Research article Special Issues

On the series solution of the stochastic Newell Whitehead Segel equation

  • Received: 13 February 2023 Revised: 21 April 2023 Accepted: 26 April 2023 Published: 07 July 2023
  • MSC : 58J35, 60H15, 60H35

  • The purpose of this paper is to present a two-step approach for finding the series solution of the stochastic Newell-Whitehead-Segel (NWS) equation. The proposed two-step approach starts with the use of the Wiener-Hermite expansion (WHE) technique, which allows the conversion of the stochastic problem into a set of coupled deterministic partial differential equations (PDEs) by components. The deterministic kernels of the WHE serve as the solution to the stochastic NWS equation by decomposing the stochastic process. The second step involves solving these PDEs using the reduced differential transform (RDT) algorithm, which enables the determination of the deterministic kernels. The final step involves plugging these kernels back into the WHE to derive the series solution of the stochastic NWS equation. The expectation and variance of the solution are calculated and graphically displayed to provide a clear visual representation of the results. We believe that this two-step technique for computing the series solution process can be used to a great extent for stochastic PDEs arising in a variety of sciences.

    Citation: Javed Hussain. On the series solution of the stochastic Newell Whitehead Segel equation[J]. AIMS Mathematics, 2023, 8(9): 21591-21605. doi: 10.3934/math.20231100

    Related Papers:

  • The purpose of this paper is to present a two-step approach for finding the series solution of the stochastic Newell-Whitehead-Segel (NWS) equation. The proposed two-step approach starts with the use of the Wiener-Hermite expansion (WHE) technique, which allows the conversion of the stochastic problem into a set of coupled deterministic partial differential equations (PDEs) by components. The deterministic kernels of the WHE serve as the solution to the stochastic NWS equation by decomposing the stochastic process. The second step involves solving these PDEs using the reduced differential transform (RDT) algorithm, which enables the determination of the deterministic kernels. The final step involves plugging these kernels back into the WHE to derive the series solution of the stochastic NWS equation. The expectation and variance of the solution are calculated and graphically displayed to provide a clear visual representation of the results. We believe that this two-step technique for computing the series solution process can be used to a great extent for stochastic PDEs arising in a variety of sciences.



    加载中


    [1] P. Jakobsen, J. Lega, Q. Feng, M. Staley, J. V. Moloney, A. C. Newell, Nonlinear transverse modes of large-aspect-ratio homogeneously broadened lasers: Ⅰ. Analysis and numerical simulation, Phys. Rev. A, 49 (1994), 4189–4200. https://doi.org/10.1103/physreva.49.4189 doi: 10.1103/physreva.49.4189
    [2] B. A. Malomed, M. I. Tribelskii, Stability of stationary periodic structures for weakly supercritical convection and related problems, J. Exp. Theor. Phys., 65 (1987), 305.
    [3] L. Segel, Distant side-walls cause slow amplitude modulation of cellular convection, J. Fluid Mech., 38 (1969), 203–224. https://doi.org/10.1017/S0022112069000127 doi: 10.1017/S0022112069000127
    [4] A. Hagberg, A. Yochelis, H. Yizhaq, C. Elphick, L. Pismen, E. Meron, Linear and nonlinear front instabilities in bistable systems, Physica D, 217 (2006), 186–192. https://doi.org/10.1016/j.physd.2006.04.005 doi: 10.1016/j.physd.2006.04.005
    [5] M. Nadeem, J. H. He, C. H. He, H. M. Sedighi, A. H. Shirazi, A numerical solution of nonlinear fractional Newell-Whitehead-Segel equation using natural transform, TWMS J. Pure Appl. Math., 13 (2022), 168–182.
    [6] M. Nadeem, J. H. He, A. Islam, The homotopy perturbation method for fractional differential equations: part 1 Mohand transform, Int. J. Numer. Method. H., 31 (2021), 3490–3504. https://doi.org/10.1108/HFF-11-2020-0703 doi: 10.1108/HFF-11-2020-0703
    [7] M. Nadeem, J. H. He, He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics, J. Math. Chem., 59 (2021), 1234–1245. https://doi.org/10.1007/s10910-021-01236-4 doi: 10.1007/s10910-021-01236-4
    [8] Z. Brzeźniak, J. Hussain, Global solution of nonlinear stochastic heat equation with solutions in a Hilbert manifold, Stoch. Dynam., 20 (2020), 2040012. https://doi.org/10.1142/S0219493720400122 doi: 10.1142/S0219493720400122
    [9] A. Sen, S. Tiwari, S. Mishra, P. Kaw, Nonlinear wave excitations by orbiting charged space debris objects, Adv. Space Res., 56 (2015), 429–435. https://doi.org/10.1016/j.asr.2015.03.021 doi: 10.1016/j.asr.2015.03.021
    [10] J. Tamang, K. Sarkar, A. Saha, Solitary wave solution and dynamic transition of dust ion acoustic waves in a collisional nonextensive dusty plasma with ionization effect, Physica A, 505 (2018), 18–34. https://doi.org/10.1016/j.physa.2018.02.213 doi: 10.1016/j.physa.2018.02.213
    [11] H. C. Rosu, O. Cornejo-Pérez, Supersymmetric pairing of kinks for polynomial nonlinearities, Phys. Rev. E, 71 (2005), 046607. https://doi.org/10.1103/physreve.71.046607 doi: 10.1103/physreve.71.046607
    [12] K. Bibi, K. Ahmad, Exact solutions of Newell-Whitehead-Segel equations using symmetry transformations, J. Funct. Space., 2021 (2021), 6658081. https://doi.org/10.1155/2021/6658081 doi: 10.1155/2021/6658081
    [13] H. Gandhi, A. Tomar, D. Singh, The comparative study of time fractional linear and nonlinear Newell-Whitehead-Segel equation, In: Soft computing: Theories and applications, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-1740-9-34
    [14] L. M. Andadi, Wavelet based lifting schemes for the numerical solution of Newell-Whitehead-Segel equations, J. Fract. Calc. Appl., 12 (2021), 3.
    [15] H. U. Rehman, M. Imran, S. Nadeem, On solutions of the Newell-Whitehead-Segel equation and Zeldovich equation, Math. Method. Appl. Sci., 44 (2021), 7134–7149. https://doi.org/10.1002/mma.7249 doi: 10.1002/mma.7249
    [16] B. İnan, M. S. Osman, T. Ak, D. Baleanu, Analytical and numerical solutions of mathematical biology models: The Newell‐Whitehead‐Segel and Allen‐Cahn equations, Math. Method. Appl. Sci., 43 (2020), 2588–2600. https://doi.org/10.1002/mma.6067 doi: 10.1002/mma.6067
    [17] A. Prakash, M. Goyal, S. Gupta, Fractional variational iteration method for solving time-fractional Newell-Whitehead-Segel equation, Nonlinear Eng., 8 (2019), 164–171. https://doi.org/10.1515/nleng-2018-0001 doi: 10.1515/nleng-2018-0001
    [18] A. Korkmaz, Complex wave solutions to mathematical biology models Ⅰ: Newell-Whitehead-Segel and Zeldovich equations, J. Comput. Nonlinear Dynam., 13 (2018), 081004. https://doi.org/10.1115/1.4040411 doi: 10.1115/1.4040411
    [19] N. H.Tuan, R. M. Ganji, H. Jafari, A numerical study of fractional rheological models and fractional Newell-Whitehead-Segel equation with non-local and non-singular kernel, Chinese J. Phys., 68 (2020), 308–320. https://doi.org/10.1016/j.cjph.2020.08.019 doi: 10.1016/j.cjph.2020.08.019
    [20] E. Saberi, S. R. Hejazi, A. Motamednezhad, Lie symmetry analysis, conservation laws and similarity reductions of Newell-Whitehead-Segel equation of fractional order, J. Geom. Phys., 135 (2019), 116–128. https://doi.org/10.1016/j.geomphys.2018.10.002 doi: 10.1016/j.geomphys.2018.10.002
    [21] B. Latif, M. S. Selamat, A. N. Rosli, A. I. Yusoff, N. M. Hasan, The semi analytics iterative method for solving newell-whitehead-segel equation, Math. Stat., 8 (2020), 87–94. https://doi.org/10.13189/ms.2020.080203 doi: 10.13189/ms.2020.080203
    [22] Y. M. Chu, S. Javeed, D. Baleanu, S. Riaz, H. Rezazadeh, New exact solutions of Kolmogorov Petrovskii Piskunov equation, Fitzhugh Nagumo equation, and Newell-Whitehead equation, Adv. Math. Phys., 2020 (2020), 5098329. https://doi.org/10.1155/2020/5098329 doi: 10.1155/2020/5098329
    [23] M. Ayata, O. Özkan, A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation, AIMS Math., 5 (2020), 7402–7412. https://doi.org/10.3934/math.2020474 doi: 10.3934/math.2020474
    [24] O. Vaneeva, V. Boyko, A. Zhalij, Classification of reduction operators and exact solutions of variable coefficient Newell-Whitehead-Segel equations, J. Math. Anal. Appl., 474 (2019), 264–275. https://doi.org/10.1016/j.jmaa.2019.01.044 doi: 10.1016/j.jmaa.2019.01.044
    [25] N. Elgazery, A periodic solution of the Newell-Whitehead-Segel (NWS) wave equation via fractional calculus, J. Appl. Comput. Mech., 6 (2020), 1293–1300. https://doi.org/10.22055/jacm.2020.33778.2285 doi: 10.22055/jacm.2020.33778.2285
    [26] I. Wasim, M. Abbas, M. Iqbal, A. M. Hayat, Exponential B-spline collocation method for solving the generalized Newell-Whitehead-Segel equation, J. Math. Comput. Sci., 20 (2020), 313–324. https://doi.org/10.22436/jmcs.020.04.05 doi: 10.22436/jmcs.020.04.05
    [27] R. Saadeh, M. Alaroud, M. Al-Smadi, R. R. Ahmad, U. K. S. Din, Application of fractional residual power series algorithm to solve Newell-Whitehead-Segel equation of fractional order, Symmetry, 11 (2019), 1431. https://doi.org/10.3390/sym11121431 doi: 10.3390/sym11121431
    [28] N. Wiener, The homogeneous chaos, Am. J. Math., 60 (1938), 897–936. https://doi.org/10.2307/2371268 doi: 10.2307/2371268
    [29] W. C. Meecham, A. Siegel, Wiener-Hermite expansion in model turbulence at large reynolds number, Phys. Fluids, 7 (1964), 1178–1190. https://doi.org/10.1063/1.1711359 doi: 10.1063/1.1711359
    [30] M. El-Tawil, The application of the WHEP technique on partial differential equations, Int. J. Differ. Equ. Appl., 7 (2003), 325–337.
    [31] M. A. El-Tawil, M. Saleh, The stochastic diffusion equation with a random diffusion coefficient, Sci. Bull. Fac. Eng. Ain Shams Univ., 33 (1998), 605–613.
    [32] M. Algoulity, B. Gashi, Optimal regulator for a class of nonlinear stochastic systems with random coefficients, Eur. J. Control, 2023 (2023), 100844. https://doi.org/10.1016/j.ejcon.2023.100844 doi: 10.1016/j.ejcon.2023.100844
    [33] R. A. Cameron, W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. Math., 48 (1947), 385–392. https://doi.org/10.2307/1969178 doi: 10.2307/1969178
    [34] W. Luo, Wiener chaos expansion and numerical solutions of stochastic partial differential equations, California Institute of Technology, 2006.
    [35] M. Hamed, I. L. El-Kalla, B. S. El-desouky, M. A. El-Beltagy, Numerical treatment of the stochastic advection-diffusion equation using the spectral stochastic techniques, Int. J. Sci. Eng. Res., 4 (2018), 6. https://doi.org/10.5281/zenodo.1302309 doi: 10.5281/zenodo.1302309
    [36] A. Jahedi, G. Ahmadi, Application of Wiener-Hermite expansion to nonstationary random vibration of a duffing oscillator, J. Appl. Mech., 50 (1983), 436–442. https://doi.org/10.1115/1.3167056 doi: 10.1115/1.3167056
    [37] J. C. Cortés, J. V. Romero, M. D. Roselló, C. Santamaría, Solving random diffusion models with nonlinear perturbations by the Wiener-Hermite expansion method, Comput. Math. Appl., 61 (2011), 1946–1950. https://doi.org/10.1016/j.camwa.2010.07.057 doi: 10.1016/j.camwa.2010.07.057
    [38] M. A. El-Tawil, A. A. ElShekhipy, Statistical analysis of the stochastic solution processes of 1-D stochastic Navier-Stokes equation using WHEP technique, Appl. Math. Model., 37 (2013), 5756–5773. https://doi.org/10.1016/j.apm.2012.08.015 doi: 10.1016/j.apm.2012.08.015
    [39] M. El-Beltagy, A. S. Al-Johani, Numerical approximation of higher-order solutions of the quadratic nonlinear stochastic oscillatory equation using WHEP technique, J. Appl. Math., 2013 (2013), 685137. https://doi.org/10.1155/2013/685137 doi: 10.1155/2013/685137
    [40] M. Hamed, I. L. El-Kalla, M. A. El-Beltagy, B. S. El-desouky, Numerical solutions of stochastic Duffing-Van der Pol equations, Indian J. Pure Appl. Math., 2023. https://doi.org/10.1007/s13226-022-00361-3 doi: 10.1007/s13226-022-00361-3
    [41] M. El-Beltagy, A. Etman, S. Maged, Development of a fractional Wiener-Hermite expansion for analyzing the fractional stochastic models, Chaos Soliton. Fract., 156 (2022), 111847. https://doi.org/10.1016/j.chaos.2022.111847 doi: 10.1016/j.chaos.2022.111847
    [42] A. F. Fareed, M. S. Semary, H. M. Hassan, Two semi-analytical approaches to approximate the solution of stochastic ordinary differential equations with two enormous engineering applications, Alex. Eng. J., 61 (2022), 11935–11945. https://doi.org/10.1016/j.aej.2022.05.054 doi: 10.1016/j.aej.2022.05.054
    [43] S. Alaskary, M. El-Beltagy, Uncertainty quantification spectral technique for the stochastic point reactor with Random parameters, Energies, 13 (2020), 1297. https://doi.org/10.3390/en13061297 doi: 10.3390/en13061297
    [44] M. I. Hamed, I. L. El-Kalla, M. El-Beltagy, B. S. El-desouky, Solution of stochastic Van der Pol equation using spectral decomposition techniques, Appl. Math., 11 (2020), 184–202. https://doi.org/10.4236/am.2020.113016 doi: 10.4236/am.2020.113016
    [45] M. A. El-Tawil, N. A. Al-Mulla, Using homotopy WHEP technique for solving a stochastic nonlinear diffusion equation, Math. Comput. Model., 51 (2010), 1277–1284. https://doi.org/10.1016/j.mcm.2010.01.013 doi: 10.1016/j.mcm.2010.01.013
    [46] R. A. Zait, A. A. ElShekhipy, N. Abdo, Statistical measures approximations for the Gaussian part of the stochastic nonlinear damped Duffing oscillator solution process under the application of Wiener Hermite expansion linked by the multi-step differential transformed method, J. Egyp. Math. Soc., 24 (2016), 437–448. https://doi.org/10.1016/j.joems.2015.11.002 doi: 10.1016/j.joems.2015.11.002
    [47] Y. Keskin, G. Oturanc, Reduced differential transform method for partial differential equations, Int. J. Nonlin. Sci. Num., 10 (2009), 741–750. https://doi.org/10.1515/IJNSNS.2009.10.6.741 doi: 10.1515/IJNSNS.2009.10.6.741
    [48] Y. Keskin, G. Oturanc, Reduced differential transform method for solving linear and nonlinear wave equations, Iran. J. Sci. Technol. A, 34 (2010), 113–122. DOI: https://doi.org/10.22099/IJSTS.2010.2170 doi: 10.22099/IJSTS.2010.2170
    [49] T. Imamura, W. C. Meecham, A. Siegel, Symbolic calculus of the Wiener process and Wiener‐Hermite functionals, J. Math. Phys., 6 (1965), 695–706. https://doi.org/10.1063/1.1704327 doi: 10.1063/1.1704327
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(600) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog