In this paper, we consider the parabolic Hessian quotient equation on compact Hermitian manifolds. By setting up a priori estimates of the admissible solutions, we prove the long-time existence of the solution to the parabolic Hessian quotient equation and its convergence. As an application, we show the solvability of a class of complex Hessian quotient equations, which generalizes the relevant results.
Citation: Jundong Zhou, Yawei Chu. The complex Hessian quotient flow on compact Hermitian manifolds[J]. AIMS Mathematics, 2022, 7(5): 7441-7461. doi: 10.3934/math.2022416
In this paper, we consider the parabolic Hessian quotient equation on compact Hermitian manifolds. By setting up a priori estimates of the admissible solutions, we prove the long-time existence of the solution to the parabolic Hessian quotient equation and its convergence. As an application, we show the solvability of a class of complex Hessian quotient equations, which generalizes the relevant results.
[1] | Z. Blocki, Weak solutions to the complex Hessian equation, Ann. I. Fourier, 55 (2005), 1735–1756. https://doi.org/10.5802/aif.2137 doi: 10.5802/aif.2137 |
[2] | H. D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math., 81 (1985), 359–372. https://doi.org/10.1007/BF01389058 doi: 10.1007/BF01389058 |
[3] | T. C. Collins, G. Székelyhidi, Convergence of the J-flow on toric manifolds, J. Differential Geom., 107 (2017), 47–81. https://doi.org/10.4310/jdg/1505268029 doi: 10.4310/jdg/1505268029 |
[4] | P. Cherrier, E$\acute{\text{q}}$uations de Monge-Ampere surles variétés hermitiennes compactes, Bull. Sci. Math., 111 (1987), 343–385. |
[5] | J. C. Chu, The parabolic Monge-Ampère equation on compact almost Hermitian manifolds, J. Reine Angew. Math., 761 (2020), 1–24. https://doi.org/10.1515/crelle-2018-0019 doi: 10.1515/crelle-2018-0019 |
[6] | S. K. Donaldson, Moment maps and diffeomorphisms, Asian J. Math., 3 (1999), 1–16. https://doi.org/10.4310/AJM.1999.v3.n1.a1 doi: 10.4310/AJM.1999.v3.n1.a1 |
[7] | S. Dinew, S. Kolodziej, Liouville and Calabi-Yau type theorems for complex Hessian equations, Amer. J. Math., 139 (2017), 403–415. https://doi.org/10.1353/ajm.2017.0009 doi: 10.1353/ajm.2017.0009 |
[8] | L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Commun. Pure. Appl. Math., 35 (1982), 333–363. https://doi.org/10.1002/cpa.3160350303 doi: 10.1002/cpa.3160350303 |
[9] | M. Gill, Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds, Commun. Anal. Geom., 19 (2011), 277–303. https://doi.org/10.4310/CAG.2011.v19.n2.a2 doi: 10.4310/CAG.2011.v19.n2.a2 |
[10] | Z. L. Hou, X. N. Ma, D. M. Wu, A second order estimate for complex Hessian equations on a compact Kähler manifold, Math. Res. Lett., 17 (2010), 547–561. https://doi.org/10.4310/MRL.2010.v17.n3.a12 doi: 10.4310/MRL.2010.v17.n3.a12 |
[11] | H. Z. Li, Y. L. Shi, Y. Yao, A criterion for the properness of the K-energy in a general Kähler class, Math. Ann., 361 (2015), 135–156. https://doi.org/10.1007/s00208-014-1073-z doi: 10.1007/s00208-014-1073-z |
[12] | H. C. Lu, Solutions to degenerate complex Hessian equations, J. Math. Pure. Appl., 100 (2013), 785–805. https://doi.org/10.1016/j.matpur.2013.03.002 doi: 10.1016/j.matpur.2013.03.002 |
[13] | N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Math. USSR lzv., 22 (1984), 67–97. |
[14] | D. H. Phong, D. T. Tô, Fully non-linear parabolic equations on compact Hermitian manifolds, Ann. Scient. Éc. Norm. Sup., 54 (2021), 793–829. |
[15] | J. Song, B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Commun. Pure Appl. Math., 61 (2008), 210–229. https://doi.org/10.1002/cpa.20182 doi: 10.1002/cpa.20182 |
[16] | W. Sun, On a class of fully nonlinear elliptic equations on closed Hermitian manifolds II: $L^{\infty}$estimate, Commun. Pure Appl. Math., 70 (2017), 172–199. https://doi.org/10.1002/cpa.21652 doi: 10.1002/cpa.21652 |
[17] | W. Sun, On a class of fully nonlinear elliptic equations on closed Hermitian manifolds, J. Geom. Anal., 26 (2016), 2459–2473. https://doi.org/10.1007/s12220-015-9634-2 doi: 10.1007/s12220-015-9634-2 |
[18] | W. Sun, Parabolic complex Monge-Ampère type equations on closed Hermitian manifolds, Calc. Var., 54 (2015), 3715–3733. https://doi.org/10.1007/s00526-015-0919-x doi: 10.1007/s00526-015-0919-x |
[19] | W. Sun, The Parabolic flows for complex quotient equations, J. Geom. Anal., 29 (2019), 1520–1545. https://doi.org/10.1007/s12220-018-0049-8 doi: 10.1007/s12220-018-0049-8 |
[20] | G. Sz$\acute{e}$kelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom., 109 (2018), 337–378. https://doi.org/10.4310/jdg/1527040875 doi: 10.4310/jdg/1527040875 |
[21] | W. M. Sheng, J. X. Wang, On a complex Hessian flow, Pac. J. Math., 300 (2019), 159–177. https://doi.org/10.2140/pjm.2019.300.159 |
[22] | V. Tosatti, B. Weinkove, Estimates for the complex Monge-Ampere equation on Hermitian and balanced manifolds, Asian J. Math., 14 (2010), 19–40. https://doi.org/10.4310/AJM.2010.v14.n1.a3 doi: 10.4310/AJM.2010.v14.n1.a3 |
[23] | V. Tosatti, B. Weinkove, The complex Monge-Ampere equation on compact Hermitian manifolds, J. Amer. Math. Soc., 23 (2010), 1187–1195. https://doi.org/10.1090/S0894-0347-2010-00673-X doi: 10.1090/S0894-0347-2010-00673-X |
[24] | V. Tosatti, B. Weinkove, Hermitian metrics, $(n-1, n-1)$ forms and Monge-Ampère equations, J. Reine Angew. Math., 755 (2019), 67–101. https://doi.org/10.1515/crelle-2017-0017 doi: 10.1515/crelle-2017-0017 |
[25] | T. D. Tô, Regularizing properties of complex Monge-Ampère flows, J. Funct. Anal., 272 (2017), 2058–2091. https://doi.org/10.1016/j.jfa.2016.10.017 doi: 10.1016/j.jfa.2016.10.017 |
[26] | T. D. Tô, Regularizing properties of complex Monge-Ampère flows II: Hermitian manifolds, Math. Ann., 372 (2018), 699–741. https://doi.org/10.1007/s00208-017-1574-7 doi: 10.1007/s00208-017-1574-7 |
[27] | L. Wang, On the regularity theory of fully nonlinear parabolic equations: I, Commun. Pure Appl. Math., 45 (1992), 27–76. https://doi.org/10.1002/cpa.3160450103 doi: 10.1002/cpa.3160450103 |
[28] | S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I*, Commun. Pure Appl. Math., 31 (1978), 339–411. https://doi.org/10.1002/cpa.3160310304 doi: 10.1002/cpa.3160310304 |
[29] | D. K. Zhang, Hessian equations on closed Hermitian manifolds, Pac. J. Math., 291 (2017), 485–510. https://doi.org/10.2140/pjm.2017.291.485 doi: 10.2140/pjm.2017.291.485 |
[30] | X. W. Zhang, A priori estimate for complex Monge-Ampère equation on Hermitian manifolds, Int. Math. Res. Not., 2010 (2010), 3814–3836. https://doi.org/10.1093/imrn/rnq029 doi: 10.1093/imrn/rnq029 |