As a renewable resource, biological population not only has direct economic value to people's lives, but also has important ecological and environmental value. This study examines an optimal harvesting problem for a periodic, competing hybrid system of three species that is dependent on size structure in a polluted environment. The existence and uniqueness of the nonnegative solution are proved via an operator theory and fixed point theorem. The necessary optimality conditions are derived by constructing an adjoint system and using the tangent-normal cone technique. The existence of unique optimal control pair is verified by means of the Ekeland variational principle and a feedback form of the optimal policy is presented. The finite difference scheme and the chasing method are used to approximate the nonnegative T-periodic solution of the state system corresponding to a given initial datum. The objective functional represents the total profit obtained from harvesting three species. The results obtained in this work can be extended to a wide variety of fields.
Citation: Tainian Zhang, Zhixue Luo. Optimal harvesting for a periodic competing system with size structure in a polluted environment[J]. AIMS Mathematics, 2022, 7(8): 14696-14717. doi: 10.3934/math.2022808
As a renewable resource, biological population not only has direct economic value to people's lives, but also has important ecological and environmental value. This study examines an optimal harvesting problem for a periodic, competing hybrid system of three species that is dependent on size structure in a polluted environment. The existence and uniqueness of the nonnegative solution are proved via an operator theory and fixed point theorem. The necessary optimality conditions are derived by constructing an adjoint system and using the tangent-normal cone technique. The existence of unique optimal control pair is verified by means of the Ekeland variational principle and a feedback form of the optimal policy is presented. The finite difference scheme and the chasing method are used to approximate the nonnegative T-periodic solution of the state system corresponding to a given initial datum. The objective functional represents the total profit obtained from harvesting three species. The results obtained in this work can be extended to a wide variety of fields.
[1] | L. F. Wang, G. Crameri, Emerging zoonotic viral diseases, Rev. sci. tech. Off. int. Epiz., 33 (2014), 569–581. https://doi.org/10.20506/rst.33.2.2311 doi: 10.20506/rst.33.2.2311 |
[2] | T. G. Hallam, C. E. Clark, R. R. Lassiter, Effects of toxicants on populations: a qualitative approach I. Equilibrium environmental exposure, Ecol. Model., 18 (1983), 291–304. https://doi.org/10.1016/0304-3800(83)90019-4 doi: 10.1016/0304-3800(83)90019-4 |
[3] | T. G. Hallam, C. E. Clark, G. S. Jordan, Effects of toxicants on populations: a qualitative approach II. First order kinetics, J. Math. Biology, 18 (1983), 25–37. http://doi.org/10.1007/bf00275908 doi: 10.1007/bf00275908 |
[4] | T. G. Hallam, J. T. De Luna, Effects of toxicants on populations: a qualitative approach III. Environmental and food chain pathways, J. Theor. Biol., 109 (1984), 411–429. https://doi.org/10.1016/S0022-5193(84)80090-9 doi: 10.1016/S0022-5193(84)80090-9 |
[5] | Z. X. Luo, Z. R. He, Optimal control of age-dependent population hybrid system in a polluted environment, Appl. Math. Comput., 228 (2014), 68–76. http://doi.org/10.1016/j.amc.2013.11.070 doi: 10.1016/j.amc.2013.11.070 |
[6] | Z. X. Luo, X. L. Fan, Optimal control of an age-dependent competitive species model in a polluted environment, Appl. Math. Comput., 228 (2014), 91–101. http://doi.org/10.1016/j.amc.2013.11.069 doi: 10.1016/j.amc.2013.11.069 |
[7] | Z. X. Luo, Optimal control of an age-dependent predator-prey system in a polluted environment, J. Appl. Math. Comput., 44 (2014), 491–509. https://doi.org/10.1007/s12190-013-0704-y doi: 10.1007/s12190-013-0704-y |
[8] | W. R. Li, M. Ye, Q. M. Zhang, Y. Li, Numerical approximation of a stochastic age-structured population model in a polluted environment with Markovian switching, Numer. Methods Partial Differential Equations, 36 (2020), 1460–1491. https://doi.org/10.1002/num.22488 doi: 10.1002/num.22488 |
[9] | G. D. Liu, X. Z. Meng, Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching, Physica A, 536 (2019), 120893. https://doi.org/10.1016/j.physa.2019.04.129 doi: 10.1016/j.physa.2019.04.129 |
[10] | X. He, M. J. Shan, M. Liu, Persistence and extinction of an $n$-species mutualism model with random perturbations in a polluted environment, Physica A, 491 (2018), 313–424. https://doi.org/10.1016/j.physa.2017.08.083 doi: 10.1016/j.physa.2017.08.083 |
[11] | Y. X. Gao, S. Q. Tian, Dynamics of a stochastic predator-prey model with two competitive preys and one predator in a polluted environment, Japan J. Indust. Appl. Math., 35 (2018), 861–889. https://doi.org/10.1007/s13160-018-0314-z doi: 10.1007/s13160-018-0314-z |
[12] | M. Liu, C. X. Du, M. L. Deng, Persistence and extinction of a modified Leslie-Gower Holling-type II stochastic predator-prey model with impulsive toxicant input in polluted environments, Nonlinear Anal. Hybrid Syst., 27 (2018), 177–190. https://doi.org/10.1016/j.nahs.2017.08.001 doi: 10.1016/j.nahs.2017.08.001 |
[13] | S. Aniţa, Analysis and control of age-dependent population dynamics, Dordrecht: Springer, 2000. https://doi.org/10.1007/978-94-015-9436-3 |
[14] | Z. R. He, Y. Liu, An optimal birth control problem for a dynamical population model with size-structure, Nonlinear Anal. Real, 13 (2012), 1369–1378. https://doi.org/10.1016/j.nonrwa.2011.11.001 doi: 10.1016/j.nonrwa.2011.11.001 |
[15] | N. Kato, Optimal harvesting for nonlinear size-structured population dynamics, J. Math. Anal. Appl., 342 (2008), 1388–1398. https://doi.org/10.1016/j.jmaa.2008.01.010 doi: 10.1016/j.jmaa.2008.01.010 |
[16] | N. Kato, Linear size-structured population models with spacial diffusion and optimal harvesting problems, Math. Model. Nat. Pheno., 9 (2014), 122–130. https://doi.org/10.1051/mmnp/20149408 doi: 10.1051/mmnp/20149408 |
[17] | N. Hritonenko, Y. Yatsenko, R. U. Goetz, A. Xabadia, Maximum principle for a size-structured model of forest and carbon sequestration management, Appl. Math. Lett., 21 (2008), 1090–1094. https://doi.org/10.1016/j.aml.2007.12.006 doi: 10.1016/j.aml.2007.12.006 |
[18] | R. Liu, G. R. Liu, Optimal birth control problems for a nonlinear vermin population model with size-structure, J. Math. Anal. Appl., 449 (2017), 265–291. https://doi.org/10.1016/j.jmaa.2016.12.010 doi: 10.1016/j.jmaa.2016.12.010 |
[19] | R. Liu, G. R. Liu, Optimal contraception control for a nonlinear vermin population model with size-structure, Appl. Math. Optim., 79 (2019), 231–256. https://doi.org/10.1007/s00245-017-9428-y doi: 10.1007/s00245-017-9428-y |
[20] | J. Liu, X. S. Wang, Numerical optimal control of a size-structured PDE model for metastatic cancer treatment, Math. Biosci., 314 (2019), 28–42. https://doi.org/10.1016/j.mbs.2019.06.001 doi: 10.1016/j.mbs.2019.06.001 |
[21] | Y. J. Li, Z. H. Zhang, Y. F. Lv, Z. H. Liu, Optimal harvesting for a size-stage-structured population model, Nonlinear Anal. Real, 44 (2018), 616–630. https://doi.org/10.1016/j.nonrwa.2018.06.001 doi: 10.1016/j.nonrwa.2018.06.001 |
[22] | Y. Liu, X. L. Cheng, Z. R. He, On the optimal harvesting of sized-structured population, Appl. Math. J. Chin. Univ., 28 (2013), 173–186. https://doi.org/10.1007/s11766-013-2965-5 doi: 10.1007/s11766-013-2965-5 |
[23] | R. Liu, F. Q. Zhang, Y. M. Chen, Optimal contraception control for a nonlinear population model with size structure and a separable mortality, Discrete Contin. Dyn. Syst. B, 21 (2016), 3603–3618. https://doi.org/10.3934/dcdsb.2016112 doi: 10.3934/dcdsb.2016112 |
[24] | Z. R. He, M. J. Han, Theoretical results of optimal harvesting in a hierarchical size-structured population system with delay, Int. J. Biomath., 14 (2021), 2150054. https://doi.org/10.1142/S1793524521500546 doi: 10.1142/S1793524521500546 |
[25] | G. M. Coclite, G. Devillanova, S. Solimini, Measure valued solutions for an optimal harvesting problem, J. Math. Pure. Appl., 142 (2020), 204–228. https://doi.org/10.1016/j.matpur.2020.08.004 doi: 10.1016/j.matpur.2020.08.004 |
[26] | Z. R. He, R. Liu, Theory of optimal harvesting for a nonlinear size-structured population in periodic environments, Int. J. Biomath., 7 (2014), 1450046. https://doi.org/10.1142/S1793524514500466 doi: 10.1142/S1793524514500466 |
[27] | F. Q. Zhang, R. Liu, Y. M. Chen, Optimal harvesting in a periodic food chain model with size structures in predators, Appl. Math. Optim., 75 (2017), 229–251. https://doi.org/10.1007/s00245-016-9331-y doi: 10.1007/s00245-016-9331-y |
[28] | Z. X. Luo, Optimal harvesting control problem for an age-dependent competing system of $n$ species, Appl. Math. Comput., 183 (2006), 119–127. https://doi.org/10.1016/j.amc.2006.05.180 doi: 10.1016/j.amc.2006.05.180 |
[29] | J. W. Sinko, W. Streifer, A new model for age-size structure of a population, Ecology, 48 (1967), 910–918. https://doi.org/10.2307/1934533 doi: 10.2307/1934533 |
[30] | Z. E. Ma, G. R. Cui, W. D. Wang, Persistence and extinction of a population in a polluted environment, Math. Biosci., 101 (1990), 75–97. https://doi.org/10.1016/0025-5564(90)90103-6 doi: 10.1016/0025-5564(90)90103-6 |