We consider the modified Cahn-Hilliard equation that govern the relative concentration $ \phi $ of one component of a binary system. This equation is characterized by the presence of the additional inertial term $ \tau_{D}\frac{d^2\phi}{dt^2} $ which stands for the relaxation of the diffusion flux. This equation is associated with Dirichlet boundary conditions. We study the existence, uniqueness and regularity of solutions in one space dimension. We also prove the existence of the global attractor and exponential attractors.
Citation: Dieunel DOR. On the modified of the one-dimensional Cahn-Hilliard equation with a source term[J]. AIMS Mathematics, 2022, 7(8): 14672-14695. doi: 10.3934/math.2022807
We consider the modified Cahn-Hilliard equation that govern the relative concentration $ \phi $ of one component of a binary system. This equation is characterized by the presence of the additional inertial term $ \tau_{D}\frac{d^2\phi}{dt^2} $ which stands for the relaxation of the diffusion flux. This equation is associated with Dirichlet boundary conditions. We study the existence, uniqueness and regularity of solutions in one space dimension. We also prove the existence of the global attractor and exponential attractors.
[1] | S. Gatti, M. Grasselli, V. Pata, A. Miranville, On the hyperbolic relaxation of the on-dimensional Cahn-Hilliard equation, J. Math. Anal. Appl., 312 (2005), 230–247. https://doi.org/10.1016/j.jmaa.2005.03.029 doi: 10.1016/j.jmaa.2005.03.029 |
[2] | A. Miranville, On the conserved phase field model, J. Math. Anal. Appl., 400 (2013), 143–152. https://doi.org/10.1016/j.jmaa.2012.11.038 doi: 10.1016/j.jmaa.2012.11.038 |
[3] | P. Galenko, V. Lebedev, Analysis of the dispersion relation in spinodal decomposition of a binary system, Philosophical Magazine Letters, 87 (2007), 821–827. https://doi.org/10.1080/09500830701395127 doi: 10.1080/09500830701395127 |
[4] | P. Galenko, Phase-Field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system, Phys. Lett. A, 287 (2001), 190–197. https://doi.org/10.1016/S0375-9601(01)00489-3 doi: 10.1016/S0375-9601(01)00489-3 |
[5] | P. Galenko, D. Danilov, V. Lebedev, Phase-field-crystal and Swiff-Hohenberg equations with fast dynamics, Phys. Rev. E, 79 (2009), 051110. https://doi.org/10.1103/PhysRevE.79.051110 doi: 10.1103/PhysRevE.79.051110 |
[6] | P. Galenko, V. Lebedev, Local Nonequilibrium effect on spinodal decomposition in a binary system, Int. J. Thermodyn., 11 (2008), 21–28. |
[7] | P. Galenko, D. Jou, Fluctuations and stochastic noise in systems with hyperbolic mass transport, Physica A, 366 (2006), 149–158. https://doi.org/10.1016/j.physa.2005.10.027 doi: 10.1016/j.physa.2005.10.027 |
[8] | P. Galenko, D. Jou, Kinetic contribution to the fast spinodal decomposition controlled by diffusion, Physica A, 388 (2009), 3113–3123. https://doi.org/10.1016/j.physa.2009.04.003 doi: 10.1016/j.physa.2009.04.003 |
[9] | P. Galenko, V. Lebedev, Experimental test for the hyperbolic model of spinodal decomposition in the binary system, JETP Letters, 86 (2007), 458–461. https://doi.org/10.1134/S002136400719006X doi: 10.1134/S002136400719006X |
[10] | P. Galenko, Local nonequilibrium phase transition model with relaxation of the diffusion flux, Phys. Lett. A, 190 (1994), 292–294. https://doi.org/10.1016/0375-9601(94)90757-9 doi: 10.1016/0375-9601(94)90757-9 |
[11] | J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795–801. https://doi.org/10.1016/0001-6160(61)90182-1 |
[12] | J. W. Cahn, J. E. Hilliard, Free energy of a non uniform system, Interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102 |
[13] | B. L. D. Bangola, Ph.D. thesis, Department of Mathematics University of Poitiers, France, 2013. |
[14] | A. Miranville, L. Chrfils, S. Peng, H. Zhu, Energy stable finite element/Spectral method for modified higher-order generalized Cahn-Hilliard equations, J. Math. Study, 51 (2018), 253–293. https://doi.org/10.4208/jms.v51n3.18.02 doi: 10.4208/jms.v51n3.18.02 |
[15] | S. Peng, H. Zhu, Well-posedness for modified higher-order anisotropic Cahn-Hilliard equations, Asymptotic Anal., 111 (2019), 201–215. https://doi.org/10.3233/ASY-181494 doi: 10.3233/ASY-181494 |
[16] | A. Miranville, The Cahn-Hilliard equation: Recent advances and applications, Society for industrial and applied mathematics, U.S, 2019. https://doi.org/10.1137/1.9781611975925 |
[17] | P. Fabrice, C. Galushinski, A. Miranville, S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, DIsc. Cont. Dyn. Sys., 10 (2004), 211–238. https://doi.org/10.3934/dcds.2004.10.211 doi: 10.3934/dcds.2004.10.211 |
[18] | M. Grasselli, G. Schimperna, S. Zelik, Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term, Nonlinearity, 23 (2010), 707–737. https://doi.org/10.1088/0951-7715/23/3/016 doi: 10.1088/0951-7715/23/3/016 |
[19] | H. Fakih, Ph.D thesis, Department of Mathematic University of Poitiers, France, 2015. |