Research article Special Issues

Some coupled fixed point theorems on multiplicative metric spaces with an application

  • Received: 04 January 2022 Revised: 28 February 2022 Accepted: 09 March 2022 Published: 08 June 2022
  • MSC : 47H10, 54H25

  • This article aims to prove some coupled fixed point (FP) theorems for nonlinear contractive type mapping in multiplicative metric space (MM-space). Our presented work consists of the maximum type and some other expressions in the framework of MM-space. We also provide illustrative examples and an application in support of our generalized results. Our offered results expand and develop a variety of the latest outcomes in the existing literature. Moreover, we present an application of the two Urysohn integral equations to support our work.

    Citation: Baqir Hussain, Saif Ur Rehman, Mohammed M.M. Jaradat, Sami Ullah Khan, Muhammad Arshad. Some coupled fixed point theorems on multiplicative metric spaces with an application[J]. AIMS Mathematics, 2022, 7(8): 14631-14651. doi: 10.3934/math.2022805

    Related Papers:

  • This article aims to prove some coupled fixed point (FP) theorems for nonlinear contractive type mapping in multiplicative metric space (MM-space). Our presented work consists of the maximum type and some other expressions in the framework of MM-space. We also provide illustrative examples and an application in support of our generalized results. Our offered results expand and develop a variety of the latest outcomes in the existing literature. Moreover, we present an application of the two Urysohn integral equations to support our work.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [2] D. Chatterjea, Generalized contraction principal, Int. J. Math. Math. Sci., 6 (1983), 89–94.
    [3] R. Kannan, Some results on fixed points, Bulletin Calcutta Math. Society, 60 (1968), 71–76.
    [4] S. U. Rehman, S. Jabeen, Muhammad, H. Ullah, Hanifullah, Some multi-valued contraction theorems on $H-$cone metric, J. Adv. Studies Topol., 10 (2019), 11–24.
    [5] R. Sharma, V. Gupta, M. Kushwaha, New results for compatible mappings of type A and subsequential continuous mappings, Appl. Appl. Math.: Int. J., 15 (2020), 282–295. https://doi.org/10.2298/AADM210120017S doi: 10.2298/AADM210120017S
    [6] M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, MA (1972).
    [7] A. E. Bashirov, E. M. Kurpnar, A. Ozyapic, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081
    [8] B. Rome, M. Sarwar, Characterization of multiplicative metric completeness, Int. J. Anal. Appl., 10 (2016), 90–94.
    [9] B. Zada, U. Riaz, Some fixed point results on multiplicative-metric-like spaces, Turkish J. Anal. Number Theory, 4 (2016), 118–131.
    [10] S. Shukla, Some critical remarks on the multiplicative metric spaces and fixed point results, J. Adv. Math. Studies, 9 (2016), 454–458.
    [11] M. U. Ali, Caristi mapping in multiplicative metric spaces, Sci. Int. (Lahore), 27 (2015), 3917–3919.
    [12] M. Ozavsar, A. C. Cervikel, Fixed points of multiplicative contraction mappings on multiplicative metric spaces, arXiv:1205.5131v1 [math.GM], 2 (2012), 1205–1531.
    [13] P. Kumar, S. Kumar, S. M. Kang, Common fixed points for weakly compatible mappings in multiplicative metric spaces, Int. J. Math. Anal., 9 (2015), 2087–2097. https://doi.org/10.12988/ijma.2015.56162 doi: 10.12988/ijma.2015.56162
    [14] X. He, M. Song, D. Chen, Common fixed points for weak commutative mappings on a multiplicative metric space, Fixed Point Theory A., 48 (2014), 9 pages. https://doi.org/10.1186/1687-1812-2014-48 doi: 10.1186/1687-1812-2014-48
    [15] S. M. Kang, P. Nagpal, S. K. Garg, S. Kumar, Fixed points for multiplicative expansive mappings in multiplicative metric spaces, Int. J. Math. Anal., 9 (2015), 1939–1946. https://doi.org/10.12988/ijma.2015.54130 doi: 10.12988/ijma.2015.54130
    [16] S. M. Kang, P. Kumar, P. Nagpal, S. K. Garg, Common fixed points for compatible mappings and its variants in multiplicative metric spaces, Int. J. Pure Appl. Math., 102 (2015), 383–406. https://doi.org/10.12732/ijpam.v102i2.14 doi: 10.12732/ijpam.v102i2.14
    [17] F. Gu, Y. J. Cho, Common fixed point results for four maps satisfying phi-contractive condition in multiplicative metric spaces, Fixed Point Theory A., 165 (2015), 2189. https://doi.org/10.1186/s13663-015-0412-4 doi: 10.1186/s13663-015-0412-4
    [18] C. Mongkolkeha, W. Sintunavarat, Best proximity points for multiplicative proximal contraction mapping on multiplicative metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 1134–1140. https://doi.org/10.22436/jnsa.008.06.22 doi: 10.22436/jnsa.008.06.22
    [19] V. Lakshikantham, L. Ciric, Coupled fixed point theorems for nonlinear contractions in partiallyordered metric spaces, Nonlinear Anal. Theor., 12 (2009), 4341–4349. https://doi.org/10.1016/j.na.2008.09.020 doi: 10.1016/j.na.2008.09.020
    [20] Gordji, M. Eshaghi, Y. J. Cho, Coupled fixed-point theorems for contractions in partial ordered metric spaces and applications, Math. Probl. Eng., (2012) Article ID: 150363.
    [21] Y. J. Cho, B. E. Rhoades, R. Saadati, B. Samet, W. Shantawi, Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type, Fixed Point Theory A., 1 (2012), 14 pages. https://doi.org/10.1186/1687-1812-2012-8 doi: 10.1186/1687-1812-2012-8
    [22] N. J. Huang, Y. P. Fang, Y. J. Cho, Fixed point and coupled fixed point theorems for multi-valued increasing operators in ordered metric spaces, Fixed Point Theory A., 3 (2002), 91–98.
    [23] W. Sintunavarat, Y. J. Cho, P. Kumam, Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces, Fixed Point Theory Appl., 81 (2011), 1897–1906. https://doi.org/10.1186/1687-1812-2011-81 doi: 10.1186/1687-1812-2011-81
    [24] X. Li, S. U. Rehman, S. U. Khan, H. Aydi, J. Ahmad, N. Hussain, Strong coupled fixed point results and applications to Urysohn integral equations, Dynam. Syst. Appl., 30 (2021), 197–218. https://doi.org/10.46719/dsa20213023 doi: 10.46719/dsa20213023
    [25] W. Sintunavart, P. Kumam, Coupled coincidence and coupled common fixed point theorems in partially ordered metric spaces, Thai J. Math., 10 (2012), 551–563. https://doi.org/10.1186/1687-1812-2012-128 doi: 10.1186/1687-1812-2012-128
    [26] F. Sabetghadam, H. P. Masiha, Some coupled fixed point theorems in cone metric space, Fixed Point Theory A., (2009), Article ID: 125426, 8 pages. https://doi.org/10.1155/2009/125426
    [27] S. U. Rehman, S. U. Khan, A. Ghaffar, S. W. Yao, M. Inc, Some novel generalized strong coupled fixed point findings in cone metric spaces with application to integral equation, J. Function Spaces, (2021), Article ID: 5541981, 9 pages. https://doi.org/10.1155/2021/5541981
    [28] Y. Jiang, F. Gu, Common coupled fixed point results in multiplicative metric spaces and applications, J. Nonlinear Sci. Appl., 10 (2017), 1881–1895. https://doi.org/10.22436/jnsa.010.04.48 doi: 10.22436/jnsa.010.04.48
    [29] L. Shanjit, Y. Rohen, T. C. Singh, P. P. Murthy, Coupled fixed point theorems in partially ordered multiplicative metric space and its applications, Int. J. Pure Appl. Math., 108 (2016), 1314–3395. https://doi.org/10.12732/ijpam.v108i1.7 doi: 10.12732/ijpam.v108i1.7
    [30] T. Rugumisa, S. Kumar, A fixed point theorem for nonself mappings in multiplicative metric spaces, Konuralp J. Math., 8 (2020), 1–6. https://doi.org/10.18576/jant/060103 doi: 10.18576/jant/060103
    [31] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
    [32] G. X. Chen, S. Jabeen, S. U. Rehman, A. M. Khalil, F. Abbas, A. Kanwal, et al., Coupled fixed point analysis in fuzzy cone metric spaces with application to nonlinear integral equations, Adv. Differ. Equ-Ny., (2020), 25 pages. https: //doi.org/10.1186/s13662-020-03132-8
    [33] V. Gupta, W. Shatanawi, N. Mani, Fixed point theorems for $(\psi, \beta)-$Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations, J. Fixed Point Theory A., 19 (2017), 1251–1267. https://doi.org/10.1007/s11784-016-0303-2 doi: 10.1007/s11784-016-0303-2
    [34] I. Shamas, S. U. Rehman, H. Aydi, T. Mahmood, E. Ameer, Unique fixed-point results in fuzzy metric spaces with an application to Fredholm integral equations, J. Function Spaces, (2021), Article ID 4429173, 12 pages. https://doi.org/10.1155/2021/4429173
    [35] I. Shamas, S. U. Rehman, N. Jan, A. Gumaei, M. Al-Rakhami, A new approach to Fuzzy differential equations using weakly-compatible self-mappings in fuzzy metric spaces, J. Function Spaces, (2021), Article ID 6123154, 13 pages. https://doi.org/10.1155/2021/6123154
    [36] M. T. Waheed, S. U. Rehman, N. Jan, A. Gumaei, M. Al-Rakhami, An approach of Lebesgue integral in fuzzy cone metric spaces via unique coupled fixed point theorems, J. Function Spaces, (2021), Article ID: 8766367, 14 pages. https://doi.org/10.1155/2021/8766367
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1745) PDF downloads(134) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog