Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Dynamics of a stochastic epidemic model with quarantine and non-monotone incidence

  • Received: 09 December 2022 Revised: 03 March 2023 Accepted: 08 March 2023 Published: 03 April 2023
  • MSC : 34D30, 60H10, 92D25

  • In this paper, a stochastic SIQR epidemic model with non-monotone incidence is investigated. First of all, we consider the disease-free equilibrium of the deterministic model is globally asymptotically stable by using the Lyapunov method. Secondly, the existence and uniqueness of positive solution to the stochastic model is obtained. Then, the sufficient condition for extinction of the stochastic model is established. Furthermore, a unique stationary distribution to stochastic model will exist by constructing proper Lyapunov function. Finally, numerical examples are carried out to illustrate the theoretical results, with the help of numerical simulations, we can see that the higher intensities of the white noise or the bigger of the quarantine rate can accelerate the extinction of the disease. This theoretically explains the significance of quarantine strength (or isolation measures) when an epidemic erupts.

    Citation: Tingting Wang, Shulin Sun. Dynamics of a stochastic epidemic model with quarantine and non-monotone incidence[J]. AIMS Mathematics, 2023, 8(6): 13241-13256. doi: 10.3934/math.2023669

    Related Papers:

    [1] Ahmed A. El-Deeb, Osama Moaaz, Dumitru Baleanu, Sameh S. Askar . A variety of dynamic α-conformable Steffensen-type inequality on a time scale measure space. AIMS Mathematics, 2022, 7(6): 11382-11398. doi: 10.3934/math.2022635
    [2] Mohammed S. El-Khatib, Atta A. K. Abu Hany, Mohammed M. Matar, Manar A. Alqudah, Thabet Abdeljawad . On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense. AIMS Mathematics, 2023, 8(1): 2062-2082. doi: 10.3934/math.2023106
    [3] Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174
    [4] Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu . Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777
    [5] Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250
    [6] Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with α-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126
    [7] Bingxian Wang, Mei Xu . Asymptotic behavior of some differential inequalities with mixed delays on time scales and their applications. AIMS Mathematics, 2024, 9(6): 16453-16467. doi: 10.3934/math.2024797
    [8] Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu . Certain novel estimates within fractional calculus theory on time scales. AIMS Mathematics, 2020, 5(6): 6073-6086. doi: 10.3934/math.2020390
    [9] Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad . Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670
    [10] Haytham M. Rezk, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Belal A. Glalah . Unveiling new reverse Hilbert-type dynamic inequalities within the framework of Delta calculus on time scales. AIMS Mathematics, 2025, 10(2): 2254-2276. doi: 10.3934/math.2025104
  • In this paper, a stochastic SIQR epidemic model with non-monotone incidence is investigated. First of all, we consider the disease-free equilibrium of the deterministic model is globally asymptotically stable by using the Lyapunov method. Secondly, the existence and uniqueness of positive solution to the stochastic model is obtained. Then, the sufficient condition for extinction of the stochastic model is established. Furthermore, a unique stationary distribution to stochastic model will exist by constructing proper Lyapunov function. Finally, numerical examples are carried out to illustrate the theoretical results, with the help of numerical simulations, we can see that the higher intensities of the white noise or the bigger of the quarantine rate can accelerate the extinction of the disease. This theoretically explains the significance of quarantine strength (or isolation measures) when an epidemic erupts.



    The Weighted Complementarity Problem (WCP), which is to find a pair of (x,s,y)Rn×Rn×Rm such that

    x0,s0,xs=w,F(x,s,y)=0, (1.1)

    where, F:R2n+mRn+m is a continuously differentiable function, wRn+ is the given weight vector, xs:=xs is the componentwise product of the vectors x and s. When w=0, WCP (1.1) reduces to the classical Nonlinear Complementarity Problem (NCP). At present, there are many effective algorithms [1,2,3,4,5] that can solve NCP. For examples, Newton method [1], Quasi-Newton method [2], L-M method [3,4], Neural-Networks method [5] etc. If

    F(x,s,y)=Px+Qs+Rya, (1.2)

    problem (1.1) is the Linear Weighted Complementarity Problem (LWCP) studied in this paper, which is to find a pair of (x,s,y)Rn×Rn×Rm such that

    x0,s0,xs=w,Px+Qs+Ry=a, (1.3)

    where, PR(n+m)×n,QR(n+m)×n,RR(n+m)×m,aRn+m, are given matrices and vector. In addition, when

    F(x,s,y)=(f(x)sATyAxb), (1.4)

    problem (1.1) is the perturbed Karush-Kuhn-Tucker(KKT) condition for the following Nonlinear Programming(NLP)

    minf(x),s.t.Ax=b,x0. (1.5)

    Problem(1.3) was introduced by Potra [6] in 2012 and has been widely studied for its important applications in management, market equilibrium, etc. Many equilibrium problems can also be transformed into LWCP to solve, such as the famous Fisher market equilibrium problem [7], and the quadratic programming and weighted center problem [6].

    In recent years, many effective algorithms have been proposed to solve problem (1.1) or (1.3) [8,9,10,11,12,13]. For examples, Chi et al. [9] proposed the full-Newton step infeasible interior-point method for solving LWCP. Zhang et al. [12] proposed the smoothing Newton type method for solving LWCP. Tang et al. [13] proposed the nonmonotone L-M method for NWCP. The interior point method depends on the choice of initial value. The classical Newton method needs the positive definite of Hessian matrix, otherwise, it is difficult to guarantee that the Newton direction is descending. The L-M method does not depend on the choice of initial values, nor does it require the positive definiteness of the Hessian matrix. Therefore, this paper mainly considers using L-M method to solve problem (1.3). Motivated by [13], we consider using a nonmonotone L-M method to solve LWCP.

    LWCP is a more general complementary model. For the solution of this model, we hope to use the WCP functions obtained by the extension of NCP functions. However, due to the existence of weighting term, not all NCP functions can be directly extended to WCP functions. For NCP function in the form of FB function, many scholars have extended it to WCP function. In this paper, motivated by the smoothed penalty function for [14], we construct a smoothng function for WCP. And then use L-M method to approximate the equivalent reconstruction equations of problem (1.3). The comparison experiment of random generation shows the feasibility and effectiveness of our algorithm.

    The following notations will be used throughout this paper. The superscript T denotes transpose. R denotes real numbers, Rn represents the set of all n dimensional real column vectors. The matrix I denotes the identity matrix, and denotes 2-norm. All vectors in this article are column vectors.

    In this section, we study a class of complementary functions with participation weights and discuss its properties. Based on this weighted complementary function, the equivalent reconstruction equations of problem (1.3) are given.

