Research article Special Issues

On some dynamic inequalities of Hilbert's-type on time scales

  • † These two authors contributed equally to this work and are co-first authors.
  • Received: 12 April 2022 Revised: 02 September 2022 Accepted: 08 October 2022 Published: 18 November 2022
  • MSC : 26D10, 26D15, 26E70, 34A40

  • In this article, we will prove some new conformable fractional Hilbert-type dynamic inequalities on time scales. These inequalities generalize some known dynamic inequalities on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. Our results will be proved by using some algebraic inequalities, conformable fractional Hölder inequalities, and conformable fractional Jensen's inequalities on time scales.

    Citation: Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim. On some dynamic inequalities of Hilbert's-type on time scales[J]. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174

    Related Papers:

  • In this article, we will prove some new conformable fractional Hilbert-type dynamic inequalities on time scales. These inequalities generalize some known dynamic inequalities on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. Our results will be proved by using some algebraic inequalities, conformable fractional Hölder inequalities, and conformable fractional Jensen's inequalities on time scales.



    加载中


    [1] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1952.
    [2] B. G. Pachpatte, A note on Hilbert type inequality, Tamkang J. Math., 29 (1998), 293–298. https://doi.org/10.5556/j.tkjm.29.1998.4258 doi: 10.5556/j.tkjm.29.1998.4258
    [3] G. D. Handley, J. J. Koliha, J. Pecaric, A Hilbert type inequality, Tamkang J. Math., 31 (2000), 311–316. https://doi.org/10.5556/j.tkjm.31.2000.389 doi: 10.5556/j.tkjm.31.2000.389
    [4] C. J. Zhao, W. S. Cheung, Inverses of new Hilbert-Pachpatte-type inequalities, J. Inequal. Appl., 2006 (2006), 97860. https://doi.org/10.1155/JIA/2006/97860 doi: 10.1155/JIA/2006/97860
    [5] B. G. Pachpatte, On some new inequalities similar to Hilbert's inequality, J. Math. Anal. Appl., 226 (1998), 166–179. https://doi.org/10.1006/jmaa.1998.6043 doi: 10.1006/jmaa.1998.6043
    [6] A. A. El-Deeb, H. A. El-Sennary, P. Agarwal, Some opial-type inequalities with higher order delta derivatives on time scales, RACSAM Rev. R. Acad. A, 114 (2020), 29. https://doi.org/10.1007/s13398-019-00749-7 doi: 10.1007/s13398-019-00749-7
    [7] A. A. El-Deeb, Z. A. Khan, Certain new dynamic nonlinear inequalities in two independent variables and applications, Bound. Value Probl., 2020 (2020), 31. https://doi.org/10.1186/s13661-020-01338-z doi: 10.1186/s13661-020-01338-z
    [8] B. C. Yang, S. H. Wu, Q. Chen, A new extension of Hardy-Hilbert's inequality containing kernel of double power functions, Mathematics, 8 (2020), 894. https://doi.org/10.3390/math8060894 doi: 10.3390/math8060894
    [9] A. A. El-Deeb, H. Xu, A. Abdeldaim, G. Wang, Some dynamic inequalities on time scales and their applications, Adv. Differ. Equ., 2019,130. https://doi.org/10.1186/s13662-019-2023-6 doi: 10.1186/s13662-019-2023-6
    [10] A. A. El-Deeb, On some generalizations of nonlinear dynamic inequalities on time scales and their applications, Appl. Anal. Discret. Math., 13 (2019), 440–462. https://doi.org/10.2298/AADM170406010E doi: 10.2298/AADM170406010E
    [11] Y. Tian, A. A. El-Deeb, F. Meng, Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales, Discrete Dyn. Nat. Soc., 2018 (2018), 5841985. https://doi.org/10.1155/2018/5841985 doi: 10.1155/2018/5841985
    [12] A. A. El-Deeb, W. S. Cheung, A variety of dynamic inequalities on time scales with retardation, J. Nonlinear Sci. Appl., 11 (2018), 1185–1206. https://doi.org/10.22436/jnsa.011.10.07 doi: 10.22436/jnsa.011.10.07
    [13] A. A. El-Deeb, H. A. Elsennary, E. R. Nwaeze, Generalized weighted Ostrowski, trapezoid and Gruss type inequalities on time scales, Fasc. Math., 2018,123–144.
    [14] A. Abdeldaim, A. A. El-Deeb, P. Agarwal, H. A. El-Sennary, On some dynamic inequalities of Steffensen type on time scales, Math. Method. Appl. Sci., 41 (2018), 4737–4753. https://doi.org/10.1002/mma.4927 doi: 10.1002/mma.4927
    [15] A. A. El-Deeb, Some Gronwall-Bellman type inequalities on time scales for Volterra-Fredholm dynamic integral equations, J. Egypt. Math. Soc., 26 (2018), 1–17. https://doi.org/10.21608/JOMES.2018.9457 doi: 10.21608/JOMES.2018.9457
    [16] A. A. El-Deeb, S. D. Makharesh, D. Baleanu, Dynamic Hilbert-type inequalities with fenchel-legendre transform, Symmetry, 12 (2020), 582. https://doi.org/10.3390/sym12040582 doi: 10.3390/sym12040582
    [17] M. Kh. Fatma, A. A. El-Deeb, A Abdeldaim, Z. A Khan, On some generalizations of dynamic Opial-type inequalities on time scales, Adv. Differ. Eq., 2019 (2019), 1–14.
    [18] A. A. El-Deeb, M. Kh. Fatma, G. A. F. Ismail, Z. A. Khan, Weighted dynamic inequalities of Opial-type on time scales, Adv. Differ. Eq., 2019 (2019), 393. https://doi.org/10.1186/s13662-019-2325-8 doi: 10.1186/s13662-019-2325-8
    [19] B. C. Yang, S. H. Wu, A. Z. Wang, A new Hilbert-type inequality with positive homogeneous kernel and its equivalent forms, Symmetry, 12 (2020), 342. https://doi.org/10.3390/sym12030342 doi: 10.3390/sym12030342
    [20] R. Agarwal, D. O'Regan, S. Saker, Dynamic inequalities on time scales, Springer, Cham, 2014.
    [21] S. H. Saker, A. A. El-Deeb, H. M. Rezk, R. P. Agarwal, On Hilbert's inequality on time scales, Appl. Anal. Discrete Math., 11 (2017), 399–423. https://doi.org/10.2298/AADM170428001S doi: 10.2298/AADM170428001S
    [22] S. Rashid, Z. Hammouch, H. Aydi, A. G. Ahmad, A. M. Alsharif, Novel computations of the time-fractional fisher's model via generalized fractional integral operators by means of the elzaki transform, Fractal Fract., 5 (2021). https://doi.org/10.3390/fractalfract5030094 doi: 10.3390/fractalfract5030094
    [23] S. S. Zhou, S. Rashid, S. Parveen, A. O. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the hilfer generalized proportional fractional integral operators, AIMS Math., 6 (2021), 4507–4525. https://doi.org/10.3934/math.2021267 doi: 10.3934/math.2021267
    [24] A. A. El-Deeb, D. Baleanu, Some new dynamic Gronwall-Bellman-Pachpatte type inequalities with delay on time scales and certain applications, J. Inequal. Appl., 2020 (2022). https://doi.org/10.1186/s13660-022-02778-0 doi: 10.1186/s13660-022-02778-0
    [25] A. A. El-Deeb, O. Moaaz, D. Baleanu, S. S. Askar, A variety of dynamic $\alpha$-conformable Steffensen-type inequality on a time scale measure space, AIMS Math., 7 (2022), 11382–11398. https://doi.org/10.3934/math.2022635 doi: 10.3934/math.2022635
    [26] A. A. El-Deeb, E. Akin, B. Kaymakçalan, Generalization of Mitrinović-Pečarić inequalities on time scales, Rocky MT J. Math., 51 (2021), 1909–1918. https://doi.org/10.1216/rmj.2021.51.1909 doi: 10.1216/rmj.2021.51.1909
    [27] A. A. El-Deeb, S. D. Makharesh, E. R. Nwaeze, O. S. Iyiola, D. Baleanu, On nabla conformable fractional Hardy-type inequalities on arbitrary time scales, J. Inequal. Appl., 2021 (2021), 192. https://doi.org/10.1186/s13660-021-02723-7 doi: 10.1186/s13660-021-02723-7
    [28] T. Abdeljawad, S. Rashid, Z. Hammouch, I. Işcan, Y. M. Chu, Some new simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Differ. Eq., 2020 (2020), 1–26. https://doi.org/10.1186/s13662-020-02955-9 doi: 10.1186/s13662-020-02955-9
    [29] H. G. JiLe, S. Rashid, M. A. Noor, A. Suhail, Y. M. Chu, Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108–6123. https://doi.org/10.3934/math.2020392 doi: 10.3934/math.2020392
    [30] S. Rashid, Z. Hammouch, H. Kalsoom, R. Ashraf, Y. M. Chu, New investigation on the generalized k-fractional integral operators, Front. Phys., 8 (2020). https://doi.org/10.3389/fphy.2020.00025 doi: 10.3389/fphy.2020.00025
    [31] M. A. Noor, K. I. Noor, S. Rashid, Some new classes of preinvex functions and inequalities, Mathematics, 7 (2019). https://doi.org/10.3390/math7010029 doi: 10.3390/math7010029
    [32] A. Abdeldaim, A. A. El-Deeb, On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations, Appl. Math. Comput., 256 (2015), 375–380. https://doi.org/10.1016/j.amc.2015.01.047 doi: 10.1016/j.amc.2015.01.047
    [33] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhauser, Boston, Mass, USA, 2001.
    [34] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [35] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [36] N. Benkhettou, S. Hassani, D. F. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ. Sci., 28 (2016), 93–98. https://doi.org/10.1016/j.jksus.2015.05.003 doi: 10.1016/j.jksus.2015.05.003
    [37] B. Bendouma, A. Hammoudi, A nabla conformable fractional calculus on time scales, Elec. J. Math. Anal. Appl., 7 (2019), 202–216.
    [38] R. Bibi, M. Bohner, J. Pečarić, S. Varošanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal., 7 (2013), 299–312. https://doi.org/10.7153/jmi-07-28 doi: 10.7153/jmi-07-28
    [39] C. J. Zhao, W. S. Cheung, On new Hilbert-Pachpatte type integral inequalities, Taiwan. J. Math., 2010. 1271–1282. https://doi.org/10.11650/twjm/1500405943 doi: 10.11650/twjm/1500405943
    [40] A. A. El-Deeb, S. D. Makharesh, B. Almarri, Some new inverse Hilbert inequalities on time scales, Symmetry, 14 (2022), 2234. https://doi.org/10.3390/sym14112234 doi: 10.3390/sym14112234
    [41] A. A. El-Deeb, J Awrejcewicz, Diamond-$\alpha$ Hardy-type inequalities on time scales, Symmetry, 2047.
    [42] A. A. El-Deeb, A. A. El-Bary, J. Awrejcewicz, On some dynamic $(\Delta\Delta)^{\nabla}$ Gronwall-Bellman-Pachpatte-type inequalities on time scales and its applications, Symmetry, 14 (1902).
    [43] A. A. El-Deeb, D. Baleanu, J. Awrejcewicz, $(\Delta\nabla)^{\nabla}$-Pachpatte dynamic inequalities associated with Leibniz integral rule on time scales with applications, Symmetry, 14 (1867).
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1132) PDF downloads(154) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog