Research article

$ p $th moment exponential stability and convergence analysis of semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion

  • Received: 24 February 2022 Revised: 23 April 2022 Accepted: 05 May 2022 Published: 08 June 2022
  • MSC : 60H15, 60G15

  • Many works have been done on Brownian motion or fractional Brownian motion, but few of them have considered the simpler type, Riemann-Liouville fractional Brownian motion. In this paper, we investigate the semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion with Hurst parameter $ H < 1/2 $. First, we prove the $ p $th moment exponential stability of mild solution. Then, based on the maximal inequality from Lemma 10 in [1], the uniform boundedness of $ p $th moment of both exact and numerical solutions are studied, and the strong convergence of the exponential Euler method is established as well as the convergence rate. Finally, two multi-dimensional examples are carried out to demonstrate the consistency with theoretical results.

    Citation: Xueqi Wen, Zhi Li. $ p $th moment exponential stability and convergence analysis of semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion[J]. AIMS Mathematics, 2022, 7(8): 14652-14671. doi: 10.3934/math.2022806

    Related Papers:

  • Many works have been done on Brownian motion or fractional Brownian motion, but few of them have considered the simpler type, Riemann-Liouville fractional Brownian motion. In this paper, we investigate the semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion with Hurst parameter $ H < 1/2 $. First, we prove the $ p $th moment exponential stability of mild solution. Then, based on the maximal inequality from Lemma 10 in [1], the uniform boundedness of $ p $th moment of both exact and numerical solutions are studied, and the strong convergence of the exponential Euler method is established as well as the convergence rate. Finally, two multi-dimensional examples are carried out to demonstrate the consistency with theoretical results.



    加载中


    [1] E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2, Stoch. Proc. Appl., 86 (2000), 121–139. https://doi.org/10.1016/S0304-4149(99)00089-7 doi: 10.1016/S0304-4149(99)00089-7
    [2] A. N. Kolmogorov, The Wiener spiral and some other interesting curves in Hilbert space, Dokl. Akad. Nauk SSSR, 26 (1940), 115–118.
    [3] B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437. https://doi.org/10.1137/1010093 doi: 10.1137/1010093
    [4] S. Rostek, R. Schöbel, A note on the use of fractional Brownian motion for financial modeling, Econ. Model., 30 (2013), 30–35. https://doi.org/10.1016/j.econmod.2012.09.003 doi: 10.1016/j.econmod.2012.09.003
    [5] A. Gupta, S. D. Joshi, P. Singh, On the approximate discrete KLT of fractional Brownian motion and applications, J. Franklin I., 355 (2018), 8989–9016. https://doi.org/10.1016/j.jfranklin.2018.09.023 doi: 10.1016/j.jfranklin.2018.09.023
    [6] P. Guasoni, Z. Nika, M. Rásonyi, Trading fractional Brownian motion, SIAM J. Financ. Math., 10 (2019), 769–789. https://doi.org/10.1137/17M113592X doi: 10.1137/17M113592X
    [7] S. N. I. Ibrahim, M. Misiran, M. F. Laham, Geometric fractional Brownian motion model for commodity market simulation, Alex. Eng. J., 60 (2021), 955–962. https://doi.org/10.1016/j.aej.2020.10.023 doi: 10.1016/j.aej.2020.10.023
    [8] P. Allegrini, M. Buiatti, P. Grigolini, B. J. West, Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences, Phys. Rev. E, 57 (1998), 4558. https://doi.org/10.1103/PhysRevE.57.4558 doi: 10.1103/PhysRevE.57.4558
    [9] K. Burnecki, E. Kepten, J. Janczura, I. Bronshtein, Y. Garini, A. Weron, Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion, Biophys. J., 103 (2012), 1839–1847. https://doi.org/10.1016/j.bpj.2012.09.040 doi: 10.1016/j.bpj.2012.09.040
    [10] A. Pashko, Simulation of telecommunication traffic using statistical models of fractional Brownian motion, IEEE 2017 4th Int. Sci.-Pract. Conf. Prob. Infocommun., 2017,414–418. https://doi.org/10.1109/INFOCOMMST.2017.8246429
    [11] A. O. Pashko, I. V. Rozora, Accuracy of simulation for the network traffic in the form of fractional Brownian motion, IEEE 2018 14th Int. Conf. Adv. Trends Radioelecrtron. Telecommun. Comput. Eng., 2018,840–845. https://doi.org/10.1109/TCSET.2018.8336328
    [12] X. Song, X. Li, S. Song, Y. Zhang, Z. Ning, Quasi-synchronization of coupled neural networks with reaction-diffusion terms driven by fractional Brownian motion, J. Franklin I., 358 (2021), 2482–2499. https://doi.org/10.1016/j.jfranklin.2021.01.023 doi: 10.1016/j.jfranklin.2021.01.023
    [13] S. Kumar, A. Kumar, Z. M. Odibat, A nonlinear fractional model to describe the population dynamics of two interacting species, Math. Method. Appl. Sci., 40 (2017), 4134–4148. https://doi.org/10.1002/mma.4293 doi: 10.1002/mma.4293
    [14] Q. M. Zhang, X. N. Li, Existence and uniqueness for stochastic age-dependent population with fractional Brownian motion, Math. Prob. Eng., 2012 (2012). https://doi.org/10.1155/2012/813535
    [15] J. H. Jeon, A. V. Chechkin, R. Metzler, Scaled Brownian motion: A paradoxical process with a time dependent diffusivity for the description of anomalous diffusion, Phys. Chem. Chem. Phys., 16 (2014), 15811–15817. https://doi.org/10.1039/C4CP02019G doi: 10.1039/C4CP02019G
    [16] D. Blömker, W. W. Mohammed, C. Nolde, F. Wöhrl, Numerical study of amplitude equations for spdes with degenerate forcing, Int. J. Comput. Math., 89 (2012), 2499–2516. https://doi.org/10.1080/00207160.2012.662591 doi: 10.1080/00207160.2012.662591
    [17] J. Beran, N. Terrin, Testing for a change of the long-memory parameter, Biometrika, 83 (1996), 627–638. https://doi.org/10.1093/biomet/83.3.627 doi: 10.1093/biomet/83.3.627
    [18] S. Lin, Stochastic analysis of fractional Brownian motions, Stochastics, 55 (1995), 121–140. https://doi.org/10.1080/17442509508834021 doi: 10.1080/17442509508834021
    [19] W. Dai, C. Heyde, Itô's formula with respect to fractional Brownian motion and its application, Int. J. Stoch. Anal., 9 (1996), 439–448. https://doi.org/10.1155/S104895339600038X doi: 10.1155/S104895339600038X
    [20] T. E. Duncan, Y. Hu, B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion I. Theory, SIAM J. Control Optim., 38 (2000), 582–612. https://doi.org/10.1137/S036301299834171X doi: 10.1137/S036301299834171X
    [21] M. Zähle, Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Rel., 111 (1998), 333–374. https://doi.org/10.1007/s004400050171 doi: 10.1007/s004400050171
    [22] E. Alos, J. A. León, D. Nualart, Stochastic Stratonovich calculus fbm for fractional Brownian motion with Hurst parameter less than 1/2, Taiwanese J. Math., 5 (2001), 609–632. https://doi.org/10.11650/twjm/1500574954 doi: 10.11650/twjm/1500574954
    [23] E. Alòs, D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stoch. Stoch. Rep., 75 (2003), 129–152. https://doi.org/10.1080/1045112031000078917 doi: 10.1080/1045112031000078917
    [24] P. Cheridito, D. Nualart, Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter $h \in (0, 1)$, Ann. I. H. Poincare, 41 (2005), 1049–1081. https://doi.org/10.1016/j.anihpb.2004.09.004 doi: 10.1016/j.anihpb.2004.09.004
    [25] S. Lim, V. Sithi, Asymptotic properties of the fractional Brownian motion of Riemann-Liouville type, Phys. Lett. A, 206 (1995), 311–317. https://doi.org/10.1016/0375-9601(95)00627-F doi: 10.1016/0375-9601(95)00627-F
    [26] F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Springer Science and Business Media, London, 2008. https://doi.org/10.1007/978-1-84628-797-8
    [27] W. W. Mohammed, D. Blömker, Fast-diffusion limit with large noise for systems of stochastic reaction-diffusion equations, Stoch. Anal. Appl., 34 (2016), 961–978. https://doi.org/10.1080/07362994.2016.1197131 doi: 10.1080/07362994.2016.1197131
    [28] M. Hochbruck, A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43 (2005), 1069–1090. https://doi.org/10.1137/040611434 doi: 10.1137/040611434
    [29] M. Narayanamurthi, A. Sandu, Efficient implementation of partitioned stiff exponential Runge-Kutta methods, Appl. Numer. Math., 152 (2020), 141–158. https://doi.org/10.1016/j.apnum.2020.01.010 doi: 10.1016/j.apnum.2020.01.010
    [30] A. Koskela, A. Ostermann, Exponential Taylor methods: Analysis and implementation, Comput. Math. Appl., 65 (2013), 487–499. https://doi.org/10.1016/j.camwa.2012.06.004 doi: 10.1016/j.camwa.2012.06.004
    [31] A. Ostermann, M. Thalhammer, W. Wright, A class of explicit exponential general linear methods, BIT Numer. Math., 46 (2006), 409–431. https://doi.org/10.1007/s10543-006-0054-3 doi: 10.1007/s10543-006-0054-3
    [32] M. Hochbruck, A. Ostermann, Exponential multistep methods of Adams-type, BIT Numer. Math., 51 (2011), 889–908. https://doi.org/10.1007/s10543-011-0332-6 doi: 10.1007/s10543-011-0332-6
    [33] C. Shi, Y. Xiao, C. Zhang, The convergence and MS stability of exponential Euler method for semilinear stochastic differential equations, Abstr. Appl. Anal., 2012 (2012). https://doi.org/10.1155/2012/350407
    [34] Y. Komori, K. Burrage, A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems, BIT Numer. Math., 54 (2014), 1067–1085. https://doi.org/10.1007/s10543-014-0485-1 doi: 10.1007/s10543-014-0485-1
    [35] L. Li, Y. Zhang, Stability of exponential Euler method for stochastic systems under Poisson white noise excitations, Int. J. Theor. Phys., 53 (2014), 4267–4274. https://doi.org/10.1007/s10773-014-2177-7 doi: 10.1007/s10773-014-2177-7
    [36] P. Hu, C. Huang, Delay dependent asymptotic mean square stability analysis of the stochastic exponential Euler method, J. Comput. Appl. Math., 382 (2021), 113068. https://doi.org/10.1016/j.cam.2020.113068 doi: 10.1016/j.cam.2020.113068
    [37] F. Mahmoudi, M. Tahmasebi, The Convergence of exponential Euler method for weighted fractional stochastic equations, Comput. Methods Differ. Equ., 10 (2022), 538–548. https://doi.org/10.22034/CMDE.2021.41430.1795 doi: 10.22034/CMDE.2021.41430.1795
    [38] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Yverdon, 1993.
    [39] M. Zähle, On the link between fractional and stochastic calculus, Stoch. Dynam., 1999,305–325. https://doi.org/10.1007/0-387-22655-9_13
    [40] W. W. Mohammed, D. Blömker, Fast-diffusion limit for reaction-diffusion equations with multiplicative noise, J. Math. Anal. Appl., 496 (2021), 124808. https://doi.org/10.1016/j.jmaa.2020.124808 doi: 10.1016/j.jmaa.2020.124808
    [41] T. Caraballo, M. Garrido-Atienza, T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional brownian motion, Nonlinear Anal.-Theor., 74 (2011), 3671–3684. https://doi.org/10.1016/j.na.2011.02.047 doi: 10.1016/j.na.2011.02.047
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1298) PDF downloads(97) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog