0), E(0), 1(0)),

which guarantees (3.5) holds. O

Remark 3.2. Theorem 3.4 indicates that the solution of system (1.3) disturbs around the equilibrium
0.(S ., E., L.) of system (1.2), this implies the epidemic will continue to spread in the society.

Theorem 3.5. Assume Ry > 1 and B, = min{By, B,, B3} > 0, then the solution (S (), E(), 1(?)) of (1.3)
with the initial value (S (0), E(0), 1(0)) € R3 has the property

1 [ du+B1-6)_ T 5+ 2
lim sup ~E f et BA=60) ¢ 1y By - SHEE,
t—o0 t 0 2Bl
y+o+u

S(p) - B,
1(p) - 2B,

2

+ L,

By
dp < —, 3.12
g (3.12)

where

sCu-g)_ 3%
8 27
p 30+ 201+
2 2 >
5+a%+a§
2 9
[4p + B(1 - 6)))* g2 4
4B, *

B,

By=y+o+u-

56+9,u+(5+,u)2

E2
2 B, |

and By = {2(6 +2u) +

+o0+p)?
4 (y+o+p) 2
4B;

Proof. System (1.2) admits the equilibrium (S ., E., I..) since Ry > 1. Define V = V| + V, + V3, where

1
Vi==( -S.+E-E,)>,

2

1
Vo= E(S - S5.)%
Vs = 1(1 L.)?
3—2 x) .

Based on It6 formula and ab < %

(2a)* + (3)2], it obtains
LVy =—pu(S —8.)° = (6 +2u)(S = S)(E - E) — (6 + W)(E — E.)?

1
+ 5[201%52 + (a7 + a3)E?]
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<—u(S*—288.)+ (0 +2u)SE. +S.E) - (6 + u)(E* — 2EE,)
1
+aiS? + 5(2&% + a3)E?

S_(6,11—6_az)SZ_(76+6,u

8 ! 8
+2uS S, +2(6 + WEE, +2(6 + 2u)(S? + E?).

1
- 5(2@% + oz%)) E?

Taking a similar way, it deduces

1 5+
LV <= S(u=5-aD)S” + [2u+ (1 - 0,)ISS. + T“Ei

1) o a’+ a?
LV, §§E2+(7+0'+/J)II*—(7+0'+/J—E—%)Iz.

Therefore, it follows

5Qu —9) 30/%
8 2
3(6+2u) 207+
)
§+ai+a3
2
:_BI[S_WS*]Z_BZ[E_M_#E*]Z

2B, B,
Yy+o+u
2B;

LV <— )S2+[4# +B(1 —6)]ISS. +2(5 +2u)S?

56 +9u

)E2 +2(6 + WEE, + E?

—lyv+o+u-—

)12 +(y+o+wpll,

2

— B; [[ - I.| + By. (3.13)

According to B, = min{By, B;, B3} > 0, one obtains

2 2
dV <- B, {[s _ ws*] + [E— 5;“15*]

2B,
2
_ytotp }+ 5,
2B,
+ay [(S = S)Q2S + E)+ (S + E)E — E.) + I(I — 1.)] dB (¢)
+arE(S —S. +E— E)dB(t) + azl(I — 1,)dBx(?),

+ |7

L

which implies (3.12) holds by utilizing a same method to the proof of (3.5) . O

Remark 3.3. Theorem 3.5 describes that the solution of system (1.3) vibrates around

(‘%}:91), ‘SBLZ“E*, 7;‘;:” I*), this implies the epidemic will be lasting spread in the society.
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4. Examples and computer simulations

In this section, we introduce mainly some examples and numerical simulations to support the main
results. To illustrate the main presented results, we use Milstein’s higher order method in [20] to
simulate the dynamics of system (1.3) with given the parameters and initial value. The corresponding
discretization equations are

1 - 0)S (I + 6,E 2
St :Sk+[A—’B( ) ]\k[ik 2 ")—ysk]At+alsk§1,k«/Zt+Elsk(gf’km—m),
1-6)SI + 6,E >
Ei :Ek+[’8 ( ‘)A’;( 2B s+ WE| At + a ) Exéy s «/Zr+71Ek(§ikAr—At)
k

2
(04
+ @y Elos VAL + ?zEk(fikAt — AD), (4.1)

VA a/% 2
Ik+1 =I, + [5Ek - ()/ + o +[.t)]k] At + allké‘:l,k At + ?Ik(é‘:l,kAt — AI)

2
(0%
+ asliés . VAL + flk(gg,km — AD),

where N, = Sy + Ex + I and &4, &0y Exxo k = 1,2, ..., n are independent Gaussian random variables
N(0, 1), and a/l.z, i = 1,2, 3 are intensities of white noises.

Example 4.1. Let us illustrate the extinction of the disease for the epidemic in Theorem 3.2. Choosing
the initial value (S (0), E(0), 1(0)) = (75, 35,22) and

A =065, 8=09, 6 =0.1, 6 = 035, u = 0.75,
§ =045, y=0.55, o = 0.55, a; = 0.35, @y = 0.65, a3 = 0.45,

which implies Ry = 2=t} 200a) _ 6 53 and A—p— % = —0.16125 < 0. It follows from

U(y+o+u+o) 2~
Theorem 3.2. that system (1.3) becomes extinct exponentially with probability one. The simulations

of system (1.3) is shown in Figure 1(a). Meanwhile, the numerical simulations of the different samples
S(t), E(t) and I(¢) are shown in Figure 1(b).

—s()
—Eew| J
Itt)

E®) s®

(a) (b)
Figure 1. The simulation of system (1.3) with A = 0.01; (a) The simulation of reactant
(S (1), E(1),1(r)) with T = 1000, (b) the different samples S (¢) , E(¢) and I(¢) with T = 10.
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Example 4.2. Let us illustrate the asymptotic behavior of the solutions of system (1.3) in Theorem 3.3.
Choosing the initial value (S (0), £(0), 1(0)) = (95,40, 25) and

A=5,5=009, 0, =06, 6, =0.35, u=0.85,
6 =025, y=055 0 =055, a =0.15, @ = 0.65, a3 = 0.45,

B1-6; )+<x%+w§

this implies that Ry = 0.03 < 1, K; = pu — LM — o2 = 0.29, K, = § + p — =% = (.58 and
2,.2

Ks=y+o0o+u- 6+a;a3 = 1.71. It follows from Theorem 3.3 that system (1.3) is asymptotic stable

around Qy(S9,0,0) = (%, 0,0). The simulation of system (1.3) is shown in Figure 2. Meanwhile,

the numerical simulations of the different samples S(¢) , E(¢) and I(¢) are shown in Figure 3(a)—(c),
respectively.

50 100
= s

Figure 2. The simulation of system (1.3) with 7 = 100 and A = 0.001.

90} 40
BD"'| 35 ’
b
70+ 0 '
60 M\ 25 A'
S T M\
20t "l\-\kﬂ Mwﬁ," \A\/HR
101 e N o v \Ww\/\ ‘
(a) o 1 2 3 @ B G 7 8 (b) o 1 2 3 ¢ B 6 7 8
25¢
f
10f ’\\H
s
(C) [ 2 3 @ B G 7

Figure 3. The simulation of system (1.3) with with 7 = 8 and A = 0.001. (a) The simulation
of S (1), (b) The simulation of E(¢) (c¢) The simulation of I(¢) .
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Example 4.3. Let us illustrate the asymptotic behavior of the solutions of system (1.3) in Theorem 3.5.
Choosing the initial value (S (0), £(0), 1(0)) = (5,4, 1) and

A=2,=0287 6,=0.25 6, =095, u=0.59,
0 =095, y=0.01, 0 =0.01, o =0.1, a; =0.25, a3 =0.35,

.o . - 3a? 202 +a? S+a?+a?
which implies By = QU9 2N — ()13, B, = 22 _ 2N _ ()76, B, = y+0+,u—ﬂ

< St = S 5 >— =0.07 and
Ry = 1.06 > 1. Obviously, the conditions of Theorem 3.5 are satisfied. The simulations of system (1.3)
is shown in Figure 4(a). Meanwhile, the numerical simulations of the different samples S (¢) , E(¢) and

I(t) are shown in Figure 4(b).

40,

35,

— ()
30, —E®
5F I(H

20 ‘
1 - -
40
\
607 T Y v v ) b . . . . ;

0 5 10 15 20 25 30
Edt) t

(a) (b)
Figure 4. The simulation of system (1.3) with A = 0.001; (a) The simulation of reactant
(S (1), E(1),1(r)) with T = 1000, (b) the different samples S (¢) , E(¢) and I(¢) with T = 30.

5. Conclusion and simple discussion

The outbreak of the COVID-19 epidemic disease brought profound changes unseen in a century to
the world. Even although it caused great losses to the national economy, it promoted human progress
to a certain extent. With the unremitting efforts of all mankind, the COVID-19 has been gradually
controlled, however, there still exists some gaps and inadequacies on the theory of this epidemic. In
order to compensate partly for these shortcomings, this paper is committed to focusing on the dynamics
for a class of stochastic SEI epidemic model (1.3). Firstly, we obtain a unique global positive solution
of nonlinear stochastic system (1.3). Secondly, based on Lyapunov technique and inequalities, we
explore its unique stationary measure around the positive equilibrium Q.(S ., E., 1) of deterministic
system (1.2). Thirdly, we establish the sufficient conditions to ensure the disease will become extinct
exponentially with probability one, and study the asymptotic behavior near the equilibrium Qy(S , 0, 0)
and Q.(S., E., I.) respectively. Noting that Jiao et al. in [17] proved the infection-free equilibrium
point and positive equilibrium point of model (1.1) is asymptotically stable respectively. Compared to
the results in [17], it it not difficult to see that these conclusions obtained for stochastic model (1.3)
in this paper is richer and the calculations is more challenging. Therefore, it is meaningful to explore

AIMS Mathematics Volume 7, Issue 10, 18218-18238.
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the dynamics of model (1.3). To some extent, the results in this paper may provide a theoretical basis
for the current epidemic prevention and control work of our country, and further save some human,
financial and physical resources possibly, which may make contribute to the economic development.
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Appendix A

In order to show the equilibriums of system (1.2), let
B -0)SU+6E)

A N uS =0,
1-6)SU+6,E
B( DS + 6, )—(5+,u)E:O, (5.1)
N

OE—(y+o+wl=0.

Adding the first two equations of system (5.1), it follows

A —uS
E=—"8 (5.2)

0+ u
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From the third equation of system (5.1), it yields

L OE
Cy+o+u

(5.3)

If E = 0, combine (5.2) and (5.3), then S = % and I = 0. Therefore, Qy(S, 0, 0) is an equilibrium of

system (1.2), where S = %
Substituting (5.3) into the second equation of system (5.1), it has
Bl - 91)S(yjf+ﬂ + 0,E)

OF
S+E+m

—(6+WE=0,

which deduces that
B =6)S[0+6:(y +0+wl

(y+o+wS +(y+o+u+9do)E -
Further, Substituting (5.2) into (5.4), it gives

+ u.

B Ay+o+u+o)
B -0)[6+b(y+o+w] -8y +0)

Obviously, based on (5.2) and (5.3), it is not difficult to compute that

S

£~ ABA =0 [0+ 6(y + o +w)] = 6(y + ) — u(y + o + p + 6)}
(0 + B —6)) [0+ 0:(y + o + )] =6y + o)}

and
/- oA {B(1 —01)[5+92(7+0+/J)]—5(7+0)—u(y+0+u+5)}.

(y+ 0+ )0+ wiB( = 01)[6 + 0:(y + o + )] = 6(y + o)}
It is worth noting that S, E, I make sense provide

_BU=0) [+ 6y +o+wl—Sy+)
- p(y + 0+ p+6) '

Ry

(5.4)

In other words, when Ry > 1, then Q.(S., E., I.) introduced in Section 3 is anther equilibrium of

system (1.2).
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