    Definition 2.1. For a fixed c \geqslant 0 , a function \phi :{R^2} \to R is called a weighted complementarity function [13], if it satisfies

    {\phi ^c}(a, b) = 0 \Leftrightarrow a \geqslant 0, b \geqslant 0, ab = c. (2.1)

    When c = 0 , {\phi ^c}(a, b) reduces to the NCP function.

    In this paper, to solve the LWCP (1.3), we hope to use the WCP functions obtained by the extension of NCP functions. However, due to the existence of weighting term, not all NCP functions can be directly generalized to WCP functions. For example, the two piecewise NCP functions given in [2]:

    \phi \left( {a, b} \right) = \left\{ {\begin{array}{*{20}{c}} {3a - \left( {\frac{{{a^2}}}{b}} \right), b \geqslant a > 0, or3b > - a \geqslant 0;} \\ {3a - \left( {\frac{{{b^2}}}{a}} \right), a > b > 0, or3a > - b \geqslant 0;} \\ {9a + 9b, else.} \end{array}} \right. (2.2)
    \phi \left( {a, b} \right) = \left\{ {\begin{array}{*{20}{c}} {{k^2}a, b \geqslant k\left| a \right|;} \\ {2kb - \left( {\frac{{{b^2}}}{a}} \right), a > \frac{{\left| b \right|}}{k};} \\ {2{k^2}a + 2kb + \left( {\frac{{{b^2}}}{a}} \right), a < - \frac{{\left| b \right|}}{k};} \\ {{k^2}a + 4kb, b \leqslant - k\left| a \right|.} \end{array}} \right. (2.3)

    For FB function, many scholars have extended it to WCP function. For example, Liu et al. [11] based on the symmetric disturbance FB function in [15] constructed:

    {\phi _c}(\mu , a, b) = \left( {1 + \mu } \right)\left( {a + b} \right) - \sqrt {{{\left( {a + \mu b} \right)}^2} + {{\left( {\mu a + b} \right)}^2} + 2c + 2{\mu ^2}} , (2.4)

    where, c is a given nonnegative vector.

    Zhang[12] proposed:

    {\phi _\theta }(\mu , a, b, c) = \sqrt {{a^2} + {b^2} - 2\theta ab + 2\left( {1 + \theta } \right)c + 2\mu } - a - b, (2.5)

    where, \theta \in \left( { - 1, 1} \right], c is a given nonnegative vector.

    In addition, [13] provides another smooth function:

    \phi _{_{\tau , q}}^c(a, b) = {\left( {a + b} \right)^q} - {\left( {\sqrt {{a^2} + {b^2} + \left( {\tau - 2} \right)ab + \left( {4 - \tau } \right)c} } \right)^q}, (2.6)

    where, c is a given nonnegative vector, \tau \in \left[ {0, 4} \right) is a constant, q > 1 is an odd integer. Compared with (2.4) and (2.5), (2.6) does not need to introduce the smoothing factor \mu . By controlling the value of q , smoothing can be achieved. This smoothing method will be used to smooth the new WCP function given below.

    \phi _\tau ^c(a, b) = a + b - \sqrt {\tau {{(a - b)}^2} + (1 - \tau )({a^2} + {b^2}) + 2(1 + \tau )c} , (2.7)

    where, c is a given nonnegative vector, \tau \in \left[ {0, 1} \right] is a constant.

    Since Eq (2.7) is not smooth, we make the following smoothing treatment:

    \phi _{\tau , q}^c(a, b) = {(a + b)^q} - {(\sqrt {\tau {{\left( {a - b} \right)}^2} + \left( {1 - \tau } \right)\left( {{a^2} + {b^2}} \right) + 2(1 + \tau )c} )^q}, (2.8)

    where, c is a given nonnegative vector, \tau \in \left[ {0, 1} \right] is a constant, q > 1 is an odd integer.

    Theorem 2.1. Let \phi _{\tau , q}^c be defined by (2.8) with \tau \in \left[ {0, 1} \right] and q > 1 being a positive odd interger. Then \phi _\tau ^q is a family of WCP functions, i.e.,

    \phi _{\tau , q}^c(a, b) = 0 \Leftrightarrow a \geqslant 0, b \geqslant 0, ab = c. (2.9)

    Proof. Since for any \alpha , \beta \in R and any positive odd interger q , there is {\alpha ^q} = {\beta ^q} \Leftrightarrow \alpha = \beta . So we have

    \begin{array}{l} \phi _{\tau , q}^c(a, b) = 0 \Leftrightarrow {(a + b)^q} = {(\sqrt {\tau {{(a - b)}^2} + (1 - \tau )({a^2} + {b^2}) + 2(1 + \tau )c} )^q} \\ \;\; \;\;\;\;\;\;\;\; \Leftrightarrow a + b = \sqrt {\tau {{(a - b)}^2} + (1 - \tau )({a^2} + {b^2}) + 2(1 + \tau )c} \\ \;\; \;\;\;\;\;\;\;\; \Leftrightarrow \phi _\tau ^c(a, b) = 0. \end{array} (2.10)

    That is to say, we only need to prove that \phi _\tau ^c(a, b) is a family of WCP functions. On the one hand, we fist suppose that \forall a, b \in R satisfy, \phi _\tau ^c(a, b) = 0 i.e.,

    \sqrt {\tau {{(a - b)}^2} + (1 - \tau )({a^2} + {b^2}) + 2(1 + \tau )c} = a + b. (2.11)

    By squaring the two sides of (2.11), we have 2(1 + \tau )ab = 2(1 + \tau )c, which together with \tau \in [0, 1] . yields ab = c. By substituing ab = c into (2.2), we have \sqrt {{a^2} + {b^2} + 2ab} = a + b \geqslant 0. Since c = ab \geqslant 0, it follows that a \geqslant 0, b \geqslant 0. On the other hand, we suppose that a \geqslant 0, b \geqslant 0, ab = c, then a + b \geqslant 0 and

    \sqrt {\tau {{(a - b)}^2} + (1 - \tau )({a^2} + {b^2}) + 2(1 + \tau )c} = \sqrt {{a^2} + {b^2} + 2ab} = \left| {a + b} \right| = a + b. (2.12)

    Which implies that \phi _\tau ^c(a, b) = 0.

    Lemma 2.1. Let \phi _{\tau , q}^c be defined by (2.8) with \tau \in [0, 1] and q > 1 being a positive odd interger. Let

    h_\tau ^c(a, b) = \sqrt {\tau {{(a - b)}^2} + (1 - \tau )({a^2} + {b^2}) + 2(1 + \tau )c} . (2.13)

    Then

    (ⅰ)When q > 1 , \phi _{\tau , q}^c is continuously differentiable at any \left( {a, b} \right) \in {R^2} with

    \nabla \phi _{\tau , q}^c = \left[ {\begin{array}{*{20}{c}} {\frac{{\partial \phi _{\tau , q}^c}}{{\partial a}}} \\ {\frac{{\partial \phi _{\tau , q}^c}}{{\partial b}}} \end{array}} \right], (2.14)

    where

    \begin{array}{l} \frac{{\partial \phi _{\tau , q}^c}}{{\partial a}} = q[{(a + b)^{q - 1}} - h_\tau ^c{(a, b)^{q - 2}}(a - \tau b)], \\ \frac{{\partial \phi _{\tau , q}^c}}{{\partial b}} = q[{(a + b)^{q - 1}} - h_\tau ^c{(a, b)^{q - 2}}(b - \tau a)]. \end{array}

    (ⅱ)When q > 3 , \phi _{\tau , q}^c is twice continuously differentiable at any \left( {a, b} \right) \in {R^2} with

    {\nabla ^2}\phi _{\tau , q}^c(a, b) = \left[ {\begin{array}{*{20}{c}} {\frac{{{\partial ^2}\phi _{\tau , q}^c}}{{\partial {a^2}}}}&{\frac{{{\partial ^2}\phi _{\tau , q}^c}}{{\partial a\partial b}}} \\ {\frac{{{\partial ^2}\phi _{\tau , q}^c}}{{\partial b\partial a}}}&{\frac{{{\partial ^2}\phi _{\tau , q}^c}}{{\partial {b^2}}}} \end{array}} \right], (2.15)

    where

    \begin{array}{l} \frac{{{\partial ^2}\phi _\tau ^q}}{{\partial {a^2}}} = q\left\{ {(q - 1){{(a + b)}^{q - 2}} - {h_\tau }{{(a, b, c)}^{q - 4}}[(q - 2){{(a - \tau b)}^2} + {h_\tau }{{(a, b, c)}^2}]} \right\}, \\ \frac{{{\partial ^2}\phi _{\tau , q}^c}}{{\partial {b^2}}} = q\left\{ {(q - 1){{(a + b)}^{q - 2}} - h_\tau ^c{{(a, b)}^{q - 4}}[(q - 2){{(b - \tau a)}^2} + h_\tau ^c{{(a, b)}^2}]} \right\}, \end{array}
    \frac{{{\partial ^2}\phi _{\tau , q}^c}}{{\partial a\partial b}} = \frac{{{\partial ^2}\phi _{\tau , q}^c}}{{\partial b\partial a}} = q\left\{ {(q - 1){{(a + b)}^{q - 2}} - h_\tau ^c{{(a, b)}^{q - 4}}[(q - 2)(a - \tau b)(b - \tau a) - \tau h_\tau ^c{{(a, b)}^2}]} \right\}.

    Lemma 2.2. Let \phi _{\tau , q}^c be defined by (2.8) with \tau \in [0, 1] and q > 1 being a positive odd interger. Defining the closed and convex set \Omega \left( u \right): = \left\{ {u \in {R^2}\left| {\left\| u \right\|} \right. \leqslant \theta } \right\} , where \theta is a positive constant. Then:

    (ⅰ)When q > 1 , \phi _{\tau , q}^c is Lipschitz continuous on \Omega \left( u \right) for any \theta > 0 .

    (ⅱ)When q > 3 , \nabla \phi _{\tau , q}^c is Lipschitz continuous on \Omega \left( u \right) for any \theta > 0 .

    Since \phi _{\tau , q}^c and \nabla \phi _{\tau , q}^c are bounded on the set \Omega \left( u \right) , therefore the conclusion (ⅰ) and (ⅱ) can be obtained from the Mean-Value-Theorem.

    Given weight vector w \in R_ + ^n , let z: = (x, s, y) \in {R^{2n + m}} and

    H(z) = H(x, s, y): = \left( {\begin{array}{*{20}{c}} {F(x, s, y)} \\ {\Phi _{\tau , q}^w(x, s)} \end{array}} \right), (2.16)

    where

    \Phi _{\tau , q}^w(x, s) = \left( {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\phi _{\tau , q}^{{w_1}}({x_1}, {s_1})} \\ \vdots \end{array}} \\ {\phi _{\tau , q}^{{w_n}}({x_n}, {s_n})} \end{array}} \right). (2.17)

    Then the solution of LWCP (1.3) is equivalent to the approximate solution of the system of equations H(z) = 0 .

    Lemma2.3. Let H\left( z \right):{R^{2n + m}} \to {R^{2n + m}}, \Phi _{\tau , q}^w:{R^{2n}} \to {R^n} be defined by (2.16) and (2.17), respectively. Then:

    (ⅰ) \Phi _{\tau , q}^w\left( {x, s} \right) is continuously differentiable at any z = \left( {x, s, y} \right) \in {R^{2n + m}} .

    (ⅱ) H\left( z \right) is continuously differentiable at any z = \left( {x, s, y} \right) \in {R^{2n + m}} with its Jacobian

    H'\left( z \right) = \left( {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{{F'}_x}}&{{{F'}_s}}&{{{F'}_y}} \end{array}} \\ {\begin{array}{*{20}{c}} {{D_1}}&{{D_2}}&0 \end{array}} \end{array}} \right), (2.18)

    where

    \begin{array}{l} {D_1} = diag\left\{ {q\left[ {{{\left( {{x_i} + {s_i}} \right)}^{q - 1}} - h_\tau ^{{w_i}}{{\left( {{x_i}, {s_i}} \right)}^{q - 2}}\left( {{x_i} - \tau {s_i}} \right)} \right]} \right\}, i = 1, 2, \cdots , n. \\ {D_2} = diag\left\{ {q\left[ {{{\left( {{x_i} + {s_i}} \right)}^{q - 1}} - h_\tau ^{{w_i}}{{\left( {{x_i}, {s_i}} \right)}^{q - 2}}\left( {{s_i} - \tau {x_i}} \right)} \right]} \right\}, i = 1, 2, \cdots , n. \\ h_\tau ^{{w_i}}({x_i}, {s_i}) = \sqrt {\tau {{({x_i} - {s_i})}^2} + (1 - \tau )({x_i}^2 + {s_i}^2) + 2(1 + \tau ){w_i}} , i = 1, 2, \cdots , n. \end{array}

    Let H(z) be defined by (2.16), then its value function M:{R^{2n + m}} \to {R_ + } can be defined as:

    M(z): = \frac{1}{2}{\Vert H\left(z\right)\Vert }^{2}. (2.19)

    Obviously, the solution of LWCP (1.3) is also equivalent to the approximate solution of the system of equations M(z) = 0. In addition, the following conclusion can be obtained from the Lemma 2.3.

    Lemma 2.4. Let M:{R^{2n + m}} \to {R_ + } be defined by (2.19), then M(z) is continuously differentiable at any z \in {R^{2n + m}} , and \nabla M(z) = H'{\left( z \right)^T}H\left( z \right).

    In this section, based on the WCP function in Section 2, we will give the smooth L-M type algorithm and its convergence.

    Algorithm3.1 (A smooth L-M method)

    Step 0: Choose \theta , \sigma , \gamma , \delta \in \left( {0, 1} \right) and {z^0}: = \left( {{x^0}, {s^0}, {y^0}} \right) \in {R^{2n + m}} , let 0 \leqslant \varepsilon \leqslant 1 , and {C_0} = M\left( {{z^0}} \right) . Choose a sequence \left\{ {{\eta _k}\left| {\forall k \geqslant 0, } \right.{\eta _k} \in \left( {0, 1} \right)} \right\} , set k: = 0.

    Step 1: Compute H({z^k}) . If \left\| {H({z^k})} \right\| \leqslant \varepsilon then stop.

    Step 2: Let {\mu _k}: = \theta {\left\| {H\left( {{z^k}} \right)} \right\|^2} . Compute the search direction {d_k} \in {R^{2n + m}} by

    \nabla M({z^k}) + \left( {{H^{'}}{{({z^k})}^T}{H^{'}}({z^k}) + {\mu _k}I} \right){d_k} = 0. (3.1)

    Step 3: If {d_k} satisfies

    \left\| {H({z^k} + {d_k})} \right\| \leqslant \sigma \left\| {H({z^k})} \right\|. (3.2)

    Then let {\alpha _k}: = 1 , and go to step 5. Otherwise, go to step 4.

    Step 4: Set {j_k} be the smallest nonnegative integer j satisfying

    M({z^k} + {\delta ^j}{d_k}) \leqslant {C_k} - \gamma {\left\| {{\delta ^j}{d_k}} \right\|^2}. (3.3)

    let {\alpha _k}: = {\delta ^{{j_k}}} , and go to step 5.

    Step 5: Set {z^{k + 1}}: = {z^k} + {\alpha _k}{d_k} and

    {Q_{k + 1}}: = {\eta _k}{Q_k}, {C_{k + 1}}: = \frac{{{\eta _k}{Q_k}{C_k} + M\left( {{z^{k + 1}}} \right)}}{{{Q_{k + 1}}}}. (3.4)

    Step 6: Let k: = k + 1 , and go to step 1.

    Existing L-M type methods [16,17,18] are usually designed based on the Armijo line search. While algorithm 3.1 adopts a nonmonotone derivate free line search. The choice of {\eta _k} controls the degree of nonmonotoicity. If {\eta _k} \equiv 0 , then the line search is monotone.

    Theorem3.1. Let \left\{ {{z^k}} \right\} be the sequence generated by Algorithm 3.1. Then, \left\{ {{z^k}} \right\} satisfying M({z^k}) \leqslant {C_k} for all k \geqslant 0 .

    Proof. By Algorithm 3.1 {C_0} = M\left( {{z^0}} \right). We first assume that M\left( {{z^k}} \right) \leqslant {C_k} . If \nabla M\left( {{z^k}} \right) = 0, then Algorithm 3.1 terminates. Otherwise \nabla M\left( {{z^k}} \right) \ne 0 which implies that H\left( {{z^k}} \right) \ne 0 , hence {\mu _k} = \theta {\left\| {H\left( {{z^k}} \right)} \right\|^2} > 0 . So the matrix H'{\left( {{z^k}} \right)^T}H'\left( {{z^k}} \right) + {\mu _k}I is positive definite. Thus the search direction {d_k} in step 3 is well-defined and {d_k} \ne 0 . Since \nabla M\left( {{z^k}} \right) \ne 0 , we have

    \nabla M{\left( {{z^k}} \right)^T}{d_k} = - {d_k}^T\left( {H'{{\left( {{z^k}} \right)}^T}H'\left( {{z^k}} \right) + {\mu _k}I} \right){d_k} < 0. (3.5)

    This implies that {d_k} is a descent direction of M\left( {{z^k}} \right) at the point {z^k} . Next we will prove that at least one step size is obtained by step 4. Inversely, we assume that for any j , M\left( {{z^k} + {\delta ^j}{d_k}} \right) > {C_k} - \gamma {\left\| {{\delta ^j}{d_k}} \right\|^2} , then

    M\left( {{z^k} + {\delta ^j}{d_k}} \right) > {C_k} - \gamma {\left\| {{\delta ^j}{d_k}} \right\|^2} \geqslant M\left( {{z^k}} \right) - \gamma {\left\| {{\delta ^j}{d_k}} \right\|^2}, (3.6)

    thereby

    \frac{{M\left( {{z^k} + {\delta ^j}{d_k}} \right) - M\left( {{z^k}} \right) + \gamma {{\left\| {{\delta ^j}{d_k}} \right\|}^2}}}{{{\delta ^j}}} > 0. (3.7)

    By letting j \to \infty in (3.7), we have \nabla M{\left( {{z^k}} \right)^T}{d_k} \geqslant 0 , which contradicts (3.5). Therefore, we can always get {z^{k + 1}} by Step 3 or Step 4. If {z^{k + 1}} is generated by step 3, i.e., \left\| {H\left( {{z^k} + {d_k}} \right)} \right\| \leqslant \sigma \left\| {H\left( {{z^k}} \right)} \right\| , then \frac{1}{2}{\left\| {H\left( {{z^k} + {d_k}} \right)} \right\|^2} \leqslant \frac{1}{2}{\sigma ^2}{\left\| {H\left( {{z^k}} \right)} \right\|^2} , so M\left( {{z^{k + 1}}} \right) \leqslant {\sigma ^2}M\left( {{z^k}} \right) . And because, \sigma \in \left( {0, 1} \right) , therefore, we have M\left( {{z^{k + 1}}} \right) \leqslant {\sigma ^2}M\left( {{z^k}} \right) < M\left( {{z^k}} \right) \leqslant {C_k} . If {z^{k + 1}} is generated by step 4, we can get M\left( {{z^{k + 1}}} \right) \leqslant {C_k} directly. So, from(3.4), we can get that {C_k} \geqslant \frac{{{\eta _k}{Q_k}M\left( {{z^{k + 1}}} \right) + M\left( {{z^{k + 1}}} \right)}}{{{Q_{k + 1}}}} = M\left( {{z^{k + 1}}} \right) . Hence, we conclude that M({z^k}) \leqslant {C_k} for all k \geqslant 0 .

    Next, we first suppose that \nabla M\left( {{z^k}} \right) \ne 0 for all k \geqslant 0 . In order to discuss the convergence of algorithm 3.1, we need the following lemma.

    Lemma 3.1. Let \left\{ {{z^k}} \right\} be the sequence generated by Algorithm 3.1, then there exists a nonnegative constant {C^ * } such that

    \mathop {\lim }\limits_{k \to \infty } M\left( {{z^k}} \right) = \mathop {\lim }\limits_{k \to \infty } {C_k} = {C^ * }. (3.8)

    Proof. By Theorem3.1, we can get 0 \leqslant M\left( {{z^k}} \right) \leqslant {C_k} for all k \geqslant 0 and {C_{k + 1}} \leqslant \frac{{{\eta _k}{Q_k}{C_k} + {C_k}}}{{{Q_{k + 1}}}} = {C_k}. Hence, by The Monotone Bounded Theorem, there exists a nonnegative constant {C^ * } such that \mathop {\lim }\limits_{k \to \infty } {C_k} = {C^ * } . By the definition of {Q_k} , we have

    {Q_{k + 1}} = 1 + \mathop \Sigma \limits_{i = 0}^k \mathop \Pi \limits_{j = 0}^i {\eta _{k - j}} \leqslant 1 + \mathop \Sigma \limits_{i = 0}^k \eta _{\max }^{i + 1} \leqslant \mathop \Sigma \limits_{i = 0}^\infty \eta _{\max }^i = \frac{1}{{1 - {\eta _{\max }}}}. (3.9)

    Hence, we conclude that {\eta _k}{Q_k} \leqslant \frac{{{\eta _{\max }}}}{{1 - {\eta _{\max }}}} is bounded, which together with \mathop {\lim }\limits_{k \to \infty } {C_k} = {C^ * } yields \mathop {\lim }\limits_{k \to \infty } {\eta _{k - 1}}{Q_{k - 1}}\left( {{C_k} - {C_{k - 1}}} \right) = 0. So, it follows from (3.4) that

    \begin{array}{l} M\left( {{z^{k + 1}}} \right) = {Q_{k + 1}}{C_{k + 1}} - {\eta _k}{Q_k}{C_k} = \left( {{\eta _k}{Q_k} + 1} \right){C_{k + 1}} - {\eta _k}{Q_k}{C_k} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;= {\eta _k}{Q_k}\left( {{C_{k + 1}} - {C_k}} \right) + {C_{k + 1}}. \end{array} (3.10)

    Hence

    \mathop {\lim }\limits_{k \to \infty } M\left( {{z^k}} \right) = \mathop {\lim }\limits_{k \to \infty } \left[ {{\eta _{k - 1}}{Q_{k - 1}}\left( {{C_k} - {C_{k - 1}}} \right) + {C_k}} \right] = {C^ * }. (3.11)

    We complete the proof.

    Theorem3.2. Let \left\{ {{z^k}} \right\} be the sequence generated by Algorithm 3.1. Then any accumulation point {z^ * } of \left\{ {{z^k}} \right\} is a stationary point of M\left( z \right) .

    Proof. By Lemma 3.1, we have \mathop {\lim }\limits_{k \to \infty } M\left( {{z^k}} \right) = \mathop {\lim }\limits_{k \to \infty } {C_k} = {C^ * }, {C^ * } \geqslant 0 . If {C^ * } = 0 , then \mathop {\lim }\limits_{k \to \infty } H\left( {{z^k}} \right) = 0 which together with Lemma 2.4 yields \nabla M\left( {{z^ * }} \right) = 0 . In the following, we discuss the case of {C^ * } > 0 . Set N: = \left\{ {k\left| {\left\| {H\left( {{z^k} + {d_k}} \right)} \right\| \leqslant \sigma \left\| {H\left( {{z^k}} \right)} \right\|} \right.} \right\} . Then N must be a finite set, otherwise M\left( {{z^{k + 1}}} \right) \leqslant {\sigma ^2}M\left( {{z^k}} \right) holds for infinitely many k . By letting k \to \infty with k \in N , we can have {C^ * } \leqslant {\sigma ^2}{C^ * } and 1 \leqslant {\sigma ^2} which contradicts \sigma \in \left( {0, 1} \right) . Therefore, we can suppose that there exists an index \bar k > 0 such that \left\| {H\left( {{z^k} + {d_k}} \right)} \right\| > \sigma \left\| {H\left( {{z^k}} \right)} \right\| for all k \geqslant \bar k . Thereby, there exists a {j_k} such that M\left( {{z^{k + 1}}} \right) \leqslant {C_k} - \gamma {\left\| {{\delta ^{{j_k}}}{d_k}} \right\|^2} , i.e.,

    \gamma {\left\| {{\delta ^{{j_k}}}{d_k}} \right\|^2} \leqslant {C_k} - M\left( {{z^{k + 1}}} \right). (3.12)

    Next, we suppose that {z^ * } is the limit of the subsequence {\left\{ {{z^k}} \right\}_{k \in K}} \subset \left\{ {{z^k}} \right\} where K \in \left\{ {0, 1, 2, \cdots } \right\} , i.e., \mathop {\lim }\limits_{k\left( { \in K} \right) \to \infty } {z^k} = {z^ * } . Hence, by the continuity, we have {C^ * } = M\left( {{z^ * }} \right) = \frac{1}{2}{\left\| {H\left( {{z^ * }} \right)} \right\|^2} . By \mathop {\lim }\limits_{k \to \infty } {\mu _k} = \mathop {\lim }\limits_{k \to \infty } \theta {\left\| {H\left( {{z^k}} \right)} \right\|^2} = \mathop {\lim }\limits_{k \to \infty } 2\theta M\left( {{z^k}} \right) = 2\theta {C^ * } , we can get that

    \mathop {\lim }\limits_{k\left( { \in K} \right) \to \infty } \left[ {H'{{\left( {{z^k}} \right)}^T}H'\left( {{z^k}} \right) + {\mu _k}I} \right] = H'{\left( {{z^ * }} \right)^T}H'\left( {{z^ * }} \right) + 2\theta {C^ * }I. (3.13)

    According to the proof process of theorem 3.1, the matrix H'{\left( {{z^k}} \right)^T}H'\left( {{z^k}} \right) + {\mu _k}I is a symmetric positive definite matrix. In addition, because of {C^ * } > 0 , the matrix H'{\left( {{z^ * }} \right)^T}H'\left( {{z^ * }} \right) + 2\theta {C^ * }I is also symmetric positive definite matrix. Hence, we have

    \mathop {\lim }\limits_{k\left( { \in K} \right) \to \infty } {\left[ {H'{{\left( {{z^k}} \right)}^T}H'\left( {{z^k}} \right) + {\mu _k}I} \right]^{ - 1}} = {\left[ {H'{{\left( {{z^ * }} \right)}^T}H'\left( {{z^ * }} \right) + 2\theta {C^ * }I} \right]^{ - 1}}. (3.14)

    and

    \mathop {\lim }\limits_{k\left( { \in K} \right) \to \infty } {d_k} = {d^ * } = - {\left[ {H'{{\left( {{z^ * }} \right)}^T}H'\left( {{z^ * }} \right) + 2\theta {C^ * }I} \right]^{ - 1}}\nabla M\left( {{z^ * }} \right). (3.15)

    By (3.5), we can get

    \nabla M{\left( {{z^ * }} \right)^T}{d^ * } = \mathop {\lim }\limits_{k\left( { \in K} \right) \to \infty } \nabla M{\left( {{z^k}} \right)^T}{d^k} \leqslant 0. (3.16)

    By letting k \to \infty with k \in N in (3.12), we have \mathop {\lim }\limits_{k\left( { \in K} \right) \to \infty } \left\| {{\delta ^{{j_k}}}{d_k}} \right\| = 0 . If {\delta ^{{j_k}}} > 0 , then \mathop {\lim }\limits_{k\left( { \in K} \right) \to \infty } {d_k} = {d^ * } = 0 which together with (3.15) yields \nabla M\left( {{z^ * }} \right) = 0 . Otherwise, \mathop {\lim }\limits_{k\left( { \in K} \right) \to \infty } {\delta ^{{j_k}}} = 0 . From step 4 and Theorem 3.1

    M({z^k} + {\delta ^{{j_k} - 1}}{d_k}) > {C_k} - \gamma {\left\| {{\delta ^{{j_k} - 1}}{d_k}} \right\|^2} \geqslant M({z^k}) - \gamma {\left\| {{\delta ^{{j_k} - 1}}{d_k}} \right\|^2}, (3.17)

    i.e.,

    \frac{{M({z^k} + {\delta ^{{j_k} - 1}}{d_k}) - M({z^k})}}{{{\delta ^{{j_k} - 1}}}} + \gamma {\left\| {{\delta ^{{j_k} - 1}}{d_k}} \right\|^2} > 0. (3.18)

    Now that M\left( z \right) is continuously differentiable at {z^ * } , so we have

    \nabla M{\left( {{z^ * }} \right)^T}{d^ * } \geqslant 0. (3.19)

    Then, from (3.16), we can get \nabla M{\left( {{z^ * }} \right)^T}{d^ * } = 0 and

    \begin{array}{l} {\left( {{d^ * }} \right)^T}\left( {H'{{\left( {{z^ * }} \right)}^T}H'\left( {{z^ * }} \right) + 2\theta {C^ * }I} \right){d^ * } = - \nabla M{\left( {{z^ * }} \right)^T}{\left[ {H'{{\left( {{z^ * }} \right)}^T}H'\left( {{z^ * }} \right) + 2\theta {C^ * }I} \right]^{ - 1}}\left( {H'{{\left( {{z^ * }} \right)}^T}H'\left( {{z^ * }} \right) + 2\theta {C^ * }I} \right){d^ * } \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= - \nabla M{\left( {{z^ * }} \right)^T}{d^ * } = 0. \end{array}

    Since the matrix H'{\left( {{z^ * }} \right)^T}H'\left( {{z^ * }} \right) + 2\theta {C^ * }I is a positive matrix, so we have

    {d^ * } = - {\left[ {H'{{\left( {{z^ * }} \right)}^T}H'\left( {{z^ * }} \right) + 2\theta {C^ * }I} \right]^{ - 1}}\nabla M{\left( {{z^ * }} \right)^T} = 0. (3.20)

    Now that the matrix {\left[ {H'{{\left( {{z^ * }} \right)}^T}H'\left( {{z^ * }} \right) + 2\theta {C^ * }I} \right]^{ - 1}} is also positive matrix, we can get \nabla M\left( {{z^ * }} \right) = 0.

    In this section, we carry out some numerical experiments on the LWCP by Algorithm 3.1. All experiments were conducted on a ThinkPad480 with a 1.8GHz CPU and 8.0GB RAM. The codes are run in MATLAB R2018b under Win10.

    We first generate the matrices P, Q, R and vector a by following way:

    P = \left( {\begin{array}{*{20}{c}} A \\ M \end{array}} \right), Q = \left( {\begin{array}{*{20}{c}} 0 \\ I \end{array}} \right), P = \left( {\begin{array}{*{20}{c}} 0 \\ { - {A^T}} \end{array}} \right), a = \left( {\begin{array}{*{20}{c}} b \\ { - f} \end{array}} \right), (4.1)

    where A \in {R^{m \times n}} is a full row rank matrix with m < n , the matrix M is an n \times n symmetric semidefinite matrix, b \in {R^m}, f \in {R^n}. In our algorithm we set: \gamma = 0.01, \sigma = 0.5, \delta = 0.8, \theta = {10^{ - 4}}. The initial points are choosing as : {x^0} = \left( {1, \cdots , 1} \right), {s^0} = \left( {1, \cdots , 1} \right), {y^0} = \left( {0, \cdots , 0} \right).

    In the course of experiments, we generate LWCP (1.3) by the following two ways.

    (ⅰ) We take A = randn\left( {m, n} \right) with rank\left( A \right) = m , and M = \frac{{B{B^T}}}{{\left\| {B{B^T}} \right\|}} with B = rand\left( {n, n} \right) . we first generate \hat x = rand\left( {n, 1} \right), f = rand\left( {n, 1} \right) , then we set \hat b: = A\hat x, \hat s = M\hat x + f, w = \hat x\hat s .

    (ⅱ) We choose a = \left( {\begin{array}{*{20}{c}} b \\ { - f} \end{array}} \right) - \xi where \xi \in {R^{n + m}} is a noise. We choose M = diag(v) with v = rand\left( {n, 1} \right) . The matrix A and vectors b, f are generated in the same way as (ⅰ). In the course of experiments, we take \xi = {10^{ - 4}}rand(1, 1)p with p: = {\left( {1, 1, 0, \cdots , 0} \right)^T} \in {R^{n + m}} .

    First, in order to observe the local convergence of algorithm 3.1, we conducted two sets of random test experiments on LWCP (ⅰ) with n = 1000, m = 500 . Figure 1 gives the convergence curve of \left\| {H\left( {{z^k}} \right)} \right\| at the k -th iteration. We can clearly see that algorithm 3.1 is locally fast, or at least locally superlinear.

    Figure 1.  Convergence curve of \left\| {H\left( {{z^k}} \right)} \right\| at the k -th iteration.

    Next, we conducted comparative experiments with [13]. In the course of experiments, the parameters in the WCP functions \phi _{\tau , q}^w are respectively taken as \tau = 0.5, q = 3, \tau = 1, q = 3 and \tau = 0.3, q = 3, \tau = 0.8, q = 3 . The numerical results are presented in Tables 1, 2, Figures 2 and 3 respectively. Where AIT, ACPU, ANH are respectively the average number of iterations, the average CPU time (unit seconds), and the average number \left\| {H\left( {{z^k}} \right)} \right\| of iterations at the end of 10 random experiments. LM represents our experimental result, TLM is the experimental result of [13].

    Table 1.  Numerical results of solving LWCP (ⅰ) ( \tau = 0.5, q = 3 ).
    m n LM TLM
    AIT ACPU ANH AIT ACPU ANH
    200 500 7.9 0.6960 5.0131×10-12 8.0 0.7015 6.0903×10-13
    7.8 0.6974 5.5794×10-12 7.7 0.6906 1.2630×10-11
    7.6 0.6703 8.5289×10-12 7.9 0.7025 3.5098×10-13
    400 800 8.1 2.4705 5.5548×10-13 8.8 3.1241 5.2707×10-13
    8.2 2.5097 7.6171×10-13 8.9 2.6100 2.2961×10-13
    8.2 2.6300 2.4813×10-13 8.1 2.4039 3.6750×10-12
    500 1000 8.1 4.4569 1.2136×10-12 8.1 4.3590 2.2894×10-12
    8.4 4.7697 3.1192×10-13 8.4 4.4993 4.5153×10-12
    8.2 4.8820 2.7039×10-12 8.4 4.4767 9.3738×10-13
    600 1500 7.9 11.2160 9.7961×10-12 8.0 11.6639 1.0240×10-12
    8.0 11.4230 1.0008×10-13 8.0 11.6522 9.3154×10-13
    8.0 11.5575 1.0238×10-12 7.9 11.4497 1.0559×10-11
    1000 1500 9.6 18.4934 5.6351×10-12 9.5 18.6699 1.6880×10-11
    9.9 19.0396 5.2759×10-12 11.1 21.6384 5.9206×10-11
    8.4 16.3751 1.2735×10-11 10.9 21.3177 7.6313×10-12

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results of solving LWCP (ⅰ) ( \tau = 1, q = 3 ).
    m n LM TLM
    AIT ACPU ANH AIT ACPU ANH
    200 500 7.5 0.6642 1.5973×10-11 8.0 0.7155 9.7275×10-12
    7.4 0.6675 8.8485×10-12 8.4 0.7429 8.7482×10-13
    7.6 0.6661 2.5321×10-12 8.1 0.7167 6.7422×10-13
    400 800 8.0 2.3642 2.4919×10-13 8.8 2.6212 4.6000×10-12
    8.0 2.3791 4.5892×10-13 8.2 2.5740 2.4604×10-13
    8.2 2.4293 9.2368×10-13 9.0 2.6885 1.3216×10-12
    500 1000 8.0 4.3592 6.2691×10-13 8.3 4.5328 3.5736×10-12
    8.1 4.3174 3.1221×10-13 8.2 4.3540 3.2290×10-13
    7.9 4.2089 9.7440×10-12 9.9 5.3469 6.5691×10-12
    600 1500 7.9 11.3807 9.2057×10-12 8.9 12.9567 9.7825×10-13
    7.8 11.2766 1.3435×10-11 8.0 11.6116 9.9437×10-13
    8.0 11.5494 9.8875×10-13 9.2 13.3792 1.0247×10-12
    1000 1500 9.3 17.6422 7.8120×10-12 8.9 17.2609 3.4824×10-12
    8.7 16.3247 4.9019×10-12 8.8 17.3407 4.7999×10-11
    9.3 18.1968 7.8112×10-12 9.4 18.4024 1.3738×10-11

     | Show Table
    DownLoad: CSV
    Figure 2.  Comparison curves of solving LWCP (ⅱ) ( \tau = 0.3, q = 3, m = \frac{n}{2} ).
    Figure 3.  Comparison bars of solving LWCP (ⅱ) ( \tau = 0.8, q = 3, m = \frac{n}{2} ).

    Tables 1 and 2 show the numerical results for LWCP (ⅰ). Where, the parameters are taken as \tau = 0.5, q = 3;\tau = 1, q = 3 respectively. It can be seen from the table that no matter what value \tau takes, our algorithm 3.1 has less iteration time or higher accuracy than algorithm 1 in [13].

    Figures 2 and 3 show the numerical results for solving LWCP (ⅱ). Where, the parameters are respectively taken as \tau = 0.3, q = 3, m = \frac{n}{2};\tau = 0.8, q = 3, m = \frac{n}{2} . It can be seen from the figure that with the increase of dimension, the AIT of algorithm 3.1 fluctuates slightly, but it is always smaller than the AIT in [13]. The ACPU increases steadily and always smaller than the ACPU in [13].

    When \tau = 0.6, q = 3, m = \frac{n}{2} , Figure 4 shows the ACPU and AIT comparison line graphs for LWCP (ⅰ) and LWCP (ⅱ) solved by algorithms 3.1 and [13] respectively. It can be seen from the figure that after adding noise to LWCP (ⅰ), the solution speed of both algorithms decreases, but our algorithm still has certain advantages.

    Figure 4.  Comparison curves of solving LWCP (ⅰ) and LWCP (ⅱ) ( \tau = 0.6, q = 3, m = \frac{n}{2} ).

    In general, the problems generated by numerical experiments converge in a few iterations. The number of iterations varies slightly with the dimension of the problem. Our algorithm is effective for the linear weighted complementarity problem LWCP (1.3), because each problem can be successfully solved in a very short time with a small number of iterations. Numerical results show the feasibility and effectiveness of the algorithm 3.1.

    Based on the idea of L-M method, with the help of a new class of WCP functions {\varphi }_{\tau , q}^{c}(a, b), we give the algorithm 3.1 for solving the LWCP (1.3). Under certain conditions, our algorithm can obtain the approximate solution of LWCP (1.3). Numerical experiments show the feasibility and effectiveness of the algorithm 3.1.

