Research article

Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise

  • Received: 22 March 2023 Revised: 05 May 2023 Accepted: 07 May 2023 Published: 07 July 2023
  • MSC : 35C05, 35C07, 35R11

  • In many nonlinear partial differential equations, noise or random fluctuation is an inherent part of the system being modeled and have vast applications in different areas of engineering and sciences. This objective of this paper is to construct stochastic solitons of Biswas-Arshed equation (BAE) under the influence of multiplicative white noise in the terms of the Itô calculus. Bright, singular, dark, periodic, singular and combined singular-dark stochastic solitons are attained by using the Sardar subequation method. The results prove that the suggested approach is a very straightforward, concise and dynamic addition in literature. By using Mathematica 11, some 3D and 2D plots are illustrated to check the influence of multiplicative noise on solutions. The presence of multiplicative noise leads the fluctuations and have significant effects on the long-term behavior of the system. So, it is observed that multiplicative noise stabilizes the solutions of BAE around zero.

    Citation: Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal. Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise[J]. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101

    Related Papers:

  • In many nonlinear partial differential equations, noise or random fluctuation is an inherent part of the system being modeled and have vast applications in different areas of engineering and sciences. This objective of this paper is to construct stochastic solitons of Biswas-Arshed equation (BAE) under the influence of multiplicative white noise in the terms of the Itô calculus. Bright, singular, dark, periodic, singular and combined singular-dark stochastic solitons are attained by using the Sardar subequation method. The results prove that the suggested approach is a very straightforward, concise and dynamic addition in literature. By using Mathematica 11, some 3D and 2D plots are illustrated to check the influence of multiplicative noise on solutions. The presence of multiplicative noise leads the fluctuations and have significant effects on the long-term behavior of the system. So, it is observed that multiplicative noise stabilizes the solutions of BAE around zero.



    加载中


    [1] Z. Li, C. Huang, Bifurcation, phase portrait, chaotic pattern and optical soliton solutions of the conformable Fokas-Lenells model in optical fibers, Chaos, Soliton. Fract., 169 (2023), 113237. https://doi.org/10.1016/j.chaos.2023.113237 doi: 10.1016/j.chaos.2023.113237
    [2] Z. Li, C. Huang, B. Wang, Phase portrait, bifurcation, chaotic pattern and optical soliton solutions of the Fokas-Lenells equation with cubic-quartic dispersion in optical fibers, Phys. Lett. A, 465 (2023), 128714. https://doi.org/10.1016/j.physleta.2023.128714 doi: 10.1016/j.physleta.2023.128714
    [3] Z. Li, T. Han, C. Huang, Bifurcation and new exact traveling wave solutions for time-space fractional Phi-4 equation, AIP Adv., 10 (2020), 115113. https://doi.org/10.1063/5.0029159 doi: 10.1063/5.0029159
    [4] L. Tang, Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation, Chaos, Soliton. Fract., 161 (2022), 112383. https://doi.org/10.1016/j.chaos.2022.112383 doi: 10.1016/j.chaos.2022.112383
    [5] L. Tang, Bifurcations and dispersive optical solitons for the nonlinear Schrödinger-Hirota equation in DWDM networks, Optik, 262 (2022), 169276. https://doi.org/10.1016/j.ijleo.2022.169276 doi: 10.1016/j.ijleo.2022.169276
    [6] L. Tang, Bifurcations and dispersive optical solitons for the cubic-quartic non-linear Lakshmanan-Porsezian-Daniel equation in polarization-preserving fibers, Optik, 270 (2022), 170000. https://doi.org/10.1016/j.ijleo.2022.170000 doi: 10.1016/j.ijleo.2022.170000
    [7] L. Tang, Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings, J. Opt., 2022 (2022), 1–11. https://doi.org/10.1007/s12596-022-00963-4 doi: 10.1007/s12596-022-00963-4
    [8] S. F. Tian, M. J. Xu, T. T. Zang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [9] Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the-component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
    [10] Z. Y. Wang, S. F. Tian, J. Cheng, The dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021), 093510. https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806
    [11] H. U. Rehman, A. U. Awan, K. A. Abro, E. M. T. Eldin, S. Jafar, A. M. Galal, A non-linear study of optical solitons for Kaup-Newell equation without four-wave mixing, J. King Saud Univ. Sci., 34 (2022), 102056. https://doi.org/10.1016/j.jksus.2022.102056 doi: 10.1016/j.jksus.2022.102056
    [12] J. J. Yang, S. F. Tian, Z. Q. Li, Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions, Physica D, 432 (2022), 133162. https://doi.org/10.1016/j.physd.2022.133162 doi: 10.1016/j.physd.2022.133162
    [13] A. Biswas, D. Milovic, R. Kohl, Optical soliton perturbation in a log-law medium with full nonlinearity by He's semi-inverse variational principle, Inverse Probl. Sci. En., 20 (2012), 227–232. https://doi.org/10.1080/17415977.2011.603088 doi: 10.1080/17415977.2011.603088
    [14] A. Biswas, M. Ekici, A. Sonmezoglu, M. R. Belic, Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion, Optik, 181 (2019), 1028–1038. https://doi.org/10.1016/j.ijleo.2018.12.164 doi: 10.1016/j.ijleo.2018.12.164
    [15] Y. Yildirim, A. Biswas, A. H. Kara, P. Guggilla, S. Khan, A. K. Alzahrani, et al., Optical soliton perturbation and conservation law with Kudryashov's refractive index having quadrupled power-law and dual form of generalized nonlocal nonlinearity, Optik, 240 (2021), 166966. https://doi.org/10.1016/j.ijleo.2021.166966 doi: 10.1016/j.ijleo.2021.166966
    [16] E. M. Zayed, M. E. Alngar, A. Biswas, A. H. Kara, M. Ekici, A. K. Alzahrani, et al., Cubic-quartic optical solitons and conservation laws with Kudryashov's sextic power-law of refractive index, Optik, 227 (2021), 166059. https://doi.org/10.1016/j.ijleo.2020.166059 doi: 10.1016/j.ijleo.2020.166059
    [17] M. Mirzazadeh, M. Eslami, A. Biswas, Dispersive optical solitons by Kudryashov's method, Optik, 125 (2014), 6874–6880. https://doi.org/10.1016/j.ijleo.2014.02.044 doi: 10.1016/j.ijleo.2014.02.044
    [18] I. Samir, N. Badra, H. M. Ahmed, A. H. Arnous, Optical soliton perturbation with Kudryashov's generalized law of refractive index and generalized non-local laws by improved modified extended tanh method, Alex. Eng. J., 61 (2022), 3365–3374. https://doi.org/10.1016/j.aej.2021.08.050 doi: 10.1016/j.aej.2021.08.050
    [19] A. Biswas, S. Arshed, Application of semi-inverse variational principle to cubic-quartic optical solitons with kerr and power law nonlinearity, Optik, 172 (2018), 847–850. https://doi.org/10.1016/j.ijleo.2018.07.105 doi: 10.1016/j.ijleo.2018.07.105
    [20] S. W. Yao, L. Akinyemi, M. Mirzazadeh, M. Inc, K. Hosseini, M. Senol, Dynamics of optical solitons in higher-order Sasa-Satsuma equation, Results Phys., 30 (2021), 104825. https://doi.org/10.1016/j.rinp.2021.104825 doi: 10.1016/j.rinp.2021.104825
    [21] M. Mirzazadeh, M. Eslami, B. F. Vajargah, A. Biswas, Optical solitons and optical rogons of generalized resonant dispersive nonlinear Schrödinger's equation with power law nonlinearity, Optik, 125 (2014), 4246–4256. https://doi.org/10.1016/j.ijleo.2014.04.014 doi: 10.1016/j.ijleo.2014.04.014
    [22] A. Biswas, Y. Yildirim, E. Yasar, M. F. Mahmood, A. S. Alshomrani, Q. Zhou, et al., Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes, Optik, 163 (2018), 126–136. https://doi.org/10.1016/j.ijleo.2018.02.109 doi: 10.1016/j.ijleo.2018.02.109
    [23] A. Biswas, M. Mirzazadeh, M. Eslami, D. Milovic, M. Belic, Solitons in optical metamaterials by functional variable method and first integral approach, Frequenz, 68 (2014), 525–530. https://doi.org/10.1515/freq-2014-0050 doi: 10.1515/freq-2014-0050
    [24] B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
    [25] A. Biswas, Quasi-stationary non-Kerr law optical solitons, Opt. Fiber Technol., 9 (2003), 224–259. https://doi.org/10.1016/S1068-5200(03)00044-0 doi: 10.1016/S1068-5200(03)00044-0
    [26] Y. Yan, Z. Liu, Q. Zhou, A. Biswas, Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic-quintic Ginzburg-Landau equation influenced by higher-order effects and nonlinear gain, Nonlinear Dyn., 99 (2020), 1313–1319. https://doi.org/10.1007/s11071-019-05356-0 doi: 10.1007/s11071-019-05356-0
    [27] A. Biswas, Y. Yildirim, E. Yasar, Q. Zhou, S. P. Moshokoa, M. Belic, Optical soliton solutions to Fokas-Lenells equation using some different methods, Optik, 173 (2018), 21–31. https://doi.org/10.1016/j.ijleo.2018.07.098 doi: 10.1016/j.ijleo.2018.07.098
    [28] A. Biswas, Y. Yildirim, E. Yasar, Q. Zhou, M. F. Mahmood, S. P. Moshokoa, et al., Optical solitons with differential group delay for coupled Fokas-Lenells equation using two integration schemes, Optik, 165 (2018), 74–86. https://doi.org/10.1016/j.ijleo.2018.03.100 doi: 10.1016/j.ijleo.2018.03.100
    [29] S. Arshed, A. Biswas, M. Abdelaty, Q. Zhou, S. P. Moshokoa, M. Belic, Optical soliton perturbation for Gerdjikov-Ivanov equation via two analytical techniques, Chinese J. Phys., 56 (2018), 2879–2886. https://doi.org/10.1016/j.cjph.2018.09.023 doi: 10.1016/j.cjph.2018.09.023
    [30] S. Arshed, A. Biswas, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452–459. https://doi.org/10.1016/j.ijleo.2018.08.037 doi: 10.1016/j.ijleo.2018.08.037
    [31] F. M. Al-Askar, W. W. Mohammed, The analytical solutions of the stochastic fractional RKL equation via Jacobi elliptic function method, Adv. Math. Phys., 2022 (2022), 1534067. https://doi.org/10.1155/2022/1534067 doi: 10.1155/2022/1534067
    [32] S. Albosaily, W. W. Mohammed, A. Rezaiguia, M. El-Morshedy, E. M. Elsayed, The influence of the noise on the exact solutions of a Kuramoto-Sivashinsky equation, Open Math., 20 (2022), 108–116. https://doi.org/10.1515/math-2022-0012 doi: 10.1515/math-2022-0012
    [33] P. Imkeller, A. H. Monahan, Conceptual stochastic climate models, Stoch. Dynam., 02 (2002), 311–326. https://doi.org/10.1142/S0219493702000443 doi: 10.1142/S0219493702000443
    [34] E. Weinan, X. Li, E. Vanden-Eijnden, Some recent progress in multiscale modeling, In: Multiscale modelling and simulation, Berlin: Springer, 2004, 3–21. https://doi.org/10.1007/978-3-642-18756-8_1
    [35] W. W. Mohammed, D. Blömker, Fast-diffusion limit for reaction-diffusion equations with multiplicative noise, J. Math. Anal. Appl., 496 (2021), 124808. https://doi.org/10.1016/j.jmaa.2020.124808 doi: 10.1016/j.jmaa.2020.124808
    [36] W. W. Mohammed, Modulation equation for the stochastic Swift-Hohen-berg equation with cubic and quintic non-linearities on the real line, Mathematics, 7 (2019), 1217. https://doi.org/10.3390/math7121217 doi: 10.3390/math7121217
    [37] A. M. Wazwaz, Partial differential equations and solitary waves theory, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-00251-9
    [38] S. Khan, A. Biswas, Q. Zhou, S. Adesanya, M. Alfiras, M. Belic, Stochastic perturbation of optical solitons having anti-cubic nonlinearity with bandpass filters and multi-photon absorption, Optik, 178 (2019), 1120–1124. https://doi.org/10.1016/j.ijleo.2018.10.124 doi: 10.1016/j.ijleo.2018.10.124
    [39] A. Secer, Stochastic optical solitons with multiplicative white noise via Itô calculus, Optik, 268 (2022), 169831. https://doi.org/10.1016/j.ijleo.2022.169831 doi: 10.1016/j.ijleo.2022.169831
    [40] H. M. Yin, B. Tian, J. Chai, X. Y. Wu, Stochastic soliton solutions for the (2+1)-dimensional stochastic Broer-Kaup equations in a fluid or plasma, Appl. Math. Lett., 82 (2018), 126–131. https://doi.org/10.1016/j.aml.2017.12.005 doi: 10.1016/j.aml.2017.12.005
    [41] S. Arshed, N. Raza, A. Javid, H. M. Baskonus, Chiral solitons of (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation, Int. J. Geom. Methods M., 19 (2022), 2250149. https://doi.org/10.1142/S0219887822501493 doi: 10.1142/S0219887822501493
    [42] G. Chen, Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, arXiv: 1305.4426. https://doi.org/10.48550/arXiv.1305.4426
    [43] A. M. Sultan, D. Lu, M. Arshad, H. U. Rehman, M. S. Saleem, Soliton solutions of higher order dispersive cubic-quintic nonlinear Schrödinger equation and its applications, Chinese J. Phys., 67 (2020), 405–413. https://doi.org/10.1016/j.cjph.2019.10.003 doi: 10.1016/j.cjph.2019.10.003
    [44] H. U. Rehman, M. A. Imran, M. Bibi, M. Riaz, A. Akgül, New soliton solutions of the 2D-chiral nonlinear Schrodinger equation using two integration schemes, Math. Method. Appl. Sci., 44 (2021), 5663–5682. https://doi.org/10.1002/mma.7140 doi: 10.1002/mma.7140
    [45] S. W. Yao, N. Ullah, H. U. Rehman, M. S. Hashemi, M. Mirzazadeh, M. Inc, Dynamics on novel wave structures of non-linear Schrödinger equation via extended hyperbolic function method, Results Phys., 48 (2023), 106448. https://doi.org/10.1016/j.rinp.2023.106448 doi: 10.1016/j.rinp.2023.106448
    [46] A. Biswas, S. Arshed, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452–459. https://doi.org/10.1016/j.ijleo.2018.08.037 doi: 10.1016/j.ijleo.2018.08.037
    [47] Y. Yildirim, Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique, Optik, 182 (2019), 810–820. https://doi.org/10.1016/j.ijleo.2019.01.085 doi: 10.1016/j.ijleo.2019.01.085
    [48] E. M. Zayed, R. M. A. Shohib, Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method, Optik, 185 (2019), 626–635. https://doi.org/10.1016/j.ijleo.2019.03.112 doi: 10.1016/j.ijleo.2019.03.112
    [49] H. U. Rehman, N. Ullah, M. A. Imran, Optical solitons of Biswas-Arshed equation in birefringent fibers using extended direct algebraic method, Optik, 226 (2021), 165378. https://doi.org/10.1016/j.ijleo.2020.165378 doi: 10.1016/j.ijleo.2020.165378
    [50] H. U. Rehman, M. Younis, S. Jafar, M. Tahir, M. S. Saleem, Optical solitons of biswas-arshed model in birefrigent fiber without four wave mixing, Optik, 213 (2020), 164669. https://doi.org/10.1016/j.ijleo.2020.164669 doi: 10.1016/j.ijleo.2020.164669
    [51] E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, K. A. Gepreel, T. A. Nofal, Y. Yildirim, Optical solitons for Biswas-Arshed equation with multiplicative noise via Itô calculus using three integration algorithms, Optik, 258 (2022), 168847. https://doi.org/10.1016/j.ijleo.2022.168847 doi: 10.1016/j.ijleo.2022.168847
    [52] H. Rezazadeh, M. Inc, D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Front. Phys., 8 (2020), 332. https://doi.org/10.3389/fphy.2020.00332 doi: 10.3389/fphy.2020.00332
    [53] H. Rezazadeh, R. Abazari, M. M. Khater, M. Inc, D. Baleanu, New optical solitons of conformable resonant non-linear Schrödinger's equation, Open Phys., 18 (2020), 761–769. https://doi.org/10.1515/phys-2020-0137 doi: 10.1515/phys-2020-0137
    [54] H. U. Rahman, M. I. Asjad, N. Munawar, F. Parvaneh, T. Muhammad, A. A. Hamoud, et al., Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique, AIMS Mathematics, 7 (2022), 11134–11149. https://doi.org/10.3934/math.2022623 doi: 10.3934/math.2022623
    [55] H. U. Rehman, A. U. Awan, A. Habib, F. Gamaoun, E. M. T. Eldin, A. M. Galal, Solitary wave solutions for a strain wave equation in a microstructured solid, Results Phys., 39 (2022), 105755. https://doi.org/10.1016/j.rinp.2022.105755 doi: 10.1016/j.rinp.2022.105755
    [56] M. Cinar, A. Secer, M. Ozisik, M. Bayram, Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method, Opt. Quant. Electron., 54 (2022), 402. https://doi.org/10.21203/rs.3.rs-1428466/v1 doi: 10.21203/rs.3.rs-1428466/v1
    [57] H. U. Rehman, M. I. Asjad, M. Inc, I. Iqbal, Exact solutions for new coupled Konno-Oono equation via Sardar subequation method, Opt. Quant. Electron., 54 (2022), 798. https://doi.org/10.1007/s11082-022-04208-3 doi: 10.1007/s11082-022-04208-3
    [58] H. U. Rehman, I. Iqbal, S. S. Aiadi, N. Mlaiki, M. S. Saleem, Soliton solutions of Klein-Fock-Gordon equation using Sardar sub-equation method, Mathematics, 10 (2022), 3377. https://doi.org/10.3390/math10183377 doi: 10.3390/math10183377
    [59] F. M. Al-Askar, W. W. Mohammed, M. Alshammari, M. El-Morshedy, Effects of the Wiener process on the solutions of the stochastic fractional Zakharov system, Mathematics, 10 (2022), 1194. https://doi.org/10.3390/math10071194 doi: 10.3390/math10071194
    [60] F. M. Al-Askar, W. W. Mohammed, A. M. Albalahi, M. El-Morshedy, The impact of the Wiener process on the analytical solutions of the stochastic (2+1)-dimensional breaking soliton equation by using tanh-coth method, Mathematics, 10 (2022), 817. https://doi.org/10.3390/math10050817 doi: 10.3390/math10050817
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1184) PDF downloads(88) Cited by(19)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog