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Abstract: As a renewable resource, biological population not only has direct economic value to
people’s lives, but also has important ecological and environmental value. This study examines an
optimal harvesting problem for a periodic, competing hybrid system of three species that is dependent
on size structure in a polluted environment. The existence and uniqueness of the nonnegative solution
are proved via an operator theory and fixed point theorem. The necessary optimality conditions are
derived by constructing an adjoint system and using the tangent-normal cone technique. The existence
of unique optimal control pair is verified by means of the Ekeland variational principle and a feedback
form of the optimal policy is presented. The finite difference scheme and the chasing method are used
to approximate the nonnegative T-periodic solution of the state system corresponding to a given initial
datum. The objective functional represents the total profit obtained from harvesting three species. The
results obtained in this work can be extended to a wide variety of fields.
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1. Introduction

In today’s world of industrial pollution, toxicants are pervading the air, ecological problems have
become increasingly prominent, and environmental pollution has become a major problem. When
human activities expose in the wild, they may come into contact with wild animals. In the process,
wild animals can easily transmit viruses they carry to humans. In fact, most new infectious diseases
come from wild animals [1]. SARS, Ebola virus, AIV, H1N1 influenza, and COVID-19 are threatening
the ecological balance as well as the survival of human beings and other creatures. A large amount of
toxic and harmful substances are discharged into the atmosphere, and seriously affect the environmental
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quality. It is necessary to study the effects of toxicants on the ecosystem. Hallam et al. proposed using a
dynamic methodology to examine ecotoxicology in [2–4]. They established a model of the interaction
between toxicants and population, and provided sufficient conditions for the persistence and extinction
of a population stressed by a toxicant. Researchers have been studying ecotoxicology since the 1980s,
and a large amount of literature has been devoted to problems in the area [5–12]. However, size-
structured factor has not been considered in these models. Size here refers to some continuous indices
related to individuals in the given population, such as volume, maturity, diameter, length, mass, or
other quantities that show its physiological or statistical characteristics.

The effects of environmental pollution on biological population, the dynamical behavioral analysis
of ecosystem models, and the control problem have attracted the attention of many scholars [13–15].
For many populations, size structure is more appropriate to describe the dynamical evolution than age
structure, especially for plants and fishes [16, 17]. Population models with age structure have been
extensively investigated by many authors as seen in [13] and the references therein. On the other hand,
the control problem with size structure has achieved remarkable results through theoretical analysis,
numerical calculations, and experimental methods, such as in [14, 15, 18–26]. However, most of these
studies have focused on a single species, and only a few have examined interactions among species.
Among them, the optimal birth problem has also discussed in detail in [14]. In addition, Hritonenko et
al. [15] have established a sized-structured forest system, where the objective function includes the net
benefits from timber production and carbon sequestration. Liu et al. [18] have studied the least cost-
size problem and the least cost-derivation problem for a nonlinear size-structured vermin population
model with separable mortality rate, which takes fertility rate as the control variable. We also mention
that Li et al. [21] have considered the optimal harvesting for a size-stage-structured population model.
For other types of optimal harvesting problems, refer to [15, 22, 24, 25]. Moreover, the influence of
seasonal changes and other factors, the living environment of populations often undergoes periodic
changes. Research on optimal harvesting problems dependent on the model of individual size in a
periodic environment has been reported in [26, 27]. In [27], Zhang et al. have discussed the optimal
harvesting in a periodic food chain model by using the size structure of predators. To the best of our
knowledge, few studies to date have examined optimal control problems of size-dependent population
models and periodic effects in a polluted environment. Inspired by the above work, this paper discusses
optimal harvesting for a periodic, competing system that is dependent on size structure in a polluted
environment.

The remainder of this paper is organized as follows: In Section 2, we describe a population model
with size structure in a polluted environment and its well-posedness is proved in Section 3. The
optimality conditions are established in Section 4. The existence of a unique optimal control pair
is obtained in Section 5. Some numerical results are presented in Section 6. At the end of this paper,
some brief conclusions are provided.

2. The basic model

In [2–4], Hallam et al. proposed the following dynamic population model with toxicant effects:
dx
dt = x[r0 − r1C0 − f x],
dC0
dt = kCE − gC0 − mC0,

dCE
dt = −k1CE x + g1C0x − hCE + u,

(2.1)
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where x = x(t) is the population biomass at time t; C0 = C0(t) is the concentration of toxicants in the
organism at time t; CE = CE(t) is the concentration of toxicants in the environment of the population
at time t. The exogenous rate of input of toxicants into the environment was represented by u. They
investigated the persistence and extinction of a population in a polluted environment.

Luo et al. [28] studied optimal harvesting control problem for the following age-dependent
competing system of n species:

∂pi
∂t +

∂pi
∂a = fi(a, t) − µi(a, t)pi −

n∑
k=1,k,i

λik(a, t)Pk(t)pi − ui(a, t)pi, ,

pi(0, t) = βi(t)
∫ a2

a1
mi(a, t)pi(a, t)da,

pi(a, 0) = pi0(a),
Pi(t) =

∫ a+

0
pi(a, t)da, i = 1, 2, . . . , n, (a, t) ∈ Q,

(2.2)

where Q = (0, a+) × (0,+∞), [a1, a2] is the fertility interval. pi(a, t) represents the density of ith
population of age a at time t, and a+ is the life expectancy of individuals; pi0 is the initial age
distribution of ith population; ui(x, t) is the harvesting effort function, which is the control variable in
the model. The existence of an optimal control, the necessary conditions of optimality for the control
problem have been derived.

By combining (2.1) and (2.2), we consider the following periodic, competing system with size
structure in a polluted environment:

∂pi
∂t +

∂(Vi(x,t)pi)
∂x = fi(x, t) − µi(x, ci0(t))pi −

3∑
i,k=1,k,i

λik(x, t)Pk(t)pi − ui(x, t)pi,

dci0
dt = k1ce(t) − g1ci0(t) − mci0(t),

dce
dt = −k2ce(t)

3∑
i=1

Pi(t) + g2

3∑
i=1

ci0(t)Pi(t) − hce(t) + v(t),

Vi(0, t)pi(0, t) =
∫ l

0
βi(x, ci0(t))pi(x, t)dx,

0 ≤ ci0(0) ≤ 1, 0 ≤ ce(0) ≤ 1,
pi(x, t) = pi(x, t + T ),
Pi(t) =

∫ l

0
pi(x, t)dx, i = 1, 2, 3, (x, t) ∈ Q,

(2.3)

where Q = (0, l) × R+, l ∈ R+ is the maximal size of an individual in the population, T ∈ R+ is the
period of habitat evolution of the populations. k1, g1,m, k2, g2, and h are nonnegative constants. The
meaning of the variables and functional traits are as follows: pi(x, t): the density of the ith population
of size x at time t; ci0(t): the concentration of toxicants in the ith population; ce(t): the concentration
of toxicants in the environment; Vi(x, t): the average rate of growth for the ith population, that is,
dx
dt = Vi(x, t) (see [29]); µi(x, ci0(t)), βi(x, ci0(t)): the mortality and fertility rates of the ith population,
respectively; v(t): the input rate of exogenous toxicants; Pi(t): total number of individuals in the ith
population; fi(x, t): the immigration rate of the ith population; λik(x, t): the interaction coefficient;
ui(x, t): function of the harvesting efforts of the ith population of size x harvested at time t; k1ce(t):
the organism’s net uptake of toxicant from the environment; −g1ci0(t) and −mci0(t): the egestion and
depuration rates of the toxicant in the ith population, respectively. The units of k1, g1 and m are in terms

of mem−1
0 t−1, t−1, and t−1, respectively. −k2ce(t)

3∑
i=1

Pi(t): the loss of the toxicant in the environment that

is due to the uptake of toxicant by the total population. g2

3∑
i=1

ci0(t)Pi(t): the increase in the toxicant in
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the environment coming from the egestion of the total population. −hce(t): the toxicant loss from the
environment itself by volatilization and so on. The unit of k2 is in terms of m−1

0 t−1; g2 is in terms of
m−1

e t−1; and h is in terms of t−1, where me and m0 denote the units of mass of the environment and in
the ith population, respectively. The toxicant-population model with size structure is established under
the condition of small toxicant capacity in the environment.

The aim of this paper is to seek the maximum of the following objective functional J(u, v), that is

Maximize{J(u, v) : u = (u1(x, t), . . . , u3(x, t)), v = v(t), (u, v) ∈ Ω}, (2.4)

where

J(u, v) =

3∑
i=1

∫ T

0

∫ l

0
wi(x, t)ui(x, t)pi(x, t)dxdt −

1
2

3∑
i=1

∫ T

0

∫ l

0
ciu2

i (x, t)dxdt −
1
2

∫ T

0
c4v2(t)dt,

wi(x, t) is the selling price of an individual belonging to the ith population. The positive constants ci

and c4 are the cost factors of the ith harvested population and the curbing environmental pollution,
respectively. J(u, v) represents the total profit from the harvested populations during period T . The
admissible control set Ω is as follows:

Ω = {(u, v) ∈ [L∞T (Q)]3 × L∞T (R+) : 0 ≤ ui(x, t) ≤ Ni a.e. (x, t) ∈ Q, 0 ≤ v0 ≤ v(t) ≤ v1 a.e. t ∈ R+},

where
L∞T (Q) = {η ∈ L∞(Q) : η(x, t) = η(x, t + T ) a.e. (x, t) ∈ Q},

L∞T (R+) = {η ∈ L∞(R+) : η(t) = η(t + T ) a.e. t ∈ R+}.

This paper makes the following assumptions:

(A1) Vi : [0, l)×R+ → R+ are bounded continuous functions, Vi(x, t) > 0 and Vi(x, t) = Vi(x, t + T ) for
(x, t) ∈ Q, limx↑l Vi(x, t) = 0, and Vi(0, t) = 1 for t ∈ R+. There are Lipschitz constants LVi such
that

|Vi(x1, t) − Vi(x2, t)| ≤ LVi |x1 − x2| for x1, x2 ∈ [0, l], t ∈ R+.

(A2) 0 ≤ βi(x, ci0(t)) = βi(x, ci0(t + T )) ≤ βi, βi are constants.

(A3)


µi(x, ci0(t)) = µi0(x) + µi(x, ci0(t)) a.e. (x, t) ∈ Q, where µi0 ∈ L1

loc([0, l)),
µi0(s) ≥ 0 a.e. x ∈ [0, l),

∫ l

0
µi0(s)ds→ +∞, µi ∈ L∞(Q),

µi(x, ci0(t)) ≥ 0, µi(x, ci0(t)) = µi(x, ci0(t + T )) a.e. (x, t) ∈ Q.

(A4) fi ∈ L∞(Q), 0 ≤ fi(x, t) = fi(x, t + T ). 0 ≤ λik(x, t) ≤ λi, 0 ≤ wi(x, t) ≤ wi(x, t + T ) ≤ wi, λi and wi

are constants.

(A5) There exist constants Lβ > 0, Lµ > 0 such that |βi(x, c1
i0(t)) − βi(x, c2

i0(t))| ≤ Lβ|c1
i0(t) − c2

i0(t)|,
|µi(x, c1

i0(t)) − µi(x, c2
i0(t))| ≤ Lµ|c1

i0(t) − c2
i0(t)|.

(A6) g1 ≤ k1 ≤ g1 + m, v1 ≤ h. (see [30])
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3. Well-posedness of the state system

Definition 3.1. For i = 1, 2, 3, the unique solution x = ϕi(t; t0, xi0) of the initial value problem x′(t) =

Vi(x, t), x(t0) = xi0 is said to be a characteristic curve of the hybrid system (2.3) through (t0, xi0). Let
zi(t) := ϕi(t; 0, 0) denote the characteristic curve through (0, 0) in the x − t plane.

For any point (x, t) ∈ [0, l) × [0,T ] such that x ≤ zi(t), define the initial time τ := τ(t, x), in order
that ϕi(t; τ, 0) = x⇔ ϕi(τ; t, x) = 0. The solution of (2.3) is

pi(x, t) = pi(0, t − z−1
i (x))Πi(x; x, t) +

∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

Πi(x; x, t)
Πi(r; x, t)

dr, (3.1)

where

Πi(s; x, t) = exp

−
∫ s

0

µi(r, ci0(ϕ−1
i (r; t, x)))

Vi(r, ϕ−1
i (r; t, x))

+

3∑
i,k=1,k,i

λik(r, ϕ−1
i (r; t, x))Pk(ϕ−1

i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

+
ui(r, ϕ−1

i (r; t, x)) + Vix(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

dr
}
.

ci0(t) = ci0(0)exp{−(g1 + m)t} + k1

∫ t

0
ce(s)exp{(s − t)(g1 + m)}ds. (3.2)

ce(t) = ce(0)exp

−
∫ t

0

k2

3∑
i=1

Pi(τ) + h

 dτ

 +

∫ t

0

g2

3∑
i=1

ci0(s)Pi(s) + v(s)


· exp


∫ s

t

k2

3∑
i=1

Pi(τ) + h

 dτ

 ds. (3.3)

By assumption (A1), we have Vi(0, t) = 1. Let bi(t) = pi(0, t). Then, by noting that ϕ−1
i (0; t, x) = τ =

t − z−1
i (x), we have

bi(t) = Fi(t) +

∫ l

0
Ki(t, x)bi(t − z−1

i (x))dx, (3.4)

where
Ki(t, x) = βi(x, ci0(t))Πi(x; x, t), (3.5)

Fi(t) =

∫ l

0
βi(x, ci0(t))

∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

Πi(x; x, t)
Πi(r; x, t)

drdx. (3.6)

Define the linear and bounded operatorAi : L∞T (R+)→ L∞T (R+) given by

(Aiq)(t) =

∫ l

0
Ki(t, x)qi(t − z−1

i (x))dx. (3.7)

As a consequence (3.4) can be written in L∞T (R+) as the following abstract equation

bi = Aibi + Fi, (3.8)
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with Fi ∈ L∞T (R+) defined by (3.6). We denote by r(Ai) the spectral radius of the operator Ai. If
r(Ai) < 1, then (3.8) has unique solution in L∞T (R+).
Remark 3.1. If we denote by

β̂i(x) = ess supt∈R+
βi(x, ci0(t)) a.e. x ∈ [0, l),

then (A2) and (3.7) allow us to conclude that

r(Ai) ≤
∫ l

0
β̂i(x)dx.

Theorem 3.1. Assume that (A1) − (A6) hold. Then, the hybrid system (2.3) has a nonnegative and
unique solution (p1(x, t), . . . , p3(x, t), c10(t), . . . , c30(t), ce(t)), such that

(i) (pi(x, t), ci0(t), ce(t)) ∈ L∞(Q) × L∞(0,T ) × L∞(0,T ).
(ii) 0 ≤ ci0(t) ≤ 1, 0 ≤ ce(t) ≤ 1,∀t ∈ (0,T ), 0 ≤ pi(x, t),

∫ l

0
pi(x, t)dx ≤ M,∀(x, t) ∈ Q, i = 1, 2, 3.

where M = M2l + ‖ fi(·, ·)‖L∞(Q).

Proof. Without loss of generality, we assume that ui(x, t) ≡ 0. p(x, t) = (p1(x, t), . . . , p3(x, t)), c0(t) =

(c10(t), . . . , c30(t)). When t is so large that t > z−1
i (l), from (3.5) it follows that

|K1
i (t, x) − K2

i (t, x)|
=|βi(x, c1

i0(t))Π1
i (x; x, t) − βi(x, c2

i0(t))Π2
i (x; x, t)|

≤|βi(x, c1
i0(t)) − βi(x, c2

i0(t))| + |βi(x, c2
i0(t))||Π1

i (x; x, t) − Π2
i (x; x, t)|

≤Lβ|c1
i0(t) − c2

i0(t)| + βi

∫ x

0

|µi(r, c1
i0(ϕ−1

i (r; t, x))) − µi(r, c2
i0(ϕ−1

i (r; t, x)))|

Vi(r, ϕ−1
i (r; t, x))

dr

+ βi

∫ x

0

3∑
i,k=1,k,i

λik(r, ϕ−1
i (r; t, x))

|P1
k(ϕ−1

i (r; t, x)) − P2
k(ϕ−1

i (r; t, x))|

Vi(r, ϕ−1
i (r; t, x))

dr

≤Lβ|c1
i0(t) − c2

i0(t)| + βi

∫ t

ϕ−1
i (0;t,x)

|µi(ϕi(σ; t, x), c1
i0(σ)) − µi(ϕi(σ; t, x), c2

i0(σ))|dσ

+ βi

∫ t

ϕ−1
i (0;t,x)

3∑
i,k=1,k,i

λik(ϕi(σ; t, x), σ)|P1
k(σ) − P2

k(σ)|dσ

≤Lβ|c1
i0(t) − c2

i0(t)| + βiLµ

∫ t

0
|c1

i0(σ) − c2
i0(σ)|dσ + βiλik

∫ l

0

∫ t

0

3∑
i,k=1,k,i

|p1
k(x, σ) − p2

k(x, σ)|dσdx.

Let
M1 = max

{
Lβ, βiLµ, βiλik

}
,

W(t) = |c1
i0(t) − c2

i0(t)| +
∫ t

0
|c1

i0(σ) − c2
i0(σ)|dσ +

∫ l

0

∫ t

0

3∑
i,k=1,k,i

|p1
k(x, σ) − p2

k(x, σ)|dσdx.

Then, we can obtain
|K1

i (t, x) − K2
i (t, x)| ≤ M1W(t). (3.9)
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By (3.6) and a similar procedure, we have

|F1
i (t) − F2

i (t)|

=

∣∣∣∣∣∣
∫ l

0
βi(x, c1

i0(t))
∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

Π1
i (x; x, t)

Π1
i (r; x, t)

drdx

−

∫ l

0
βi(x, c2

i0(t))
∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

Π2
i (x; x, t)

Π2
i (r; x, t)

drdx

∣∣∣∣∣∣
≤

∫ l

0
|βi(x, c1

i0(t)) − βi(x, c2
i0(t))|

∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

drdx

+

∫ l

0
βi(x, c2

i0(t))
∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

·

∫ x

r

(
|µi(δ, c1

i0(ϕ−1
i (δ; t, x))) − µi(δ, c2

i0(ϕ−1
i (δ; t, x)))|

Vi(δ, ϕ−1
i (δ; t, x))

+

3∑
i,k=1,k,i

λik(δ, ϕ−1
i (δ; t, x))

|P1
k(ϕ−1

i (δ; t, x)) − P2
k(ϕ−1

i (δ; t, x))|

Vi(δ, ϕ−1
i (δ; t, x))

 dδdrdx

≤Lβ

∫ l

0
|c1

i0(t) − c2
i0(t)|

∫ t

0
fi(ϕi(σ; t, x), σ)dσdx + βi

∫ l

0

∫ t

0
fi(ϕi(σ; t, x), σ)

·

(
Lµ

∫ t

0
|c1

i0(σ) − c2
i0(σ)|dσ +λik

∫ l

0

∫ t

0

3∑
i,k=1,k,i

|p1
k(x, σ) − p2

k(x, σ)|dσdx

 dσdx

≤‖ fi(·, ·)‖L1(Q)

(
Lβ|c1

i0(t) − c2
i0(t)| + βiLµ

∫ t

0
|c1

i0(σ) − c2
i0(σ)|dσ

+βiλik

∫ l

0

∫ t

0

3∑
i,k=1,k,i

|p1
k(x, σ) − p2

k(x, σ)|dσdx

 .
Consequently,

|F1
i (t) − F2

i (t)| ≤ ‖ fi(·, ·)‖L1(Q)M1W(t). (3.10)

Since

exp
{
−

∫ x

0

(Vi)x(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

dr
}

=
1

Vi(x, t)
,

and thanks to the periodicity of bi(t), we need only to consider the case t ∈ [z−1
i (l), z−1

i (l) + T ]. By
(3.4)–(3.6), we have

bi(t) =Fi(t) +

∫ l

0
Ki(t, x)bi(t − z−1

i (x))dx

=

∫ l

0
βi(x, ci0(t))

∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

Πi(x; x, t)
Πi(r; x, t)

drdx +

∫ l

0
βi(x, ci0(t))Πi(x; x, t)bi(t − z−1

i (x))dx

≤

∫ l

0
βi(x, ci0(t))

∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

drdx +

∫ l

0

βi(x, ci0(t))
Vi(x, t)

bi(t − z−1
i (x))dx

≤

∫ l

0
βi(x, ci0(t))

∫ t

ϕ−1
i (0;t,x)

fi(ϕi(s; t, x), s)dsdx + βi

∫ l

0

bi(t − z−1
i (x))

Vi(x, t)
dx
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≤

∫ l

0
βi(x, ci0(t))

∫ t

0
fi(ϕi(s; t, x), s)dsdx + βi

∫ t

t−z−1
i (l)

b(s)ds

≤ βi‖ fi(·, ·)‖L1(Q) + βi

∫ t

0
b(s)ds.

From Bellman’s lemma, we have

bi(t) ≤βi‖ f (·, ·)‖L1(Q)exp
{∫ t

0
βidr

}
≤βi‖ f (·, ·)‖L1(Q)exp

{
βi(T + z−1

i (l))
}

=: M2.

From (3.4), we get

|b1
i (t) − b2

i (t)|

≤
∣∣∣F1

i (t) − F2
i (t)

∣∣∣ +

∫ l

0

∣∣∣K1
i (t, x)b1

i (t − z−1
i ) − K2

i (t, x)b2
i (t − z−1

i )
∣∣∣

≤
∣∣∣F1

i (t) − F2
i (t)

∣∣∣ +

∫ l

0

∣∣∣K1
i (t, x) − K2

i (t, x)
∣∣∣ b1

i (t − z−1
i )dx +

∫ l

0
K2

i (t, x)
∣∣∣b1

i (t − z−1
i ) − b2

i (t − z−1
i )

∣∣∣ dx

≤ ‖ fi(·, ·)‖L1(Q)M1W(t) + M2

∫ l

0
M1W(t)dx + βi

∫ t

0
|b1

i (s) − b2
i (s)|ds

≤M3W(t) + βi

∫ t

0
|b1

i (s) − b2
i (s)|ds,

where M3 = M1(‖ fi(·, ·)‖L1(Q) + M2l). It follows from generalized Gronwall Bellman inequality that

|b1
i (t) − b2

i (t)|

≤M3W(t) + βiexp
{
βiT

}
M3

∫ t

0
W(s)ds

≤M4W(t),

where M4 is a positive constant independent of pi(x, t).
Denote X = [L∞T (R+, L1(0, l))]3 × [L∞(R+)]4, then we define the state space

Y =

{
(p, c0, ce) ∈ X | pi(x, t) ≥ 0 a.e. (x, t) ∈ Q,

∫ l

0
pi(x, t)dx ≤ M, 0 ≤ ci0(t) ≤ 1, 0 ≤ ce(t) ≤ 1

}
.

Define a mapping

G : Y → X, G(p, c0, ce) = (G1(p, c0, ce),G2(p, c0, ce), . . . ,G7(p, c0, ce)),

where

Gi(p, c0, ce)(x, t) = pi(0, t − z−1
i (x))Πi(x; x, t) +

∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

Πi(x; x, t)
Πi(r; x, t)

dr, i = 1, 2, 3. (3.11)
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G j(p, c0, ce)(t) = c j0(0)exp{−(g1 + m)t} + k1

∫ t

0
ce(s)exp{(s − t)(g1 + m)}ds, j = 4, 5, 6. (3.12)

G7(p, c0, ce)(t) =ce(0)exp

−
∫ t

0

k2

3∑
i=1

Pi(τ) + h

 dτ

 +

∫ t

0

g2

3∑
i=1

ci0(s)Pi(s) + v(s)


· exp


∫ s

t

k2

3∑
i=1

Pi(τ) + h

 dτ

 ds. (3.13)

Then, we have ∫ l

0
|Gi(p, c0, ce)|dx

=

∫ l

0
bi(t − z−1

i (x))Πi(x; x, t)dx +

∫ l

0

∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

Πi(x; x, t)
Πi(r; x, t)

drdx

≤

∫ l

0
bi(t − z−1

i (x))dx +

∫ l

0

∫ t

0
fi(ϕi(s; t, x), s)dsdx

≤M2l + ‖ fi(·, ·)‖L∞(Q) = M.

It is trivial to show that G(p, c0, ce) ∈ Y . We now discuss the compressibility of G. By (3.11), we have∫ l

0

∣∣∣Gi(p1, c1
0, c

1
e) −Gi(p2, c2

0, c
2
e)
∣∣∣ dx (i = 1, 2, 3)

≤

∫ l

0
b1

i (t − z−1
i (x))

∣∣∣Π1
i (x; x, t) − Π2

i (x; x, t)
∣∣∣ dx +

∫ l

0

∣∣∣b1
i (t − z−1

i (x)) − b2
i (t − z−1

i (x))
∣∣∣ Π2

i (x; x, t)dx

+

∫ l

0

∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

∣∣∣∣∣∣Π1
i (x; x, t)

Π1
i (r; x, t)

−
Π2

i (x; x, t)
Π2

i (r; x, t)

∣∣∣∣∣∣ drdx

≤M2

∫ l

0

∫ x

0


∣∣∣∣µi

(
r, c1

i0

(
ϕ−1

i (r; t, x)
))
− µi

(
r, c2

i0

(
ϕ−1

i (r; t, x)
))∣∣∣∣

Vi(r, ϕ−1
i (r; t, x))

+

3∑
i,k=1,k,i

λik(r, ϕ−1
i (r; t, x))

∣∣∣P1
k(ϕ−1

i (r; t, x)) − P2
k(ϕ−1

i (r; t, x))
∣∣∣

Vi(r, ϕ−1
i (r; t, x))

 drdx

+

∫ l

0

∣∣∣b1
i (t − z−1

i (x)) − b2
i (t − z−1

i (x))
∣∣∣

Vi(x, t)
dx

+

∫ l

0

∫ x

0

fi(r, ϕ−1
i (r; t, x))

Vi(r, ϕ−1
i (r; t, x))

∫ x

r

(
|µi(δ, c1

i0(ϕ−1
i (δ; t, x))) − µi(δ, c2

i0(ϕ−1
i (δ; t, x)))|

Vi(δ, ϕ−1
i (δ; t, x))

+

3∑
i,k=1,k,i

λik(δ, ϕ−1
i (δ; t, x))

|P1
k(ϕ−1

i (δ; t, x)) − P2
k(ϕ−1

i (δ; t, x))|

Vi(δ, ϕ−1
i (δ; t, x))

 dδdrdx

≤M2

∫ l

0

∫ t

0

Lµ|c1
i0(s) − c2

i0(s)| + λik

∫ l

0

3∑
i,k=1,k,i

|p1
k(x, s) − p2

k(x, s)|dx

 dsdx
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+ ‖ fi(·, ·)‖L1(Q)

∫ t

0

Lµ|c1
i0(s) − c2

i0(s)| + λik

∫ l

0

3∑
i,k=1,k,i

|p1
k(x, s) − p2

k(x, s)|dx

 ds

+ M4

∫ t

0

(
|c1

i0(s) − c2
i0(s)| + (z−1

i (l) + T )|c1
i0(s) − c2

i0(s)|
)

ds

+ M4(z−1
i (l) + T )

∫ l

0

∫ t

0

3∑
i,k=1,k,i

∣∣∣p1
k(x, s) − p2

k(x, s)
∣∣∣ dsdx

≤M5

∫ t

0
|c1

i0(s) − c2
i0(s)|ds +

∫ l

0

∫ t

0

3∑
i,k=1,k,i

|p1
k(x, s) − p2

k(x, s)|dsdx

 ,
where M5 = max{M2lLµ+‖ fi(·, ·)‖L1(Q)Lµ+ M4(1+ z−1

i (l)+T ),M2λikl+‖ fi(·, ·)‖L1(Q)λik + M4(z−1
i (l)+T )}.

By (3.12)–(3.13), we have∣∣∣G j(p1, c1
0, c

1
e) −G j(p2, c2

0, c
2
e)
∣∣∣ (t) ( j = 4, 5, 6)

≤M6

∫ t

0
|c1

e(s) − c2
e(s)|ds,

where M6 = k1.∣∣∣G7(p1, c1
0, c

1
e) −G7(p2, c2

0, c
2
e)
∣∣∣ (t)

=

∣∣∣∣∣∣∣ce(0)exp

−
∫ t

0

k2

3∑
i=1

P1
i (τ) + h

 dτ

 +

∫ t

0

g2

3∑
i=1

c1
i0(s)P1

i (s) + v(s)


· exp


∫ s

t

k2

3∑
i=1

P1
i (τ) + h

 dτ

 ds − ce(0)exp

−
∫ t

0

k2

3∑
i=1

P2
i (τ) + h

 dτ


−

∫ t

0

g2

3∑
i=1

c2
i0(s)P2

i (s) + v(s)

 exp


∫ s

t

k2

3∑
i=1

P2
i (τ) + h

 dτ

 ds

∣∣∣∣∣∣∣
≤

∫ t

0

∣∣∣∣∣∣∣g2

3∑
i=1

c1
i0(s)P1

i (s)exp


∫ s

t
k2

3∑
i=1

P1
i (τ)dτ

 − g2

3∑
i=1

c2
i0(s)P2

i (s)exp


∫ s

t
k2

3∑
i=1

P2
i (τ)dτ


∣∣∣∣∣∣∣ ds

+

∫ t

0

∣∣∣∣∣∣∣v(s)

exp


∫ s

t
k2

3∑
i=1

P1
i (τ)dτ

 − exp


∫ s

t
k2

3∑
i=1

P2
i (τ)dτ



∣∣∣∣∣∣∣ ds

+ k2

∫ t

0

∣∣∣∣∣∣∣
3∑

i=1

P1
i (τ) −

3∑
i=1

P2
i (τ)

∣∣∣∣∣∣∣ dτ
≤(k2 + g2)

∫ t

0

∣∣∣∣∣∣∣
3∑

i=1

P1
i (s) −

3∑
i=1

P2
i (s)

∣∣∣∣∣∣∣ ds + g2M
∫ t

0

∣∣∣∣∣∣∣
3∑

i=1

c1
i0(s) −

3∑
i=1

c2
i0(s)

∣∣∣∣∣∣∣ ds

+ (k2g2M + k2h)
∫ t

0

∫ τ

0

∣∣∣∣∣∣∣
3∑

i=1

P1
i (s) −

3∑
i=1

P2
i (s)

∣∣∣∣∣∣∣ dsdτ

≤M7

 3∑
i=1

∫ l

0

∫ t

0
|p1

i (x, s) − p2
i (x, s)|dsdx +

3∑
i=1

∫ t

0
|c1

i0(s) − c2
i0(s)|ds

 ,
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where M7 = max{k2 + g2 + k2hT + k2g2MT, g2M}.
We now use the Banach fixed point theorem to demonstrate that the mapping G has only one fixed

point. Due to the periodicity of elements in the set Y , we consider the case t ∈ [0,T ] only. Define a
new norm in L∞(0,T ) by

‖(p, c0, ce)‖∗ = ess supt∈[0,T ]e
−λt

 3∑
i=1

∫ l

0
|pi(x, t)|dx +

3∑
i=1

|ci0(t)| + |ce(t)|

 ,
where λ > 0 is large enough. Then, we have

‖G(p1, c1
0, c

1
e) −G(p2, c2

0, c
2
e)‖∗

≤M8ess supt∈[0,T ]e
−λt

∫ t

0

 3∑
i=1

∫ l

0
(|p1

i (x, s) − p2
i (x, s)|)dx +

3∑
i=1

|c1
i0(s) − c2

i0(s)| + |c1
e(s) − c2

e(s)|

 ds

≤M8ess supt∈[0,T ]e
−λt

∫ t

0
eλs

e−λs

 3∑
i=1

∫ l

0
(|p1

i (x, s) − p2
i (x, s)|)dx

+

3∑
i=1

|c1
i0(s) − c2

i0(s)| + |c1
e(s) − c2

e(s)|


 ds

≤M8‖(p1 − p2, c1
0 − c2

0, c
1
e − c2

e)‖∗ess supt∈[0,T ]

{
e−λt

∫ t

0
eλsds

}
≤

M8

λ
‖(p1 − p2, c1

0 − c2
0, c

1
e − c2

e)‖∗,

where M8 = max{M5,M6,M7}. Thus, choosing λ > M8 yields that G is a strict contraction on (Y, ‖ · ‖∗).
The unique fixed point (p, c0, ce) of G must be solution to (2.3). �

Theorem 3.2. If T is small enough, then there are constants K j(T ) with limT→0 K j(T ) > 0, j = 1, 2,
such that

3∑
i=1

‖p1
i − p2

i ‖L∞(0,T ;L1(0,l)) +

3∑
i=1

‖c1
i0 − c2

i0‖L∞(0,T ) + ‖c1
e − c2

e‖L∞(0,T )

≤K1(T )T

 3∑
i=1

‖u1
i − u2

i ‖L∞(0,T ;L1(0,l)) + ‖v1 − v2‖L∞(0,T )

 . (3.14)

3∑
i=1

‖p1
i − p2

i ‖L1(Q) +

3∑
i=1

‖c1
i0 − c2

i0‖L1(0,T ) + ‖c1
e − c2

e‖L1(0,T )

≤K2(T )T

 3∑
i=1

‖u1
i − u2

i ‖L1(Q) + ‖v1 − v2‖L1(0,T )

 . (3.15)

This proof process of Theorem 3.2 is similar to that of Theorem 4.1 in [27], and is omitted here.
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4. Optimality conditions

In this section, we employ tangent-normal cone techniques in nonlinear functional analysis to
deduct the necessary conditions for the optimal control pair.
Theorem 4.1. If (u∗, v∗) is an optimal control pair and (p∗, c∗0, c

∗
e) is the corresponding optimal state,

then

u∗i (x, t) = Fi

(
[wi(x, t) − ξi(x, t)]p∗i (x, t)

ci

)
, i = 1, 2, 3, a.e. (x, t) ∈ Q, (4.1)

v∗(t) = F4

(
ξ7(t)
c4

)
a.e. t ∈ (0,T ), (4.2)

in which the truncated mappings F j are given by

F j(η) =


0, η < 0,
η, 0 ≤ η ≤ N j, j = 1, 2, 3, 4,
N j, η > N j,

(4.3)

and (ξ1, ξ2, . . . , ξ7) is the solution of the following adjoint system corresponding to (u∗, v∗):

∂ξi
∂t + Vi

∂ξi
∂x =

[
µi(x, c∗i0(t)) +

3∑
i,k=1,k,i

λikP∗k(t) + u∗i

]
ξi + [k2c∗e(t) − g2c∗i0(t)]ξ7

− ξi(0, t)βi(x, c∗i0(t)) + wiu∗i ,
dξi+3

dt =
∫ l

0
∂µi(x,c∗i0(t))

∂ci0
p∗i ξidx + (g1 + m)ξi+3 − g2P∗i (t)ξ7 − ξi(0, t)

∫ l

0
∂βi(x,c∗i0(t))

∂ci0
p∗i dx,

dξ7
dt = −k1

3∑
i=1
ξi+3 +

[
k2

3∑
i=1

P∗i (t) + h
]
ξ7,

ξi(l, t) = 0, ξi(x, t) = ξi(x, t + T ), i = 1, 2, 3,
ξ j(T ) = 0, j = 4, . . . , 7.

(4.4)

Proof. The existence of a unique, bounded solution to the adjoint system (4.4) can be treated in the
same manner as the state system (2.3). For any given (ν1, ν2) ∈ TΩ(u∗, v∗) (the tangent cone of Ω at
(u∗, v∗)), u∗ = (u∗1, . . . , u

∗
3), ν1 = (ν11, . . . , ν31), (u∗ + εν1, v∗ + εν2) ∈ Ω provided that ε is small enough.

Then, from J(u∗ + εν1, v∗ + εν2) ≤ J(u∗, v∗), we derive

3∑
i=1

∫ T

0

∫ l

0
wi(u∗i + ενi1)pεi dxdt −

1
2

3∑
i=1

∫ T

0

∫ l

0
ci(u∗i + ενi1)2dxdt −

1
2

∫ T

0
c4(v∗ + εν2)2dt

≤

3∑
i=1

∫ T

0

∫ l

0
wiu∗i p∗i dxdt −

1
2

3∑
i=1

∫ T

0

∫ l

0
ciu∗

2

i dxdt −
1
2

∫ T

0
c4v∗

2
dt,

and then deduce that

3∑
i=1

∫ T

0

∫ l

0
wi(u∗i zi + νi1 p∗i )dxdt −

3∑
i=1

∫ T

0

∫ l

0
ciu∗i νi1dxdt −

∫ T

0
c4v∗ν2dt ≤ 0, (4.5)

where 1
ε
(pεi − p∗i ) → zi,

1
ε
(cεi0 − c∗i0) → zi+3,

1
ε
(cεe − c∗e) → z7, as ε → 0. By Theorem 3.2, we get the

existence of z1, z2, . . . , z7. (pε, cε0, c
ε
e) is the state corresponding to (u∗ + εν1, v∗ + εν2). It follows from
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the state system (2.3) that (z1, z2, . . . , z7) satisfies

∂zi
∂t + Vi

∂zi
∂x = −

[
µi(x, c∗i0(t)) +

3∑
i,k=1,k,i

λikP∗k(t) + Vix + u∗i

]
zi −

3∑
i,k=1,k,i

λikZk(t)p∗i

−
∂µi(x,c∗i0(t))

∂ci0
p∗i zi+3 − vi1 p∗i ,

dzi+3
dt = k1z7 − g1zi+3 − mzi+3,

dz7
dt = −k2c∗e(t)

3∑
i=1

Zi(t) + g2

3∑
i=1

[
c∗i0Zi(t) + zi+3P∗i (t)

]
−

[
k2

3∑
i=1

P∗i (t) + h1

]
z7 + ν2,

Vi(0, t)zi(0, t) =
∫ l

0
βi(x, c∗i0(t))zidx +

∫ l

0
∂βi(a,c∗i0(t))

∂ci0
p∗i zi+3dx,

zi(x, t) = zi(x, t + T ),
zi+3(0) = z7(0) = 0,
P∗i (t) =

∫ l

0
p∗i (x, t)dx, Zi(t) =

∫ l

0
zi(x, t)dx, i = 1, 2, 3.

(4.6)

We multiply the first three equations in (4.6) by ξ1, ξ2, . . . , ξ7, respectively, and integrate on Q and
(0,T ). By using (4.4), we have

3∑
i=1

∫ T

0

∫ l

0
wiu∗i zidxdt = −

3∑
i=1

∫ T

0

∫ l

0
νi1ξi p∗i dxdt +

∫ T

0
ν2ξ7dt. (4.7)

Substituting (4.7) into (4.5) gives

3∑
i=1

∫ T

0

∫ l

0
[(wi − ξi)p∗i − ciu∗i ]νi1dxdt +

∫ T

0
(−c4v∗ + ξ7)ν2dt ≤ 0,

for any (ν1, ν2) ∈ TΩ(u∗, v∗). Consequently, the structure of normal cone tells us that ((wi − ξi)p∗i −
ciu∗i ,−c4v∗ + ξ7) ∈ NΩ(u∗, v∗) (the normal cone of Ω at (u∗, v∗)), which gives the desired result. �

Theorem 4.2. If T is small enough, then there is a constant K3, such that

3∑
i=1

‖ξ1
i − ξ

2
i ‖L∞(Q) +

3∑
i=1

‖ξ1
i+3 − ξ

2
i+3‖L∞(0,T ) + ‖ξ1

7 − ξ
2
7‖L∞(0,T )

≤K3T

 3∑
i=1

‖u1
i − u2

i ‖L∞(Q) + ‖v1 − v2‖L∞(0,T )

 . (4.8)

The proof process of Theorem 4.2 is similar to that of Theorem 3.2, and is omitted here.

5. Existence of optimal control pair

In order to show that there exists a unique optimal control pair by means of the Ekeland variational
principle, we embed the functional J̃(u, v) into [L1(Q)]3 × L1(0,T ). We define

J̃(u, v) =

{
J(u, v), (u, v) ∈ Ω,

−∞, otherwise.

Lemma 5.1. J̃(u, v) is upper semi-continuous with respect to (u, v) in [L1(Q)]3 × L1(0,T ).
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Proof. Let (un, vn) → (u, v) as n → ∞, (pn, cn
0, c

n
e) and (p, c0, ce) be the states of (2.3) corresponding to

(un, vn) and (u, v), respectively. By Riesz theorem, there is a subsequence, denoted still by (un, vn) such
that

[un(x, t)]2 → u2(x, t) a.e. (x, t) ∈ Q, [vn(t)]2 → v2(t) a.e. t ∈ (0,T ), as n→ ∞.

Thus, from the Lebesgue’s dominated convergence theorem yields

lim
n→∞

∫ T

0

∫ l

0
[un

i (x, t)]2dxdt =

∫ T

0

∫ l

0
u2

i (x, t)dxdt, lim
n→∞

∫ T

0
[vn(t)]2dt =

∫ T

0
v2(t)dt.

On the other hand, it follows from (3.15) that∣∣∣∣∣∣
∫ T

0

∫ l

0
wi(x, t)un

i (x, t)pn
i (x, t)dxdt −

∫ T

0

∫ l

0
wi(x, t)ui(x, t)pi(x, t)dxdt

∣∣∣∣∣∣
≤

∫ T

0

∫ l

0
wi(x, t)pn

i (x, t)|un
i (x, t) − ui(x, t)|dxdt +

∫ T

0

∫ l

0
wi(x, t)ui(x, t)|pn

i (x, t) − pi(x, t)|dxdt

≤Mwi‖un
i − ui‖L1(Q) + Niwi‖pn

i − pi‖L1(Q)

≤Mwi‖un
i − ui‖L1(Q) + NiwiK2(T )T (‖un

i − ui‖L1(Q) + ‖v1 − v2‖L1(0,T )).

Therefore,

lim
n→∞

∫ T

0

∫ l

0
wi(x, t)un

i (x, t)pn
i (x, t)dxdt =

∫ T

0

∫ l

0
wi(x, t)ui(x, t)pi(x, t)dxdt.

In a word, we have proved that lim supn→∞ J̃(un, vn) ≤ J̃(u, v). �

Theorem 5.1. If T is sufficiently small, there exists one and only one optimal control pair (u∗, v∗),
which is in feedback and is determined by (4.1)–(4.4) and (2.3), where C1 and C2 are the supremum of
|pi| and |ξ j|, i = 1, 2, 3, j = 1, 2, . . . , 7, respectively.

Proof. Define the mapping L : Ω→ Ω as follows:

L(u, v) = F

(
(w1 − ξ1)p1

c1
, . . . ,

(w3 − ξ3)p3

c3
,
ξ7

c4

)
=

(
F1

(
(w1 − ξ1)p1

c1

)
, . . . , F3

(
(w3 − ξ3)p3

c3

)
,F4

(
ξ7

c4

))
,

where (p, c0, ce) and (ξ1, ξ1, . . . , ξ7) are the state and adjoint state, respectively, corresponding to the
control (u, v). We show that L admits a unique fixed point, which maximizes the functional L.

From Lemma 5.1 and the Ekeland variational principle, for any given ε > 0, there exists (uε, vε) ∈ Ω

such that
J̃(uε, vε) ≥ sup

(u,v)∈Ω
J̃(u, v) − ε, (5.1)

J̃(uε, vε) ≥ sup
(u,v)∈Ω

J̃(u, v) −
√
ε

 3∑
i=1

‖uεi − ui‖L1(Q) + ‖vε − v‖L1(0,T )


 . (5.2)
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Thus, the perturbed functional

J̃ε(u, v) = J̃(u, v) −
√
ε

 3∑
i=1

‖uεi − ui‖L1(Q) + ‖vε − v‖L1(0,T )

 ,
attains its supremum at (uε, vε). Then, we argue as in Theorem 4.1:

(uε, vε) = L(uε, vε)

=

F1

 (w1 − ξ
ε
1)pε1 +

√
εθε1

c1

 , . . . ,F3

 (w3 − ξ
ε
3)pε3 +

√
εθε3

c3

 ,F4

ξε7 +
√
εθε4

c4

 , (5.3)

where (pε, cε0, c
ε
e) and (ξε1, ξ

ε
2, . . . , ξ

ε
7) are the state and adjoint state, respectively, corresponding to the

control (uε, vε), θε1, . . . , θ
ε
3 ∈ L∞(Q), θε4 ∈ L∞(0,T ), and with |θεi | ≤ 1, i = 1, 2, 3, 4.

First, we show that L has only one fixed point. Let (p j, c j
0, c

j
e) and (ξ j

1, ξ
j
2, . . . , ξ

j
7) be the state and

adjoint state corresponding to the control (u j, v j), j = 1, 2. By (3.14) and (4.8), we have

‖L(u1, v1) − L(u2, v2)‖∞

=

3∑
i=1

∥∥∥∥∥∥Fi

(
(wi − ξ

1
i )p1

i

ci

)
− Fi

(
(wi − ξ

2
i )p2

i

ci

)∥∥∥∥∥∥
L∞(Q)

+

∥∥∥∥∥∥F4

(
ξ1

7

c4

)
− F4

(
ξ2

7

c4

)∥∥∥∥∥∥
L∞(0,T )

≤

3∑
i=1

∥∥∥∥∥∥ (wi − ξ
1
i )p1

i

ci
−

(wi − ξ
2
i )p2

i

ci

∥∥∥∥∥∥
L∞(Q)

+

∥∥∥∥∥∥ξ1
7

c4
−
ξ2

7

c4

∥∥∥∥∥∥
L∞(0,T )

≤

3∑
i=1

∥∥∥∥∥∥wi(p1
i − p2

i )
ci

+
|ξ1

i |(p1
i − p2

i )
ci

+
|p2

i |(ξ
1
i − ξ

2
i )

ci

∥∥∥∥∥∥
L∞(Q)

+

∥∥∥∥∥∥ξ1
7 − ξ

2
7

c4

∥∥∥∥∥∥
L∞(0,T )

≤T

 3∑
i=1

1
ci

(wiK1 + C2K1 + C1K3) + K3

 ·  3∑
i=1

‖u1
i − u2

i ‖L∞(Q) + ‖v1 − v2‖L∞(0,T )

 .
Clearly, L is a contraction if T is sufficiently small. Hence, L has a unique fixed point (u∗, v∗).

Next, we prove (uε, vε)→ (u∗, v∗) as ε→ 0+. The relations (4.1), (4.2) and (5.3) lead to

‖L(uε, vε) − (uε, vε)‖∞

=

∥∥∥∥∥∥
(
F1

(
(w1 − ξ

ε
1)pε1

c1

)
, . . . ,F3

(
(w3 − ξ

ε
3)pε3

c3

)
,F4

(
ξε7
c4

))
−

F1

 (w1 − ξ
ε
1)pε1

c1
+

√
εθε1
c1

 , . . . ,F3

 (w3 − ξ
ε
3)pε3

c3
+

√
εθε3
c3

 , F4

ξε7c4
+

√
εθε4
c4

∥∥∥∥∥∥
∞

≤

3∑
i=1

∥∥∥∥∥∥Fi

(
(wi − ξ

ε
i )pεi

ci

)
− Fi

(
(wi − ξ

ε
i )pεi

ci
+

√
εθεi
ci

)∥∥∥∥∥∥
L∞(Q)

+

∥∥∥∥∥∥F4

(
ξε7
c4

)
− F4

ξε7c4
+

√
εθε4
c4

∥∥∥∥∥∥
L∞(0,T )

=

3∑
i=1

∥∥∥∥∥∥ (wi − ξ
ε
i )pεi

ci
−

(wi − ξ
ε
i )pεi

ci
−

√
εθεi
ci

∥∥∥∥∥∥
L∞(Q)

+

∥∥∥∥∥∥ξε7c4
−
ξε7
c4
−

√
εθε4
c4

∥∥∥∥∥∥
L∞(0,T )

≤
√
ε

3∑
i=1

‖θεi (x, t)‖L∞(Q)

ci
+
√
ε
‖θε4(t)‖L∞(0,T )

c4
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≤
√
ε

4∑
i=1

1
ci
,

it is easy to derive that

‖(u∗, v∗) − (uε, vε)‖∞
≤‖L(u∗, v∗) − L(uε, vε)‖∞ + ‖L(uε, vε) − (uε, vε)‖∞

≤T

 3∑
i=1

1
ci

(wiK1 + C2K1 + C1K3) + K3

 ·  3∑
i=1

‖u∗i − uεi ‖L∞(Q) + ‖v∗ − vε‖L∞(0,T )

 +
√
ε

4∑
i=1

1
ci
.

So, if T is small enough, the following result holds:

3∑
i=1

‖u∗i − uεi ‖L∞(Q) + ‖v∗ − vε‖L∞(0,T ) ≤

√
ε

4∑
i=1

1
ci

1 − T
(

3∑
i=1

1
ci

(wiK1 + C2K1 + C1K3) + K3

) ,
which gives the desired result.

Finally, passing to the limit ε→ 0+ in the inequality of (5.2) and using Lemma 5.1 yield J̃(u∗, v∗) ≥
lim sup(u,v)∈Ω J̃(u, v), which finishes the proof. �

6. Numerical approximation

In this section, our goal is to obtain a numerical approximation for the nonnegative T -periodic
solution of the system (2.3). We numerically study the evolution of a single species in a polluted
environment as a simplification of the complete model (2.3). If the harvest effort term and the
summation term are considered, it will be transformed into the optimization problem (2.3)–(2.4), which
is complex.

Suppose the computational domain Q̃ = [0, l]× [0, T̃ ] is divided into an J×N mesh with the spacial
step size h = l

J = 0.01 in the x direction and time step size τ = T̃
N = 0.02. The grid points (x j, tn) are

defined by
x j = jh, j = 0, 1, 2, . . . , J;
tn = nτ, n = 0, 1, 2, . . . ,N,

where J and N are two integers. The pn
j and f n

j terms denote the solution p( jh, nτ) and source term
f ( jh, nτ) of the finite difference equation, respectively.

Based on the state system (2.3), the finite difference scheme can be written as follows:

pn
j − pn−1

j

τ
+ V

pn
j − pn

j−1

h
+ Vx pn

j + µpn
j − f n

j = 0, (6.1)

where j = 1, 2, . . . , J; n = 1, 2, . . . ,N. It follows from (6.1) that

−dV pn
j−1 + [1 + dV + τ(Vx + µ)]pn

j = pn−1
j + τ f n

j , (6.2)

where d = τ
h .
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Since V(0, t) = 1, then the boundary condition p(0, t) =
∫ l

0
β(x, c0(t))p(x, t)dx and initial condition

p(x, 0) = p0(x) can be discretized as 
p0

j = p0 j,

pn
0 =

J∑
j=1
β j pn

jh.
(6.3)

From (6.2) and (6.3), we have the matrix associated with the system of linear equations of the finite
difference method

APn = Pn−1 + τF, (6.4)

where

A =



1 + dV + τ(Vx + µ) − dVβh −dVβh . . . −dVβh −dVβh
−dV 1 + dV + τ(Vx + µ) . . . 0 0

. . .
. . .

. . .

0 0 . . . −dV 1 + dV + τ(Vx + µ)
0 0 . . . 0 −dV


,

Pn = (pn
1, pn

2, . . . , pn
J)T, F = ( f n

1 , f n
2 , . . . , f n

J )T.

Note that A is an upper triangular matrix, so the nonlinear algebraic equations (6.4) have solutions. In
this paper, we choose the following parameters:

β(x, c0(t)) = 100x2(1 − x)(1 + sin(πx))
∣∣∣sin 2πc0(t)

T

∣∣∣ ,
µ(x, c0(t)) = e−4x(1 − x)−1.4(2 + cos 2πc0(t)

T ),
V(x, t) = 1 − x, f (x, t) = 2 + (1 + x) sin(2πt

T ),
p0(x) = ex, u(x, t) = 0, x = 1, T = 1

3 , T̃ = 6T.
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Figure 1. Fertility rate of the population.
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Figure 2. Mortality rate of the population.

0
1

1

2

2

im
m

ig
ra

tio
n 

ra
te

1.5

3

size

0.5

time

4

1
0.5

0 0

0.5

1

1.5

2

2.5

3

3.5

Figure 3. Immigration rate of the population.

In this paper, we used the backward difference scheme and chasing method, and (6.4) was solved
through programming. The fertility rate, mortality rate, and immigration rate were T-periodic and were
all greater than zero, which is consistent with the assumptions. We considered T = 1

3 . Their graphs
are given in Figures 1–3, respectively. The fertility rate was the highest when the size was half and
the mortality rate was the highest when the size was the maximum, which conformed to the empirical
situation. Therefore, the selection of parameters β, µ, and f was reasonable.

The graphic of the numerical solution p is given in Figure 4. Over time, solution p showed T-
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periodic changes. We take the numerical solution of (2.3), corresponding to an arbitrary positive initial
datum p0, on some interval [kT, (k + 1)T ], where k is large enough. On such an interval, the solution p
was already stable. We can then get the periodic solution of (2.3) by extending the numerical solution p.
During computation we found that any positive initial datum p0 was appropriate for use.
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Figure 4. Numerical solution of the system.

7. Conclusions

The study of time periodic models is of great importance due to the fact that the vital rates and the
inflow are often time periodic. In the foregoing, we have established the existence and uniqueness of
a nonnegative solution of the hybrid system (2.3). The necessary conditions for optimal controls were
provided. The existence of the unique optimal control pair was investigated. Some numerical results
were finally presented. The results implied that the solution of (2.3) always maintains the pattern of
increasing periodically, and any positive initial datum p0 is appropriate. Over time, the density of the
population increased first and then decreased in a cycle. The bang-bang structure of solutions is much
more common in optimal population management.

Furthermore, if Vi(x, t) = 1 for Q = (0, l) × R+, i = 1, 2, 3, the state system degenerates into an
age-structured model, and our results cover the corresponding results [5–7]. Note that the individual
price factor wi(x, t) plays an important role in the structure of the optimal controller (4.1). However,
as we do not have a clear biological meaning for the solutions ξi(i = 1, 2, . . . , 7) of the adjoint system
(4.4), it is difficult to give a precise explanation of the threshold conditions (4.1) and (4.2). In specific
applications, the optimal population density and optimal policy are calculated by combining the state
system and the adjoint system. This is a challenging problem, and future work in the area should
address it.
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