In wave theory, the higher dimensional non-linear models are very important to define the physical phenomena of waves. Herein study we have built the various solitons solutions of (4+1)-dimensional fractional-order Fokas equation by using two analytical techniques that is, the Sardar-subequation method and new extended hyperbolic function method. Different types of novel solitons are attained such as, singular soliton, bright soliton, dark soliton, and periodic soliton. To understand the physical behavior, we have plotted 2D and 3D graphs of some selected solutions. From results we concluded that the proposed methods are straightforward, simple, and efficient. Moreover, this paper offers a hint, how we can convert the fractional-order PDE into an ODE to acquire the exact solutions. Also, the proposed methods and results can be help to examine the advance fractional-order models which seem in optics, hydrodynamics, plasma and wave theory etc.
Citation: Naeem Ullah, Muhammad Imran Asjad, Jan Awrejcewicz, Taseer Muhammad, Dumitru Baleanu. On soliton solutions of fractional-order nonlinear model appears in physical sciences[J]. AIMS Mathematics, 2022, 7(5): 7421-7440. doi: 10.3934/math.2022415
In wave theory, the higher dimensional non-linear models are very important to define the physical phenomena of waves. Herein study we have built the various solitons solutions of (4+1)-dimensional fractional-order Fokas equation by using two analytical techniques that is, the Sardar-subequation method and new extended hyperbolic function method. Different types of novel solitons are attained such as, singular soliton, bright soliton, dark soliton, and periodic soliton. To understand the physical behavior, we have plotted 2D and 3D graphs of some selected solutions. From results we concluded that the proposed methods are straightforward, simple, and efficient. Moreover, this paper offers a hint, how we can convert the fractional-order PDE into an ODE to acquire the exact solutions. Also, the proposed methods and results can be help to examine the advance fractional-order models which seem in optics, hydrodynamics, plasma and wave theory etc.
[1] | B. A. Malomed, Optical solitons and vortices in fractional media: A mini-review of recent results, Photonics, 8 (2021), 353. http://dx.doi.org/10.3390/photonics8090353 doi: 10.3390/photonics8090353 |
[2] | L. Zeng, J. Shi, X. Lu, Y. Cai, Q. Zhu, H. Chen, et al., Stable and oscillating solitons of PT-symmetric couplers with gain and loss in fractional dimension, Nonlinear Dyn., 103 (2021), 1831–1840. https://doi.org/10.1007/s11071-020-06180-7 doi: 10.1007/s11071-020-06180-7 |
[3] | L. Zeng, M. R. Belic, D. Mihalache, Q. Wang, J. Chen, J. Shi, et al., Solitons in spin-orbit-coupled systems with fractional spatial derivatives, Chaos Solitons Fract., 152 (2021), 111406. https://doi.org/10.1016/j.chaos.2021.111406 doi: 10.1016/j.chaos.2021.111406 |
[4] | H. Bulut, T. A. Sulaiman, H. M. Baskonus, H. Rezazadeh, M. Eslami, M. Mirzazadeh, Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, Optik, 172 (2018), 20–27. https://doi.org/10.1016/j.ijleo.2018.06.108 doi: 10.1016/j.ijleo.2018.06.108 |
[5] | R. Khalil, M. Al Forani, A. Yousef, M. Sababheh, A new denition of fractional derivatives, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[6] | Z. Bin, $(G'/G)$-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun. Theor. Phys., 58 (2012), 623. https://doi.org/10.1088/0253-6102/58/5/02 doi: 10.1088/0253-6102/58/5/02 |
[7] | S. Nestor, G. Betchewe, M. Inc, S. Y. Doka, Exact traveling wave solutions to the higher-order nonlinear Schrödinger equation having Kerr nonlinearity form using two strategic integrations, Eur. Phys. J. Plus, 135 (2020), 380. https://doi.org/10.1140/epjp/s13360-020-00384-x doi: 10.1140/epjp/s13360-020-00384-x |
[8] | H. Triki, C. Bensalem, A. Biswas, Q. Zhou, M. Ekici, S. P. Moshokoa, et al., W-shaped and bright optical solitons in negative indexed materials, Chaos Solitons Fract., 123 (2019), 101–107. https://doi.org/10.1016/j.chaos.2019.04.003 doi: 10.1016/j.chaos.2019.04.003 |
[9] | M. Yousuf, K. M. Furati, A. Q. M. Khaliq, High-order timestepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations, Comput. Math. Appl., 80 (2020), 204–226. https://doi.org/10.1016/j.camwa.2020.03.010 doi: 10.1016/j.camwa.2020.03.010 |
[10] | K. M. Furati, M. Yousuf, A. Q. M. Khaliq, Fourth-order methods for space fractional reaction-diffusion equations with nonsmooth data, Int. J. Comput. math., 95 (2018), 1240–1256. https://doi.org/10.1080/00207160.2017.1404037 doi: 10.1080/00207160.2017.1404037 |
[11] | S. S. Alzahrani, A. Q. M. Khaliq, T. A. Biala, K. M. Furati, Fourth-order time stepping methods with matrix transfer techniques for space-fractional reaction-diffusion equations, Appl. Numer. Math., 146 (2019), 123–144. https://doi.org/10.1016/j.apnum.2019.07.006 doi: 10.1016/j.apnum.2019.07.006 |
[12] | H. P. Bhatt, A. Q. M. Khaliq, K. M. Furati, Efficient high-order compact exponential time differencing method for spacefractional reaction-diffusion systems with nonhomogeneous boundary conditions, Numer. Algor., 83 (2019), 1373–1397. https://doi.org/10.1007/s11075-019-00729-3 doi: 10.1007/s11075-019-00729-3 |
[13] | M. A. Zahid, S. Sarwar, M. Arshad, A. M. Arshad, New solitary wave solutions of generalized space-time fractional fifth order Laxs and Sawada Kotera KdV type equations in mathematical physics, J. Adv. Phys., 7 (2018), 342–349. https://doi.org/10.1166/jap.2018.1447 doi: 10.1166/jap.2018.1447 |
[14] | S. Sarwar, S. Alkhalaf, S. Iqbal, M. A. Zahid, A note on optimal homotopy asymptotic method for the solutions of fractional order heat-and wave-like partial differential equations, Comput. Math. Appl., 70 (2015), 942–953. https://doi.org/10.1016/j.camwa.2015.06.017 doi: 10.1016/j.camwa.2015.06.017 |
[15] | S. Sarwar, M. A. Zahid, S. Iqbal, Mathematical study of fractional order biological population models using Optimal homotopy asymptotic method, Int. J. Biomath., 9 (2016), 1650081. https://doi.org/10.1142/S1793524516500819 doi: 10.1142/S1793524516500819 |
[16] | S. Sarwar, M. M. Rashidi, Approximate solution of two term fractional order diffusion, wave-diffusion and telegraph models arising in mathematical physics using optimal homotopy asymptotic method, Waves Random Complex Media, 26 (2016), 365–382. https://doi.org/10.1080/17455030.2016.1158436 doi: 10.1080/17455030.2016.1158436 |
[17] | S. Sarwar, S. Iqbal, Stability analysis, dynamical behavior and analytical solutions of nonlinear fractional differential system arising in chemical reaction, Chinese J. Phys., 56 (2018), 374–384. https://doi.org/10.1016/j.cjph.2017.11.009 doi: 10.1016/j.cjph.2017.11.009 |
[18] | S. Sarwar, M. A. Zahid, S. Iqbal, Mathematical study of fractional order biological model using optimal homotopy asymptotic method, Int. J. Biomath., 9 (2016), 1650081. https://doi.org/10.1142/S1793524516500819 doi: 10.1142/S1793524516500819 |
[19] | S. Sarwar, S. Iqbal, Exact solution of non-linear fractional order Klein-Gordon partial differential equations using optimal homotopy asymptotic method, Nonlinear Sci. Lett. A, 8 (2017), 340–348. |
[20] | J. Wang, R. Zhang, L. Yang, Solitary waves of nonlinear barotropic-baroclinic coherent structures, Phys. Fluids, 32 (2020), 096604. https://doi.org/10.1063/5.0025167 doi: 10.1063/5.0025167 |
[21] | A. S. Fokas, Integrable nonlinear evolution partial differential equations in (4+2) and (3+1)-dimensions, Phys. Rev. Lett., 96 (2006), 190201. https://doi.org/10.1103/PhysRevLett.96.190201 doi: 10.1103/PhysRevLett.96.190201 |
[22] | S. T. Demiray, H. Bulut, Investigation of dark and bright soliton solutions of some nonlinear evolution equations, ITM Web Conf., 22 (2018), 01056. https://doi.org/10.1051/itmconf/20182201056 doi: 10.1051/itmconf/20182201056 |
[23] | A. Davey, K. Stewartson, On three-dimensional packets of surface waves, Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci., 338 (1974), 101–110. https://doi.org/10.1098/rspa.1974.0076 doi: 10.1098/rspa.1974.0076 |
[24] | S. Sarwar, New soliton wave structures of nonlinear (4+1)-dimensional Fokas dynamical model by using different methods, Alex. Eng. J., 60 (2021), 795–803. https://doi.org/10.1016/j.aej.2020.10.009 doi: 10.1016/j.aej.2020.10.009 |
[25] | S. Zhang, H. Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 375 (2011), 1069–1073. https://doi.org/10.1016/j.physleta.2011.01.029 doi: 10.1016/j.physleta.2011.01.029 |
[26] | J. Lee, R. Sakthivel, L. Wazzan, Exact traveling wave solutions of a higher-dimensional nonlinear evolution equation, Mod. Phys. Lett. B, 24 (2010), 1011–1021. https://doi.org/10.1142/S0217984910023062 doi: 10.1142/S0217984910023062 |
[27] | B. Zheng, C. Wen, Exact solutions for fractional partial differential equations by a new fractional sub-equation method, Adv. Differ. Equ., 2013 (2013), 199. https://doi.org/10.1186/1687-1847-2013-199 doi: 10.1186/1687-1847-2013-199 |
[28] | J. H. Choi, H. Kim, Soliton solutions for the space-time nonlinear partial differential equations with fractional-orders, Chinese J. Phys., 55 (2017), 556–565. https://doi.org/10.1016/j.cjph.2016.10.019 doi: 10.1016/j.cjph.2016.10.019 |
[29] | B. Zheng, Exp-function method for solving fractional partial differential equations, Sci. World J., 2013 (2013), 465723. https://doi.org/10.1155/2013/465723 doi: 10.1155/2013/465723 |
[30] | Y. Zhao, Y. He, The extended fractional $(G0 = G)$-expansion method and its applications to a space-time fractional Fokas equation, Math. Probl. Eng., 2017 (2017), 8251653. https://doi.org/10.1155/2017/8251653 doi: 10.1155/2017/8251653 |
[31] | F. Meng, A new approach for solving fractional partial differential equations, J. Appl. Math., 2013 (2013), 256823. https://doi.org/10.1155/2013/256823 doi: 10.1155/2013/256823 |
[32] | D. Lu, A. R. Seadawy, J. Wang, M. Arshad, U. Farooq, Soliton solutions of generalized third-order nonlinear Schrödinger equation by two mathematical methods and their stability, Pramana, 93 (2019), 44. https://doi.org/10.1007/s12043-019-1804-5 doi: 10.1007/s12043-019-1804-5 |
[33] | M. Arshad, D. Lu, M. U. Rehman, I. Ahmed, A. M. Sultan, Optical solitary wave and elliptic function solutions of Fokas-Lenells equation in presence of perturbation terms and its modulation instability, Phys. Scripta, 94 (2019), 105202. |
[34] | A. M. Sultan, D. Lu, M. Arshad, H. U. Rehman, M. S. Saleem, Soliton solutions of higher order dispersive cubic-quintic nonlinear Schrödinger equation and its applications, Chinese J. Phys., 67 (2019), 405–413. https://doi.org/10.1016/j.cjph.2019.10.003 doi: 10.1016/j.cjph.2019.10.003 |
[35] | D. Lu, C. Yue, M. Arshad, Traveling wave solutions of spacetime fractional generalized fifth order KdV equation, Adv. Math. Phys., 2017 (2017), 6743276. https://doi.org/10.1155/2017/6743276 doi: 10.1155/2017/6743276 |
[36] | M. Arshad, A. R. Seadawy, D. Lu, J. Wang, Travelling wave solutions of generalized coupled Zakharov-Kuznetsov and dispersive long wave equations, Results Phys., 6 (2016), 1136–1145. https://doi.org/10.1016/j.rinp.2016.11.043 doi: 10.1016/j.rinp.2016.11.043 |
[37] | M. Arshad, A. R. Seadawy, D. Lu, Exact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrödinger equation and its stability, Optik, 138 (2017), 40–49. https://doi.org/10.1016/j.ijleo.2017.03.005 doi: 10.1016/j.ijleo.2017.03.005 |
[38] | M. Arshad, D. Lu, J. Wang, (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 509–519. https://doi.org/10.1016/j.cnsns.2017.01.018 doi: 10.1016/j.cnsns.2017.01.018 |
[39] | A. A. Omar, Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space, Fund. Inform., 166 (2019), 87–110. https://doi.org/10.3233/FI-2019-1795 doi: 10.3233/FI-2019-1795 |
[40] | C. Q. Dai, Y. Y. Wang, Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals, Nonlinear Dyn., 102 (2020), 1733–1741. https://doi.org/10.1007/s11071-020-05985-w doi: 10.1007/s11071-020-05985-w |
[41] | C. Y. Ma, B. Shiri, G. C. Wu, D. Baleanu, New fractional signal smoothing equations with short memory and variable order, Optik, 218 (2020), 164507. https://doi.org/10.1016/j.ijleo.2020.164507 doi: 10.1016/j.ijleo.2020.164507 |
[42] | B. H. Wang, Y. Y. Wang, C. Q. Dai, Y. X. Chen, Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, Alex. Eng. J., 59 (2020), 4699–4707. https://doi.org/10.1016/j.aej.2020.08.027 doi: 10.1016/j.aej.2020.08.027 |
[43] | M. S. Osman, H. I. Abdel-Gawad, Multi-wave solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients, Eur. Phys. Jour. Plus, 130 (2015), 215. https://doi.org/10.1140/epjp/i2015-15215-1 doi: 10.1140/epjp/i2015-15215-1 |
[44] | K. K. Ali, M. S. Osman, M. Abdel-Aty, New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method, Alex. Eng. J., 59 (2020), 1191–1196. https://doi.org/10.1016/j.aej.2020.01.037 doi: 10.1016/j.aej.2020.01.037 |
[45] | I. Siddique, M. M. M. Jaradat, A. Zafar, K. Bukht Mehdi, M. S. Osman, Exact traveling wave solutions for two prolific conformable M-Fractional differential equations via three diverse approaches, Results Phys., 28 (2021), 104557. https://doi.org/10.1016/j.rinp.2021.104557 doi: 10.1016/j.rinp.2021.104557 |
[46] | H. F. Ismael, S. S. Atas, H. Bulut, M. S. Osman, Analytical solutions to the M-derivative resonant Davey-Stewartson equations, Mod. Phys. Lett. B, 35 (2021), 2150455. https://doi.org/10.1142/S0217984921504558 doi: 10.1142/S0217984921504558 |
[47] | H. Rezazadeh, M. Inc, D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Front. Phys., 8 (2020), 332. https://doi.org/10.3389/fphy.2020.00332 doi: 10.3389/fphy.2020.00332 |
[48] | F. Meng, Q. Feng, A new rractional Subequation method and its applications for space-time fractional partial differential equations, J. Appl. Math., 2013 (2013), 481729. https://doi.org/10.1155/2013/481729 doi: 10.1155/2013/481729 |
[49] | Y. Huang, Y. Shang, The extended hyperbolic function method for generalized forms of nonlinear heat conduction and Huxley equations, J. Appl. Math., 2012 (2012), 769843. https://doi.org/10.1155/2012/769843 doi: 10.1155/2012/769843 |
[50] | Y. Shang, The extended hyperbolic function method and exact solutions of the long-short wave resonance equations, Chaos, Solitons Fract., 36 (2008), 762–771. https://doi.org/10.1016/j.chaos.2006.07.007 doi: 10.1016/j.chaos.2006.07.007 |
[51] | Y. Shang, Y. Huang, W. Yuan, The extended hyperbolic functions method and new exact solutions to the Zakharov equations, Appl. Math. Comput., 200 (2008), 110–122. https://doi.org/10.1016/j.amc.2007.10.059 doi: 10.1016/j.amc.2007.10.059 |
[52] | S. Nestor, A. Houwe, G. Betchewe, M. Inc, S. Y. Doka, A series of abundant new optical solitons to the conformable space-time fractional perturbed nonlinear Schrödinger equation, Phys. Scripta, 95 (2020), 085108. |
[53] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13. |
[54] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x |
[55] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[56] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[57] | C. S. Liu, Counter examples on Jumarie's two basic fractional calculus formulae, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 92–94. https://doi.org/10.1016/j.cnsns.2014.07.022 doi: 10.1016/j.cnsns.2014.07.022 |
[58] | C. S. Liu, Counterexamples on Jumarie's three basic fractional calculus formulae for non-differentiable continuous functions, Chaos, Solitons, Fractals, 109 (2018), 219–222. https://doi.org/10.1016/j.chaos.2018.02.036 doi: 10.1016/j.chaos.2018.02.036 |