    The authors declare no conflicts of interest.



    [1] J. Chan, S. Yuan, K. H. Kok, K. K. Wang, H. Chu, J. Yang, et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, The Lancet, 395 (2020), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9 doi: 10.1016/S0140-6736(20)30154-9
    [2] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics-Ⅰ, Bull. Math. Biol., 53 (1991), 33–55. https://doi.org/10.1007/BF02464423 doi: 10.1007/BF02464423
    [3] Q. Yang, D. Q. Jiang, N. Z. Shi, C. Y. Ji, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2017), 248–271. https://doi.org/10.1016/j.jmaa.2011.11.072 doi: 10.1016/j.jmaa.2011.11.072
    [4] H. Huo, P. Yang, H. Xiang, Stability and bifurcation for an SEIS epidemic model with the impact of media, Physica A Stat. Mech. Appl., 490 (2018), 702–720. https://doi.org/10.1016/j.physa.2017.08.139 doi: 10.1016/j.physa.2017.08.139
    [5] Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–727. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124
    [6] T. Odagaki, Exact properties of SIQR model for COVID-19, Physica A Stat. Mech. Appl., 564 (2021), 125564. https://doi.org/10.1016/j.physa.2020.125564 doi: 10.1016/j.physa.2020.125564
    [7] S. Jain, S. Kumar, Dynamic analysis of the role of innate immunity in SEIS epidemic model, Eur. Phys. J. Plus, 136 (2021), 439. https://doi.org/10.1140/epjp/s13360-021-01390-3 doi: 10.1140/epjp/s13360-021-01390-3
    [8] A. Omar, Y. Alnafisah, R. A. Elbarkouky, H. M. Ahmed, COVID-19 deterministic and stochastic modeling with optimized daily vaccinations in Saudi Arabia, Results Phys., 28 (2021), 104629. https://doi.org/10.1016/j.rinp.2021.104629 doi: 10.1016/j.rinp.2021.104629
    [9] A. omar, R. A. Elbarkouky, H. M. Ahmed, Fractional stochastic modelling of COVID-19 under wide spread of vaccinations: Egyptian case study, Alexandrian Eng. J., 61 (2022), 8595–8609. https://doi.org/10.1016/j.aej.2022.02.002 doi: 10.1016/j.aej.2022.02.002
    [10] R. Din, E. A. Algehyne, Mathematical analysis of COVID-19 by using SIR model with convex incidence rate, Results Phys., 23 (2021), 103970. https://doi.org/10.1016/j.rinp.2021.103970 doi: 10.1016/j.rinp.2021.103970
    [11] O. Nave, U. Shemesh, I. HarTuv, Applizing Laplace Adomain decomposition method (LADM) for solving a model of COVID-19, Comput. Method. Biomec. Biomed. Eng., 24 (2021), 1618–1628. https://doi.org/10.1080/10255842.2021.1904399 doi: 10.1080/10255842.2021.1904399
    [12] World Health Organization, World health organization, contact tracing in the context of COVID-19, 2021. Available from: https://www.who.int/fr/publications-detail/contact tracing in the context of covid-19.
    [13] G. Zhang, Z. Li, A. Din, A stochastic SIQR epidemic model with L\acute{e}vy jumps and three-time delays, Appl. Math. Comput., 431 (2022), 127329. https://doi.org/10.1016/j.amc.2022.127329 doi: 10.1016/j.amc.2022.127329
    [14] Y. Ma, J. Liu, H. Li, Global dynamics of an SIQR model with vaccination and elimination hybrid strategies, Mathematics, 6 (2018), 328. https://doi.org/10.3390/math6120328 doi: 10.3390/math6120328
    [15] X. Zhang, R. Liu, The stationary distribution of a stochastic SIQS epidemic model with varying total population size, Appl. Math. Lett., 116 (2021), 106974. https://doi.org/10.1016/j.aml.2020.106974 doi: 10.1016/j.aml.2020.106974
    [16] X. Zhang, H. Huo, H. Xiang, X. Meng, Dynamics of the deterministic and stochastic SIQS epidemic model with non-linear incidence, Appl. Math. Comput., 243 (2014), 546–558. https://doi.org/10.1016/j.amc.2014.05.136 doi: 10.1016/j.amc.2014.05.136
    [17] Q. Liu, D. Jiang, N. Shi, Threshold behavior in a stochastic SIQR epidemic model with stanadard incidence and regime switching, Appl. Math. Comput., 316 (2018), 310–325. https://doi.org/10.1016/j.amc.2017.08.042 doi: 10.1016/j.amc.2017.08.042
    [18] S. Ruschel, T. Pereira, S. Yanchuk, L. Young, An SIQ delay differential equations model for disease control via isolation, J. Math. Biol., 79 (2019), 249–279. https://doi.org/10.1007/s00285-019-01356-1 doi: 10.1007/s00285-019-01356-1
    [19] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates, J. Franklin Inst., 356 (2019), 2960–2993. https://doi.org/10.1016/j.jfranklin.2019.01.038 doi: 10.1016/j.jfranklin.2019.01.038
    [20] V. Capasso, G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
    [21] S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equ., 188 (2003), 135–163. https://doi.org/10.1016/S0022-0396(02)00089-X doi: 10.1016/S0022-0396(02)00089-X
    [22] D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419–429. https://doi.org/10.1016/j.mbs.2006.09.025 doi: 10.1016/j.mbs.2006.09.025
    [23] A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, et al., Modelling strategies for controlling SARS outbreaks, Proc. R. Soc. Lond. B., 271 (2004), 2223–2232. https://doi.org/10.1098/rspb.2004.2800 doi: 10.1098/rspb.2004.2800
    [24] D. Li, J. Cui, M. Liu, S. Liu, The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate, Bull. Math. Biol., 77 (2015), 1705–1743. https://doi.org/10.1007/s11538-015-0101-9 doi: 10.1007/s11538-015-0101-9
    [25] G. Lan, S. Yuan, B. Song, The impact of hospital resources and environmental perturbations to the dynamics of SIRS model, J. Franklin Inst., 358 (2021), 2405–2433. https://doi.org/10.1016/j.jfranklin.2021.01.015 doi: 10.1016/j.jfranklin.2021.01.015
    [26] P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2 (2017), 288–303. https://doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002
    [27] X. R. Mao, Stochastic differential equations and applications, Cambridge: Woodhead Publishing, 2011.
    [28] Y. Cai, Y. Kang, W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003
    [29] R. Khasminskii, Stochastic stability of differential equations, Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-23280-0
    [30] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1476) PDF downloads(68) Cited by(0)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog