
In many nonlinear partial differential equations, noise or random fluctuation is an inherent part of the system being modeled and have vast applications in different areas of engineering and sciences. This objective of this paper is to construct stochastic solitons of Biswas-Arshed equation (BAE) under the influence of multiplicative white noise in the terms of the Itô calculus. Bright, singular, dark, periodic, singular and combined singular-dark stochastic solitons are attained by using the Sardar subequation method. The results prove that the suggested approach is a very straightforward, concise and dynamic addition in literature. By using Mathematica 11, some 3D and 2D plots are illustrated to check the influence of multiplicative noise on solutions. The presence of multiplicative noise leads the fluctuations and have significant effects on the long-term behavior of the system. So, it is observed that multiplicative noise stabilizes the solutions of BAE around zero.
Citation: Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal. Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise[J]. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101
[1] | Muhammad Imran Asjad, Naeem Ullah, Asma Taskeen, Fahd Jarad . Study of power law non-linearity in solitonic solutions using extended hyperbolic function method. AIMS Mathematics, 2022, 7(10): 18603-18615. doi: 10.3934/math.20221023 |
[2] | Naeem Ullah, Muhammad Imran Asjad, Azhar Iqbal, Hamood Ur Rehman, Ahmad Hassan, Tuan Nguyen Gia . Analysis of optical solitons solutions of two nonlinear models using analytical technique. AIMS Mathematics, 2021, 6(12): 13258-13271. doi: 10.3934/math.2021767 |
[3] | Tianyong Han, Zhao Li, Jun Yuan . Optical solitons and single traveling wave solutions of Biswas-Arshed equation in birefringent fibers with the beta-time derivative. AIMS Mathematics, 2022, 7(8): 15282-15297. doi: 10.3934/math.2022837 |
[4] | Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu . Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics. AIMS Mathematics, 2025, 10(1): 1859-1881. doi: 10.3934/math.2025086 |
[5] | Yazid Alhojilan, Islam Samir . Investigating stochastic solutions for fourth order dispersive NLSE with quantic nonlinearity. AIMS Mathematics, 2023, 8(7): 15201-15213. doi: 10.3934/math.2023776 |
[6] | Dan Chen, Da Shi, Feng Chen . Qualitative analysis and new traveling wave solutions for the stochastic Biswas-Milovic equation. AIMS Mathematics, 2025, 10(2): 4092-4119. doi: 10.3934/math.2025190 |
[7] | Ahmed M. Elsherbeny, Taher A. Nofal, Yakup Yıldırım, Ahmed H. Arnous . New solitary waveforms and their dynamics in the stochastic generalized Chen–Lee–Liu model. AIMS Mathematics, 2025, 10(3): 5197-5235. doi: 10.3934/math.2025239 |
[8] | Naeem Ullah, Muhammad Imran Asjad, Jan Awrejcewicz, Taseer Muhammad, Dumitru Baleanu . On soliton solutions of fractional-order nonlinear model appears in physical sciences. AIMS Mathematics, 2022, 7(5): 7421-7440. doi: 10.3934/math.2022415 |
[9] | Aliyu Isa Aliyu, Ali S. Alshomrani, Mustafa Inc, Dumitru Baleanu . Optical solitons for Triki-Biswas equation by two analytic approaches. AIMS Mathematics, 2020, 5(2): 1001-1010. doi: 10.3934/math.2020069 |
[10] | Da Shi, Zhao Li, Dan Chen . New traveling wave solutions, phase portrait and chaotic patterns for the dispersive concatenation model with spatio-temporal dispersion having multiplicative white noise. AIMS Mathematics, 2024, 9(9): 25732-25751. doi: 10.3934/math.20241257 |
In many nonlinear partial differential equations, noise or random fluctuation is an inherent part of the system being modeled and have vast applications in different areas of engineering and sciences. This objective of this paper is to construct stochastic solitons of Biswas-Arshed equation (BAE) under the influence of multiplicative white noise in the terms of the Itô calculus. Bright, singular, dark, periodic, singular and combined singular-dark stochastic solitons are attained by using the Sardar subequation method. The results prove that the suggested approach is a very straightforward, concise and dynamic addition in literature. By using Mathematica 11, some 3D and 2D plots are illustrated to check the influence of multiplicative noise on solutions. The presence of multiplicative noise leads the fluctuations and have significant effects on the long-term behavior of the system. So, it is observed that multiplicative noise stabilizes the solutions of BAE around zero.
NLEEs have made remarkable contributions in scientific fields including hydrodynamics, biology, chemistry, fluid mechanics, fiber optics, mathematical physics, elasticity theory, plasma physics and engineering. The investigation of exact solutions for NLEEs through different techniques plays an energetic part in physics and has become thrilling subject for researchers. The soliton solutions have many applications in different fields of neural physics, mathematical biology, optical fibers chaos and solid state physics [1,2,3,4,5,6,7,8,9,10,11,12]. Nowadays, many techniques are used for finding optical soliton solutions such as the He's semi-inverse variational principle [13], F-expansion technique [14], the auxiliary equation approach [15], Kudryashov's method [16,17], the extended tanh technique [18], the semi-inverse variational method [19], the improved generalized Riccati's equation mapping method [20], the simplest equation method [21], the trial equation method [22], the first integral method [23,24], the quasi-stationary solution approach [25], the asymmetric method [26], modified simple equation scheme [27,28], the sine-cosine method [29] and Lie symmetry approach [30].
On the other hand, many stochastic NLEEs are commonly used to study noise in many phenomenons such as predication and simulation in the fields of climate dynamics, physics, atmosphere, biology and other fields [31,32,33]. The aim of these models is to capture the impact of random or stochastic factors on the behavior of the system. One area of significant interest in this field is the study of stochastic waves, which have been the subject of extensive research by many authors [34,35,36]. Optical solitons are a particular type of wave that is used to transfer the data over long distances with minimum loss or error [37]. However, the transmission of signals over long distances can be affected by natural conditions such as atmospheric turbulence, which can lead to stochastic distortions that have a significant impact on the quality of the transmitted data. Recently, stochastic NLEEs are gaining attention and have capability of describing complex physical phenomenons with stochastic behavior. Many authors used different techniques to extract various forms of stochastic solutions such as Khan et al. [38] who conducted a study on the stochastic perturbation of solitons along anti-cubic nonlinearity using multi-photon absorption. Secer [39] studied the stochastic solutions with multiplicative noise in itô sense. Other researchers have also explored the stochastic soliton solutions of Broer-Kauf equations in fluid or plasma and (2+1) dimension nonlinear Schrödinger equation [40,41].
As a result, this paper studies the BAE with multiplicative noise in the terms Itô calculus. Recently, mathematicians have proposed a lot of optical structure depends on the Schrödinger equation [42,43,44,45]. In recent times, Biswas and Arshad [46] developed a model from the nonlinear Schröodinger equation called BAE. The BAE is a NLPDE used to model the transmission of solitons, taking into the account the various nonlinear effects that occur in the system. A large variety of techniques are used to find optical solutions of BAE [47,48,49,50]. The BAE along higher order dispersion is described as
ιyt+g1yxx+cyxt+ι(h1yxxx+h2yxxt)=ι[λ(|y|2y)x+u((|y|2)x)y+θ|y|2yx], | (1.1) |
where the wave behavior is described by y(x,t), which depends on variables: x (spatial) and t (temporal). The first term, g1 and c indicate the temporal evolution of the wave, group velocity dispersion (GVD) and spatio-temporal dispersion (STD) respectively. Next, h1 represents the 3rd order dispersion (3OD) and spatio-temporal 3OD is provided by the coefficient of h2. These effects compensate for the low count of GVD. Self-phase modulation effect is absent while the right side of equation shows the nonlinear effects. λ is coefficient of steeping dispersion while u and θ represent the effects of nonlinear dispersion.
The current work deals with newly constructed following BAE with the having multiplicative noise by Itô calculus [51].
ιyt+g1yxx+cyxt+ι(h1yxxx+h2yxxt)+ϱ(y−ιg2yx+h2yxx)dW(t)dt=ι[λ(|y|2y)x+u((|y|2)x)y+θ|y|2yx], | (1.2) |
where y(x,t) represents the wave profile, g1, g2, h1, h2, λ show the chromatic dispersion, STD, 3OD, 3rd order chromatic dispersion, coefficient of steeping term respectively, W(t) represents the Wiener process and dW(t)dt is white noise. u and θ are due to the effects of nonlinear dispersion. By taking ϱ=0, the model in (1.2) reduces into (1.1).
The ambition of this paper is to employ SSM [52,53,54,55,56,57,58] for a BAE to acquire stochastic optical solitons. The method yields a sorts of solutions including stochastic bright, dark, singular, combined dark-singular and periodic soliton solutions. The motivation behind this work is to enhance previous efforts in [51] by offering new solutions such as combined singular-dark stochastic solutions that help in the area of telecommunications for data transmission. Then, by doing some mathematical calculations and plotting graphs, some physical characteristics of related shape of waves are investigated.
The paper is organized as: Section 2 gives definitions of Wiener process and white noise. In Section 3, narrative of method is given. Section 4 provides mathematical preliminaries. In Section 5, application of SSM for model (1.2) is discussed. Section 6 gives graphical illustration. Lastly, conclusion is discussed in Section 7.
(ⅰ) The Wiener process W(t), t≥0 have the following properties
∙ W(t) = 0,
∙ W(t1)-W(t2) for t1<t2 is independent,
∙ W(t), t≥0 is continuous function of t,
∙ W(t2)-W(t1) possesses a Gaussian distribution with variance t2−t1 and mean 0.
(ⅱ) The white noise is the time derivative of Wiener process and is considered as a mathematical idealization of events such as enormous and sudden fluctuations.
This part explains the SSM [52,53,54,55,56,57,58], suppose nonlinear partial differential equation (NLPDE)
R(y,yt,yx,ytt,yxx,...)=0, | (3.1) |
Let the transformation of the form
y(x,t)=U(ζ),ζ=x−vt, | (3.2) |
switching (3.2) into (3.1), we get
T(U,U′,U″,U‴,...)=0, | (3.3) |
where U=U(ζ), U′=dUdζ, U″=d2Udζ2.
Let (3.3) gives solution
U(ζ)=m∑i=0αiχi(ζ), | (3.4) |
where αi, (i = 0, 1, 2, ..., m) are coefficients and χ(ζ) satisfies the ODE in the form
(χ′(ζ))2=ς+dχ2(ζ)+χ4(ζ), | (3.5) |
The solutions of (3.5) are
Case1: If ς = 0 and d>0 then
χ±1(ζ)=±√−pqdsechpq(√dζ),χ±2(ζ)=±√pqdcschpq(√dζ), |
where
sechpq(ζ)=2peζζ+qe−ζζ, cschpq(ζζ)=2peζζ−qe−ζζ.
Case 2: If ς = 0 and d<0 then
χ±3(ζ)=±√−pqdsecpq(√−dζ),χ±4(ζ)=±√−pqdcscpq(√−dζ), |
where
secpq(ζ)=2peιιζζ+qe−ιιζζ, cscpq(ζ)=2ιιpeιιζζ−qe−ιιζζ.
Case 3: If d<0 and ς=d24 then
χ±5(ζ)=±√−d2tanhpq(√−d2ζ),
χ±6(ζ)=±√−d2cothpq(√−d2ζ),
χ±7(ζ)=±√−d2(tanhpq(√−2dζ)±ι√pqsechpq(√−2dζ)),
χ±8(ζ)=±√−d2(cothpq(√−2dζ)±√pqcschpq(√−2dζ)),
χ±9(ζ)=±√−d2(tanhpq(√−d2ζ)+cothpq(√−d2ζ)),
where
tanhpq(ζζ)=peζζ−qe−ζζpeζζ+qe−ζζ, cothpq(ζζ)=peζζ+qe−ζζpeζζ−qe−ζζ.
Case 4: If d>0 and ς=d24 then
χ±10(ζ)=±√d2tanpq(√d2ζ),
χ±11(ζ)=±√d2cotpq(√d2ζ),
χ±12(ζ)=±√d2(tanpq(√2dζ)±√pqsecpq(√2dζ)),
χ±13(ζ)=±√d2(cotpq(√2dζ)±√pqcscpq(√2dζ)),
χ±14(ζ)=±√d2(tanpq(√d2ζ)+cotpq(√d2ζ)),
where
tanpq(ζζ)=−ιpeιιζζ−qeιι−ζζpeιιζζ+qe−ιιζζ, cotpq(ζζ)=ιpeιιζζ+qeιι−ζζpeιιζζ−qe−ιιζζ.
The m in (3.4) is determined by using balancing rule. After inserting (3.4) and (3.5) into (3.3), the equations in powers of χ(ζ) are obtained. By equating all coefficient of power of χ(ζ) equal to zero, the values of unknown parameters are found and then using these parameters with help of (3.4), the solutions of (3.3) are acquired.
To solve the (1.2), assume the transformation
y(x,t)=U(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t), | (4.1) |
and
ϕ(x,t)=−kx+ϖt, ζ=x−vt, | (4.2) |
where k, ϖ and v are constants while U(ζ) and ϕ(x,t) are functions of real numbers. ζ, ϖ, k, v, ϕ(x,t) shows wave variable, wave number, frequency, velocity and phase component.
By inserting (4.1) and (4.2) into (1.2), we get real part
[g1+3h1k−h2(2kv+ϖ−ϱ2)−g2v]U″−k(λ+θ)U3−[g1k2+h1k3+(1−g2k−h2k2)(ϖ−ϱ2)]U=0, | (4.3) |
and imaginary part
(h1−h2)vU‴−(3λ+2u+θ)U2U′−[2g1k+3h1k2−(g2−2kh2)(ϖ−ϱ2)+(1−g2k−h2k2)v]U′=0. | (4.4) |
After integrating (4.4), we have
(h1−h2)vU″−13(3λ+2u+θ)U3−[2g1k+3h1k2−(g2−2kh2)(ϖ−ϱ2)+(1−g2k−h2k2)v]U=0. | (4.5) |
Equations (4.3) and (4.4) have same form under some restrictions [25]
g1+3h1k−h2(2kv+ϖ−ϱ2)−g2v(h1−h2)v=3k(λ+θ)3λ+2u+θ=−g1k2+h1k3+(1−g2k−h2k2)(ϖ−ϱ2)2g1k+3h1k2−(g2−2kh2)(ϖ−ϱ2)+(1−g2k−h2k2)v. | (4.6) |
Under the constraint
θ−u=0, |
the value of ϖ from (4.6) is
ϖ=(g2−2h22k3−2g2h2k2)ϱ2+2(g1h2+2g2h1)k3+4h1h2k4+2(g1g2−h1)k2−g1k(g2−2h22k3−2g2h2k2) |
and velocity
v=(g1+2h1k)(1−4h2k2)(g2−2h22k3−2g2h2k2). |
By applying the balancing rule on (4.3), the m=1 is obtained and (3.4) becomes
U(ζ)=α0+α1χ(ζ), | (5.1) |
Now by putting (5.1) and (3.5) into (4.3), we get equation with different powers of χ(ζ). By equating their constants equal to zero, the following equations are extracted
−g1k2α0−g2kϱ2α0+g2kϖα0−h1k3α0−h2k2ϱ2α0+h2k2ϖα0−θkα30−kλα30+ϱ2α0−ϖα0=0,3dh1kα1+dh2ϱ2α1−2dh2kvα1−dh2ϖα1−g1k2α1−g2kϱ2α1+g2kϖα1−dg2vα1+dg1α1−h1k3α1−h2k2ϱ2α1+h2k2ϖα1−3θkα20α1−3kλα20α1+ϱ2α1−ϖα1=0,−3θkα0α21−3kλα0α21=0,−2g2vα1+2g1α1+6h1kα1+2h2ϱ2α1−4h2kvα1−2h2ϖα1−θkα31−kλα31=0. |
After solving above equations, the following values are obtained
α0=0,α1=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ, |
g1=−3dh1k−dh2(ϱ2+2kv+ϖ)+g2k(ϱ2−α)+dg2v+h1k3+(h2k2−1)ϱ2−(g2k2+1)ϖd−k2. |
By putting these values along (3.5) in (5.1) and (4.1), the solutions are described as
Case1: If ς = 0 and d>0 then
U1=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√−pqdsechpq(√dζ)),y1=U1(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t).U2=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√pqdcschpq(√dζ)),y2=U2(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t). |
Case2: If ς = 0 and d<0 then
U3=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√−pqdsecpq(√−dζ)),y3=U3(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t).U4=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√−pqdcscpq(√−dζ)),y4=U4(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t). |
Case 3: If d<0 and ς=d24 then
U5=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√−d2tanhpq(√−d2ζ)),y5=U5(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t).U6=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√−d2cothpq(√−d2ζ)),y6=U6(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t). |
U7=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√−d2(cothpq(√−2dζ)±√pqcschpq(√−2dζ)),y7=U7(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t).U8=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ)(±√−d8(cothpq(√−dζ8)+tanhpq(√−dζ8)),y8=U8(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t). |
Case 4: If d>0 and ς=d24 then
U9=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√d2tanpq(√d2ζ)),y9=U9(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t).W10=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√d2cotpq(√d2ζ)),y10=U10(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t). |
U11=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√d2(tanpq(√2dζ)±√pqsecpq(√2dζ)),y11=U11(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t).U12=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√d2(cotpq(√2dζ)±√−pqcscpq(√2√dζ)),y12=U12(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t).U13=√2(g2kϱ2−g2kϖ+g2k2v−2h1k3+2h2k3v−ϱ2+ϖ)√dθk+dkλ−θk3−k3λ(±√d2(cotpq(√dζ8)+tanpq(√dζ8)),y13=U13(ζ)eι(ϕ(x,t)+ϱW(t)−ϱ2t). |
In this paper, the novel solutions in form of stochastic optical solitons for BAE using SSM are effectively constructed. This method is not applied to this model earlier and considered as most recent technique to obtain the solutions of NLEEs. In order to scrutinize the influence of noise on solutions, the graphical illustration of these solutions via 3D and 2D plots are represented with appropriate values of parameters. These obtained solutions have many applications in communication because without changing its shapes, solitons transfer the data over long distances. Attained results are distinct and novel from that reported results. Only particular figures are drawn to avoid ambiguity.
∙ For the parameters of d=±2, θ=−3, h1=1, h2=1.5, k=1, λ=0.5, v=1, p=0.5, g2=1.09, q=0.98, ϖ=1 and different values of ϱ, the physical behavior of y1, y4, y5, y6, and y8 are shown in Figures 1–5 which represent the bright, dark, singular, periodic singular and combined dark-singular stochastic soliton solutions respectively.
∙ Furthermore, if the multiplicative noise is increased, the surface becomes fluctuated. Hence, it is observed that the solutions of BAE sustain by multiplicative noise around zero.
This paper successfully applies the SSM to study the BAE with multiplicative white noise. This analysis yields a variety of stochastic solutions including dark, bright, combined dark-bright, periodic, combined dark-singular and singular solitons. Compared to previous studies [51], our results provide new additional solutions like combined dark-singular solitons. Moreover, to illustrate the features of these solutions, the 3D and 2D plots are also illustrated. In order to check the effect of noise term, Figures 1–5 indicate that an increase in the noise term coefficient causes an increase in fluctuations. The graph without noise demonstrates no fluctuations as shown in Figure 5.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare that they have no competing interest.
[1] |
Z. Li, C. Huang, Bifurcation, phase portrait, chaotic pattern and optical soliton solutions of the conformable Fokas-Lenells model in optical fibers, Chaos, Soliton. Fract., 169 (2023), 113237. https://doi.org/10.1016/j.chaos.2023.113237 doi: 10.1016/j.chaos.2023.113237
![]() |
[2] |
Z. Li, C. Huang, B. Wang, Phase portrait, bifurcation, chaotic pattern and optical soliton solutions of the Fokas-Lenells equation with cubic-quartic dispersion in optical fibers, Phys. Lett. A, 465 (2023), 128714. https://doi.org/10.1016/j.physleta.2023.128714 doi: 10.1016/j.physleta.2023.128714
![]() |
[3] |
Z. Li, T. Han, C. Huang, Bifurcation and new exact traveling wave solutions for time-space fractional Phi-4 equation, AIP Adv., 10 (2020), 115113. https://doi.org/10.1063/5.0029159 doi: 10.1063/5.0029159
![]() |
[4] |
L. Tang, Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation, Chaos, Soliton. Fract., 161 (2022), 112383. https://doi.org/10.1016/j.chaos.2022.112383 doi: 10.1016/j.chaos.2022.112383
![]() |
[5] |
L. Tang, Bifurcations and dispersive optical solitons for the nonlinear Schrödinger-Hirota equation in DWDM networks, Optik, 262 (2022), 169276. https://doi.org/10.1016/j.ijleo.2022.169276 doi: 10.1016/j.ijleo.2022.169276
![]() |
[6] |
L. Tang, Bifurcations and dispersive optical solitons for the cubic-quartic non-linear Lakshmanan-Porsezian-Daniel equation in polarization-preserving fibers, Optik, 270 (2022), 170000. https://doi.org/10.1016/j.ijleo.2022.170000 doi: 10.1016/j.ijleo.2022.170000
![]() |
[7] |
L. Tang, Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings, J. Opt., 2022 (2022), 1–11. https://doi.org/10.1007/s12596-022-00963-4 doi: 10.1007/s12596-022-00963-4
![]() |
[8] |
S. F. Tian, M. J. Xu, T. T. Zang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
![]() |
[9] |
Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the-component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
![]() |
[10] |
Z. Y. Wang, S. F. Tian, J. Cheng, The dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021), 093510. https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806
![]() |
[11] |
H. U. Rehman, A. U. Awan, K. A. Abro, E. M. T. Eldin, S. Jafar, A. M. Galal, A non-linear study of optical solitons for Kaup-Newell equation without four-wave mixing, J. King Saud Univ. Sci., 34 (2022), 102056. https://doi.org/10.1016/j.jksus.2022.102056 doi: 10.1016/j.jksus.2022.102056
![]() |
[12] |
J. J. Yang, S. F. Tian, Z. Q. Li, Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions, Physica D, 432 (2022), 133162. https://doi.org/10.1016/j.physd.2022.133162 doi: 10.1016/j.physd.2022.133162
![]() |
[13] |
A. Biswas, D. Milovic, R. Kohl, Optical soliton perturbation in a log-law medium with full nonlinearity by He's semi-inverse variational principle, Inverse Probl. Sci. En., 20 (2012), 227–232. https://doi.org/10.1080/17415977.2011.603088 doi: 10.1080/17415977.2011.603088
![]() |
[14] |
A. Biswas, M. Ekici, A. Sonmezoglu, M. R. Belic, Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion, Optik, 181 (2019), 1028–1038. https://doi.org/10.1016/j.ijleo.2018.12.164 doi: 10.1016/j.ijleo.2018.12.164
![]() |
[15] |
Y. Yildirim, A. Biswas, A. H. Kara, P. Guggilla, S. Khan, A. K. Alzahrani, et al., Optical soliton perturbation and conservation law with Kudryashov's refractive index having quadrupled power-law and dual form of generalized nonlocal nonlinearity, Optik, 240 (2021), 166966. https://doi.org/10.1016/j.ijleo.2021.166966 doi: 10.1016/j.ijleo.2021.166966
![]() |
[16] |
E. M. Zayed, M. E. Alngar, A. Biswas, A. H. Kara, M. Ekici, A. K. Alzahrani, et al., Cubic-quartic optical solitons and conservation laws with Kudryashov's sextic power-law of refractive index, Optik, 227 (2021), 166059. https://doi.org/10.1016/j.ijleo.2020.166059 doi: 10.1016/j.ijleo.2020.166059
![]() |
[17] |
M. Mirzazadeh, M. Eslami, A. Biswas, Dispersive optical solitons by Kudryashov's method, Optik, 125 (2014), 6874–6880. https://doi.org/10.1016/j.ijleo.2014.02.044 doi: 10.1016/j.ijleo.2014.02.044
![]() |
[18] |
I. Samir, N. Badra, H. M. Ahmed, A. H. Arnous, Optical soliton perturbation with Kudryashov's generalized law of refractive index and generalized non-local laws by improved modified extended tanh method, Alex. Eng. J., 61 (2022), 3365–3374. https://doi.org/10.1016/j.aej.2021.08.050 doi: 10.1016/j.aej.2021.08.050
![]() |
[19] |
A. Biswas, S. Arshed, Application of semi-inverse variational principle to cubic-quartic optical solitons with kerr and power law nonlinearity, Optik, 172 (2018), 847–850. https://doi.org/10.1016/j.ijleo.2018.07.105 doi: 10.1016/j.ijleo.2018.07.105
![]() |
[20] |
S. W. Yao, L. Akinyemi, M. Mirzazadeh, M. Inc, K. Hosseini, M. Senol, Dynamics of optical solitons in higher-order Sasa-Satsuma equation, Results Phys., 30 (2021), 104825. https://doi.org/10.1016/j.rinp.2021.104825 doi: 10.1016/j.rinp.2021.104825
![]() |
[21] |
M. Mirzazadeh, M. Eslami, B. F. Vajargah, A. Biswas, Optical solitons and optical rogons of generalized resonant dispersive nonlinear Schrödinger's equation with power law nonlinearity, Optik, 125 (2014), 4246–4256. https://doi.org/10.1016/j.ijleo.2014.04.014 doi: 10.1016/j.ijleo.2014.04.014
![]() |
[22] |
A. Biswas, Y. Yildirim, E. Yasar, M. F. Mahmood, A. S. Alshomrani, Q. Zhou, et al., Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes, Optik, 163 (2018), 126–136. https://doi.org/10.1016/j.ijleo.2018.02.109 doi: 10.1016/j.ijleo.2018.02.109
![]() |
[23] |
A. Biswas, M. Mirzazadeh, M. Eslami, D. Milovic, M. Belic, Solitons in optical metamaterials by functional variable method and first integral approach, Frequenz, 68 (2014), 525–530. https://doi.org/10.1515/freq-2014-0050 doi: 10.1515/freq-2014-0050
![]() |
[24] |
B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
![]() |
[25] |
A. Biswas, Quasi-stationary non-Kerr law optical solitons, Opt. Fiber Technol., 9 (2003), 224–259. https://doi.org/10.1016/S1068-5200(03)00044-0 doi: 10.1016/S1068-5200(03)00044-0
![]() |
[26] |
Y. Yan, Z. Liu, Q. Zhou, A. Biswas, Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic-quintic Ginzburg-Landau equation influenced by higher-order effects and nonlinear gain, Nonlinear Dyn., 99 (2020), 1313–1319. https://doi.org/10.1007/s11071-019-05356-0 doi: 10.1007/s11071-019-05356-0
![]() |
[27] |
A. Biswas, Y. Yildirim, E. Yasar, Q. Zhou, S. P. Moshokoa, M. Belic, Optical soliton solutions to Fokas-Lenells equation using some different methods, Optik, 173 (2018), 21–31. https://doi.org/10.1016/j.ijleo.2018.07.098 doi: 10.1016/j.ijleo.2018.07.098
![]() |
[28] |
A. Biswas, Y. Yildirim, E. Yasar, Q. Zhou, M. F. Mahmood, S. P. Moshokoa, et al., Optical solitons with differential group delay for coupled Fokas-Lenells equation using two integration schemes, Optik, 165 (2018), 74–86. https://doi.org/10.1016/j.ijleo.2018.03.100 doi: 10.1016/j.ijleo.2018.03.100
![]() |
[29] |
S. Arshed, A. Biswas, M. Abdelaty, Q. Zhou, S. P. Moshokoa, M. Belic, Optical soliton perturbation for Gerdjikov-Ivanov equation via two analytical techniques, Chinese J. Phys., 56 (2018), 2879–2886. https://doi.org/10.1016/j.cjph.2018.09.023 doi: 10.1016/j.cjph.2018.09.023
![]() |
[30] |
S. Arshed, A. Biswas, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452–459. https://doi.org/10.1016/j.ijleo.2018.08.037 doi: 10.1016/j.ijleo.2018.08.037
![]() |
[31] |
F. M. Al-Askar, W. W. Mohammed, The analytical solutions of the stochastic fractional RKL equation via Jacobi elliptic function method, Adv. Math. Phys., 2022 (2022), 1534067. https://doi.org/10.1155/2022/1534067 doi: 10.1155/2022/1534067
![]() |
[32] |
S. Albosaily, W. W. Mohammed, A. Rezaiguia, M. El-Morshedy, E. M. Elsayed, The influence of the noise on the exact solutions of a Kuramoto-Sivashinsky equation, Open Math., 20 (2022), 108–116. https://doi.org/10.1515/math-2022-0012 doi: 10.1515/math-2022-0012
![]() |
[33] |
P. Imkeller, A. H. Monahan, Conceptual stochastic climate models, Stoch. Dynam., 02 (2002), 311–326. https://doi.org/10.1142/S0219493702000443 doi: 10.1142/S0219493702000443
![]() |
[34] | E. Weinan, X. Li, E. Vanden-Eijnden, Some recent progress in multiscale modeling, In: Multiscale modelling and simulation, Berlin: Springer, 2004, 3–21. https://doi.org/10.1007/978-3-642-18756-8_1 |
[35] |
W. W. Mohammed, D. Blömker, Fast-diffusion limit for reaction-diffusion equations with multiplicative noise, J. Math. Anal. Appl., 496 (2021), 124808. https://doi.org/10.1016/j.jmaa.2020.124808 doi: 10.1016/j.jmaa.2020.124808
![]() |
[36] |
W. W. Mohammed, Modulation equation for the stochastic Swift-Hohen-berg equation with cubic and quintic non-linearities on the real line, Mathematics, 7 (2019), 1217. https://doi.org/10.3390/math7121217 doi: 10.3390/math7121217
![]() |
[37] | A. M. Wazwaz, Partial differential equations and solitary waves theory, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-00251-9 |
[38] |
S. Khan, A. Biswas, Q. Zhou, S. Adesanya, M. Alfiras, M. Belic, Stochastic perturbation of optical solitons having anti-cubic nonlinearity with bandpass filters and multi-photon absorption, Optik, 178 (2019), 1120–1124. https://doi.org/10.1016/j.ijleo.2018.10.124 doi: 10.1016/j.ijleo.2018.10.124
![]() |
[39] |
A. Secer, Stochastic optical solitons with multiplicative white noise via Itô calculus, Optik, 268 (2022), 169831. https://doi.org/10.1016/j.ijleo.2022.169831 doi: 10.1016/j.ijleo.2022.169831
![]() |
[40] |
H. M. Yin, B. Tian, J. Chai, X. Y. Wu, Stochastic soliton solutions for the (2+1)-dimensional stochastic Broer-Kaup equations in a fluid or plasma, Appl. Math. Lett., 82 (2018), 126–131. https://doi.org/10.1016/j.aml.2017.12.005 doi: 10.1016/j.aml.2017.12.005
![]() |
[41] |
S. Arshed, N. Raza, A. Javid, H. M. Baskonus, Chiral solitons of (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation, Int. J. Geom. Methods M., 19 (2022), 2250149. https://doi.org/10.1142/S0219887822501493 doi: 10.1142/S0219887822501493
![]() |
[42] | G. Chen, Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, arXiv: 1305.4426. https://doi.org/10.48550/arXiv.1305.4426 |
[43] |
A. M. Sultan, D. Lu, M. Arshad, H. U. Rehman, M. S. Saleem, Soliton solutions of higher order dispersive cubic-quintic nonlinear Schrödinger equation and its applications, Chinese J. Phys., 67 (2020), 405–413. https://doi.org/10.1016/j.cjph.2019.10.003 doi: 10.1016/j.cjph.2019.10.003
![]() |
[44] |
H. U. Rehman, M. A. Imran, M. Bibi, M. Riaz, A. Akgül, New soliton solutions of the 2D-chiral nonlinear Schrodinger equation using two integration schemes, Math. Method. Appl. Sci., 44 (2021), 5663–5682. https://doi.org/10.1002/mma.7140 doi: 10.1002/mma.7140
![]() |
[45] |
S. W. Yao, N. Ullah, H. U. Rehman, M. S. Hashemi, M. Mirzazadeh, M. Inc, Dynamics on novel wave structures of non-linear Schrödinger equation via extended hyperbolic function method, Results Phys., 48 (2023), 106448. https://doi.org/10.1016/j.rinp.2023.106448 doi: 10.1016/j.rinp.2023.106448
![]() |
[46] |
A. Biswas, S. Arshed, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452–459. https://doi.org/10.1016/j.ijleo.2018.08.037 doi: 10.1016/j.ijleo.2018.08.037
![]() |
[47] |
Y. Yildirim, Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique, Optik, 182 (2019), 810–820. https://doi.org/10.1016/j.ijleo.2019.01.085 doi: 10.1016/j.ijleo.2019.01.085
![]() |
[48] |
E. M. Zayed, R. M. A. Shohib, Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method, Optik, 185 (2019), 626–635. https://doi.org/10.1016/j.ijleo.2019.03.112 doi: 10.1016/j.ijleo.2019.03.112
![]() |
[49] |
H. U. Rehman, N. Ullah, M. A. Imran, Optical solitons of Biswas-Arshed equation in birefringent fibers using extended direct algebraic method, Optik, 226 (2021), 165378. https://doi.org/10.1016/j.ijleo.2020.165378 doi: 10.1016/j.ijleo.2020.165378
![]() |
[50] |
H. U. Rehman, M. Younis, S. Jafar, M. Tahir, M. S. Saleem, Optical solitons of biswas-arshed model in birefrigent fiber without four wave mixing, Optik, 213 (2020), 164669. https://doi.org/10.1016/j.ijleo.2020.164669 doi: 10.1016/j.ijleo.2020.164669
![]() |
[51] |
E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, K. A. Gepreel, T. A. Nofal, Y. Yildirim, Optical solitons for Biswas-Arshed equation with multiplicative noise via Itô calculus using three integration algorithms, Optik, 258 (2022), 168847. https://doi.org/10.1016/j.ijleo.2022.168847 doi: 10.1016/j.ijleo.2022.168847
![]() |
[52] |
H. Rezazadeh, M. Inc, D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Front. Phys., 8 (2020), 332. https://doi.org/10.3389/fphy.2020.00332 doi: 10.3389/fphy.2020.00332
![]() |
[53] |
H. Rezazadeh, R. Abazari, M. M. Khater, M. Inc, D. Baleanu, New optical solitons of conformable resonant non-linear Schrödinger's equation, Open Phys., 18 (2020), 761–769. https://doi.org/10.1515/phys-2020-0137 doi: 10.1515/phys-2020-0137
![]() |
[54] |
H. U. Rahman, M. I. Asjad, N. Munawar, F. Parvaneh, T. Muhammad, A. A. Hamoud, et al., Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique, AIMS Mathematics, 7 (2022), 11134–11149. https://doi.org/10.3934/math.2022623 doi: 10.3934/math.2022623
![]() |
[55] |
H. U. Rehman, A. U. Awan, A. Habib, F. Gamaoun, E. M. T. Eldin, A. M. Galal, Solitary wave solutions for a strain wave equation in a microstructured solid, Results Phys., 39 (2022), 105755. https://doi.org/10.1016/j.rinp.2022.105755 doi: 10.1016/j.rinp.2022.105755
![]() |
[56] |
M. Cinar, A. Secer, M. Ozisik, M. Bayram, Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method, Opt. Quant. Electron., 54 (2022), 402. https://doi.org/10.21203/rs.3.rs-1428466/v1 doi: 10.21203/rs.3.rs-1428466/v1
![]() |
[57] |
H. U. Rehman, M. I. Asjad, M. Inc, I. Iqbal, Exact solutions for new coupled Konno-Oono equation via Sardar subequation method, Opt. Quant. Electron., 54 (2022), 798. https://doi.org/10.1007/s11082-022-04208-3 doi: 10.1007/s11082-022-04208-3
![]() |
[58] |
H. U. Rehman, I. Iqbal, S. S. Aiadi, N. Mlaiki, M. S. Saleem, Soliton solutions of Klein-Fock-Gordon equation using Sardar sub-equation method, Mathematics, 10 (2022), 3377. https://doi.org/10.3390/math10183377 doi: 10.3390/math10183377
![]() |
[59] |
F. M. Al-Askar, W. W. Mohammed, M. Alshammari, M. El-Morshedy, Effects of the Wiener process on the solutions of the stochastic fractional Zakharov system, Mathematics, 10 (2022), 1194. https://doi.org/10.3390/math10071194 doi: 10.3390/math10071194
![]() |
[60] |
F. M. Al-Askar, W. W. Mohammed, A. M. Albalahi, M. El-Morshedy, The impact of the Wiener process on the analytical solutions of the stochastic (2+1)-dimensional breaking soliton equation by using tanh-coth method, Mathematics, 10 (2022), 817. https://doi.org/10.3390/math10050817 doi: 10.3390/math10050817
![]() |
1. | Abdelkader Moumen, Khaled A. Aldwoah, Muntasir Suhail, Alwaleed Kamel, Hicham Saber, Manel Hleili, Sayed Saifullah, Investigation of more solitary waves solutions of the stochastics Benjamin-Bona-Mahony equation under beta operator, 2024, 9, 2473-6988, 27403, 10.3934/math.20241331 | |
2. | Nauman Raza, Saima Arshed, Ziyad A. Alhussain, New bright and dark stochastic optical solitons related to an eighth-order NLSE in the presence of higher order polynomial nonlinearity, 2024, 56, 0306-8919, 10.1007/s11082-023-05982-4 | |
3. | Hakima Kh. Ahmed, Karmina K. Ali, Optical solutions to the stochastic Fokas–Lenells equation with multiplicative white noise in Itô sense using Jacobi elliptic expansion function method, 2024, 56, 1572-817X, 10.1007/s11082-024-06519-z | |
4. | Eman H. M. Abdullah, Hamdy M. Ahmed, Afaf A. S. Zaghrout, Amal Ibrahim Ahmed Bahnasy, Wafaa B. Rabie, Effect of higher order on constructing the soliton waves to generalized nonlinear Schrödinger equation using improved modified extended tanh function method, 2024, 0972-8821, 10.1007/s12596-024-02206-0 | |
5. | Xin-Zhou Xu, Ming-Yue Wang, Exact solutions of perturbed stochastic NLSE with generalized anti-cubic law nonlinearity and multiplicative white noise, 2024, 56, 22113797, 107205, 10.1016/j.rinp.2023.107205 | |
6. | Islam Samir, Hamdy M. Ahmed, Retrieval of solitons and other wave solutions for stochastic nonlinear Schrödinger equation with non-local nonlinearity using the improved modified extended tanh-function method, 2024, 0972-8821, 10.1007/s12596-024-01776-3 | |
7. | Muslum Ozisik, Aydin Secer, Mustafa Bayram, Retrieval of optical soliton solutions of stochastic perturbed Schrödinger-Hirota equation with Kerr law in the presence of spatio-temporal dispersion, 2024, 56, 0306-8919, 10.1007/s11082-023-05652-5 | |
8. | Mohamed S. Ghayad, Niveen M. Badra, Hamdy M. Ahmed, Wafaa B. Rabie, Analytic soliton solutions for RKL equation with quadrupled power-law of self-phase modulation using modified extended direct algebraic method, 2024, 0972-8821, 10.1007/s12596-023-01624-w | |
9. | Elsayed M.E. Zayed, Mahmoud M. El-Horbaty, Mona El-Shater, Ahmed H. Arnous, Aydin Secer, Muslum Ozisik, Mustafa Bayram, Ahmed M. Elsherbeny, Investigating the potential of optical metamaterials with highly dispersive solitons in twin couplers with stochastic perturbations and white noise effects, 2024, 20904479, 103090, 10.1016/j.asej.2024.103090 | |
10. | Ayten Özkan, A view of solitary wave solutions to the fractional DNA Peyrard-Bishop equation via a new approach, 2024, 99, 0031-8949, 055269, 10.1088/1402-4896/ad3e32 | |
11. | Ayten Özkan, Erdoĝan Mehmet Özkan, A study of novel optical solutions of the space-time fractional cubic nonlinear Schrödinger equation, 2024, 56, 0306-8919, 10.1007/s11082-023-05779-5 | |
12. | Hina Zulfiqar, Aqsa Aashiq, Kalim U. Tariq, Hijaz Ahmad, Bandar Almohsen, Muhammad Aslam, Hamood Ur Rehman, On the solitonic wave structures and stability analysis of the stochastic nonlinear Schrödinger equation with the impact of multiplicative noise, 2023, 289, 00304026, 171250, 10.1016/j.ijleo.2023.171250 | |
13. | Salman A. AlQahtani, Reham M. A. Shohib, Mohamed E. M. Alngar, Abdulaziz M. Alawwad, High-stochastic solitons for the eighth-order NLSE through Itô calculus and STD with higher polynomial nonlinearity and multiplicative white noise, 2023, 55, 0306-8919, 10.1007/s11082-023-05478-1 | |
14. | Salman A. AlQahtani, Reham M. A. Shohib, Mohamed E. M. Alngar, Abdulaziz M. Alawwad, The $$\Phi ^{6}$$-model expansion approach for solving the (2+1)-dimensional NLSE with Kerr law nonlinearity and STD with multiplicative white noise in birefringent fibers, 2024, 56, 0306-8919, 10.1007/s11082-023-06055-2 | |
15. | Manish Kumar, Rajesh Kumar Gupta, Coupled Higgs Equation: Novel Solution via GSSE Method, Bifurcation and Chaotic Patterns and Series Solution via Symmetry, 2024, 23, 1575-5460, 10.1007/s12346-023-00889-7 | |
16. | Asfand Fahad, Hamood Ur Rehman, Ifrah Iqbal, Youhua Qian, Muhammad Shoaib Saleem, Optimizing space curve motion in Kuralay model through diverse soliton approaches, 2024, 56, 1572-817X, 10.1007/s11082-024-06568-4 | |
17. | Manar S. Ahmed, Afaf A. S. Zaghrout, Hamdy M. Ahmed, Islam Samir, Optical solitons for the stochastic perturbed Schrödinger–Hirota equation using two different methods, 2024, 53, 0972-8821, 2631, 10.1007/s12596-023-01403-7 | |
18. | Islam Samir, Hamdy M. Ahmed, Extracting stochastic solutions for complex Ginzburg–Landau model with chromatic dispersion and Kerr law nonlinearity using improved modified extended tanh technique, 2024, 56, 1572-817X, 10.1007/s11082-024-06677-0 | |
19. | Eman H. M. Abdullah, Hamdy M. Ahmed, Afaf A. S. Zaghrout, Amal Ibrahim Ahmed Bahnasy, Wafaa B. Rabie, Unveiling optical solitons in twin-core couplers with Kerr law of nonlinear refractive index using improved modified extended tanh function method, 2024, 0972-8821, 10.1007/s12596-024-01971-2 | |
20. | Elsayed M E Zayed, Khaled A E Alurrfi, Abeer M M Hasek, Ahmed H Arnous, Aydin Secer, Muslum Ozisik, Mustafa Bayram, Sachin Kumar, Perturbations of optical solitons in magneto-optic waveguides incorporating multiplicative white noise and sixth-order dispersion: a study of the Sasa–Satsuma equation, 2025, 99, 0973-7111, 10.1007/s12043-024-02848-6 | |
21. | Syed T. R. Rizvi, Sana Ghafoor, Adeel Farooq, M. T. Chaudhary, Aly R. Seadawy, Optical soliton for stochastic Biswas–Milovic equation with parabolic law nonlinearity, 2025, 0217-9849, 10.1142/S0217984925501337 |