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1. Introduction

Fixed point (FP) theory is one of the largest and primary areas of research. Many mathematicians
have made contributions to FP theory by using different contraction type mappings and different types
of spaces. In 1922, Banach [1] proved a “Banach contraction principle” which is stated as: “a self-
mapping on a complete metric space verifying the contraction condition has a unique FP”. Later on,
many authors generalized this principle in many directions and proved different contractive type FP
results in the context of metric spaces (M-space) for single and multi-valued mappings. Some of their
results can be found in (e.g, see: [2-5] the references therein).
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In 1972 Grossman and Katz [6] introduced an innovative kind of calculus called multiplicative
calculus by interchanging the roles of subtraction and addition with the role of division and
multiplication, respectively. By using the terminology of Grossman and Katz [6], Bashirov et al. [7]
demonstrate its usefulness and also provide some application of this calculus and defined the notion
of multiplicative metric space (MM-space). In [8], Rom and Sarwar discussed the characterization
of MM-space completeness. Zada and Riaz [9] proved some FP theorems on multiplicative metric
like spaces. Shukla [10] presented some critical remarks on MM-spaces and FP theorems. Ali [11],
Ozavsar and Cevikel [12], Kumar ef al. [13], He et al. [14], Kang et al. [15,16], Gu et al. [17], and
Mongkolkeha et al. [18] proved different contractive type FP and coupled FP theorems in MM-spaces.

The concept of coupled FP was firstly initiated by Lakshmikantham and Circ [19]. He provides
the important mechanism of coupled FP and find coupled quasi-solution of initial value problems for
ordinary differential equation and give some existence theorem of coupled FP for any continuous and
discontinuous mappings. Gordji et al. [20] proved some coupled FP theorems in partially ordered
M-space with an application. While Cho et al. [21] established some nonlinear coupled FP theorems
in ordered generalized M-spaces with integral type application. In [22], Huang ef al. proved some
FP and coupled FP theorems in ordered M-spaces by using multi-valued operators. Sintunavarat [23]
established some coupled coincidence point theorems in intuitionistic fuzzy normed spaces without
commutativity conditions. While Li ef al. [24] proved some strong coupled FP results in fuzzy M-
spaces with an application. Sintunavart and Kumam [25] proved some coupled coincidence and
coupled FP theorems in partially ordered M-spaces. Sabetghadam and Masiha [26] proved some
coupled FP theorems in cone M-space. Rehman et al. [27] proved some strong coupled FP theorems
by using cyclic type mappings in cone M-spaces with an application.

In [28], Jiang and Gu proved some common coupled FP theorems in MM-spaces with applications.
Shanjit et al. [29] proved some coupled FP theorems in partially ordered MM-space and its
applications. Recently, Rugumisa and Kumar [30] studied the idea of Grossman and Katz [6] and
proved some results in MM-spaces.

In this paper, we prove some coupled FP theorems for nonlinear function in MM-spaces under
generalized contraction conditions. Our presented work consists of the maximum type and some
other expressions in the framework of MM-space. We also provide some illustrative examples and
an application in support of our generalized results in MM-spaces. Our offered results expand and
develop a variety of the latest outcomes in the existing literature. Moreover, we present an application
of the two Urysohn integral equations to support our work. By using this concept, one can prove
more different types of contractive results for nonlinear functions in MM-spaces with different types
of integral equations applications.

2. Preliminaries

Definition 2.1. [7] Let B # 0 set, then a mapping d : B X B — R* is called a multiplicative metric if
it satisfies the following conditions:

(ml) d(¢,m) > landd(&n) =1 E=n,forallé,ne B.

(m2) d(&,n) = d(n, &) forall £,n € B.

(m3) dé,m) <d(E ) -d(¢,n)forallé,n,{ € B.
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And a pair (B, d) is said to be an MM-space.

Example 2.2. [12] Consider B = (R, )" contain all k-tuples of positive real numbers. Let d: (R x
(R,)" — R be defined as follows:

gl |&.. |&
m m N«

where &€ = (£1,&,...,&), 1=M1,1n2,...,m0) € R)and |- | : R, — [1, +00) is defined as follows:

d(f? TI) =

b

1
|k|:{k ifk>1, andz ifk<1}.

Then it is conclusive that all given conditions of an MM-space are satisfied hence ((R,)",d) is an
MM -space.

Lemma 2.3. [12] Let (B, d) be an MM-space, {£,.} be a sequence in B, then & — & as k — oo if and
only if d(é, &) — 1 as k — oo.

Lemma 2.4. [12] Let (B, d) be an MM-space, (£} be a sequence in B. If sequence {&,} is multiplicative
convergent, then the multiplicative limit is unique.

Definition 2.5. [12] Let (B, d) be an MM-space and {£,} be a sequence in B. Then the sequence is
called a multiplicative Cauchy sequence if it holds that for all € > 1, there exists a natural number
Ko € N such that d(fk,fj) < gforall k, j > k.

Definition 2.6. [12] A space (B, d) is called multiplicative complete if every multiplicative Cauchy
sequence in (B, d) is multiplicative convergent in B.

Proposition 2.7. [12] Let (B, d) be an MM-space, {&.} and {n,} be two sequences in B such that &, — &
and 1, — 1 as k — oo. Then d(&.,1) — d(€,1) as k — oo.

Example 2.8. Let (B, d) be an MM-space and d : B x B — R* be defined by
dén) =", VéEneB. 2.1)

If we take a natural log of (2.1). Then the MM-space became a usual metric space, which satisfies all
the conditions of the usual metric space.

Theorem 2.9. [12] Let (B, d) be an MM-space and sequence (&} in B multiplicative convergent, then
it is a multiplicative Cauchy sequence.

Definition 2.10 (Banach-contraction). [12] Let (B, d) be an MM-space. A mapping I : B — B is said
to be multiplicative contractive if there exists A € [0, 1), such that d(T'¢,T) < (d(&, M), ¥ & neB.

Definition 2.11 (Coupled Banach Contraction mapping). [31] Let (B, d) is an MM-space. A mapping
I' : BxB — Bis called a coupled Banach contraction for A € (0, 1) such that for all (¢, ), (u, v) € BXB,
then the following inequality holds,

AT ), T ) < 5 (dE )+ dn, ).

Definition 2.12. [31] Let (B, d) be an MM-space. A pair (¢,n7) € B X B is called coupled FP of a
mapping ' : BX B — BifI['(¢,n7) =& and I'(n, &) = 7.
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3. Main results

Now, we are in the position to present our first main result.

Theorem 3.1. Let (B, d) be a complete MM-space. Let a mapping T : B x B — B satisfies;

d(&, T, m), d(u, Tz, v, '
dT&,n), T, v)) < (max{ AL TE ). d€.T(uv)) }) , (3.1)
forall é&,n,u,v € Band A € [0, 1). Then mapping T has a unique coupled FP.
Proof: Let &y, 19 € B be the arbitrary points and we define the iterative sequences in B such that
§K+1 = F(fk’ nK) and Ne+1 = F(nk’ fk) fork > 0.
Now from (3.1),
d('fk’ §K+1) = d(r(fk—l > Tie—1 )a r(‘fkv UK))
(1, TE 1,01, dEaTE ) |
= ma"{ d(ETEet 1) dEcr. TET10) })
_ d(fx—l,fx), d(fk, §K+l)’ !
- ma"{ d(E £, d(Ec 1 Ecn) })
d.(gk—l’ é‘:K)’ d(§K9 §K+l)’ !
= ma"{ Ld(E1.6) - dEéen) })
_ d.(‘fk—l’ é:K)’ d(fk,gk+l)’ !
- ma"{ (1, £) - dEcen) })
= (1,0 - dEn b))
After simplification, we get that
dEaée) < (A€ &) where h= L 3.2)
ks Sk+1) = k—1>GS«k 5 1-2a . .
Similarly,
. . h A
dr.6) < (dEa b)) . where h=-"— <. (3.3)

Now from (3.2) and (3.3), and by induction, we have

. . h

A€ €crr) = (dEr,£0)
< (dEnten) (3.4)
<..-=< (a:’(é"o,fl))hk — 1, ask— oo.

Hence proved that the sequence {&,} is contractive in MM-space. Now k > j,
A€, &) 2 d(Eér) dEry éca) - d(Ejra, E1) - d(Ejr, E))
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< (d¢o.&0) - (dnen) - (d) - (dené)
. (42t nI* 40T

< (d(&.40)

< (d(go. )"

=< (d(é:()’ é‘:l))(lh]h) - 1, as .] — 0.

Hence proved that {&,} is a Cauchy sequence in MM-space (B, d). Similarly, for sequence {17,} and from

(3.1,

d(nl(’ 77K+1) = d(r(nK—l ’ ‘fK—l)’ r(nk’ §K))
- { A1 D1, ), A0 T0is 60)) })”

= e D1, 1) d 1, TE e 7))

d.(nk—la é:K)’. d(nka T’K+1)a })/l
d(nk’ 771()’ d(nk—la 77k+1)

max{

d( ), d( )
maX{ nK—l’ nK 5 TIKa nK+l 5 })
max{

IA

la d(nk—l9 nk) : d(nK9 77/<+1)

4(77/(—17 nk)a d.(nkﬂ 77k+1), })/1
d(nk—l’ 77/() : d(nk’ 77k+1)

A

= (A1, 1) - @ Tes))

After simplification, we get that

= h A

= , where = —— < 1.
1-2

A1) = (dGre-1:m0)) ™ = (d0-1m0)

Similarly,

d(-1,m0) < (d(nk_z,nk-l))% = (dg2men))'. where hi= 1f 3

Now from (3.5) and (3.6), and by induction, we have

. . h
d(TIK’ 77K+1) =< (d(nk—l’ 77/())
. "2
=< (d(ﬂk—z’ 77/(—1))
<. < (d(ﬂo,ﬂl))hK — 1, ask— oo

Hence proved that the sequence {7,} is contractive in MM-space. Now « > j,

d(m, ﬂj) < d(n,(, Me-1) * d(nk—l’ Ne2) " d(nj+2, 77j+1) : d(’]jn, 77j)
hK—z J h/

< (dGp. m))hk_1 (dao,m)” - (do )’ o (dGro,m))
. (< 2 et 1T
< (d(no, 1))

< 1.

(3.5)

(3.6)

(3.7
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(W +n7* ! o241

=< (d(ﬁo,ﬂl))
< (d(no,m))(ﬁ'}") -1, asj— oo

Hence proved that {£,} and {7, } are Cauchy sequences in MM-space (B, d). Since, by the completeness
of MM-space, there exist £*,n* € B such that lim &, = £* and lim 5, = *, therefore

limdE,&)=1, and limd@.,n*) = 1. (3.8)

Now, we prove that I'(¢*,n*) = &*. Then, by the view of (3.1) and (3.8), and by using the triangular
property of MM-space, we have that

A7), 2 (dTE 1), ) - (d(Eeir €Y))
(A& 1), TEan) - (dEer, £9)
1 ¢k * ok 7 1
(max{ d(f s F(f s )), d(fk’ F(gm UK)) }) . (d(§;<+1,§*))

IA

A€o T(E* 1), dE*, T 1)

d(f*’F(f*’n*)),d(fk,f,(H) A .‘ .
max{ d(fm F(f*’n*)),d(f*,fm) }) (d(§K+1,§ ))

Taking limit k — co, we get

. . A

AT ). %) < (dTE 7).€9) .
So,

y * ok x4
(d@Er,n.¢) "< 1.

Hence, d(T'(¢*,7%),&*) = 1. Thus I'(¢*,7*) = &*. Similarly, we can prove that d(T(n*, &%), n*) =
1 = I'(n*,&*) = n*. Hence, we get that (I'(¢*, n*), T(n*, £*)) = (£*, %), this implies that (£*,n*) is a
coupled FP of I' in MM-space (B, d).
Uniqueness: let (&, ) is another coupled FP of the mapping I" in MM-space (B, d) such that

¢ n)=¢ and T(n',&) =10 (3.9)
First, we prove £* = £, then by the view of (3.1) and (3.9), we have
d¢,€%) = dT(¢ 1), T(E",n")
10 &t r J( &x * ook z
<(mos{ e v rien )
e e A
- ({2 1)
= (de.&)".
Thus,
(d&.e9) " <1
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Hence, we get that
dé,e)=1=¢& =& (3.10)
Next, we prove n* = 1, then by the view of (3.1) and (3.9), we have
d',n*) =dT (7, &), T(n*,€"))

( {d((n L0, €),d0r Ty, €, })
d*, X0, &), dy , Tap*, %)

( {d(n 1), d(n* . n*), })
dm*,n),d(',n*)
d(n’,n*)
Thus, .
(doy. ™) "= 1.
Hence, we get that '
dn',n*)=1=>n"=n*. (3.11)

Now, from (3.10) and (3.11), we get that (¢’,n') = (£*,n*). Hence proved that the mapping I" has a
unique coupled FP in B. This completes the proof.

Corollary 3.2. Let (B, d) be a complete MM-space and let a mapping T : B x B — B satisfies,

. . . bl
d(TE,7), T, v)) < (max{d(& TE ), du, T, v)))
forallé,m,u,v e Band A € [0, 1). Then mapping I has a unique coupled FP.

Corollary 3.3. Let (B, d) be a complete MM-space and let a mapping T’ : Bx B — B satisfies,
. . : b
d(T(,7), T, v)) < (max{d(u, T ), dE T, ),

forallé,n,u,v € Band A € [0, 1). Then mapping I has a unique coupled FP.

Example 3.4. Let B = (0, o) and a mapping d : Bx B — R be a complete MM-space which is defined
asd(&,n) = 267V & 3 € B. Now we define a mapping I' : B X B — B by

_ & _28+4 o
I'¢,n) = 100 foré,ne (0,11 and TI'(é,7n) = B +4 foré&,npe(1,00).

Now from (3.1), we have

. (& TE 7)), d(e, T ), |\
AT, 1), T(, ) < (max{ T e }) :
for all ¢&,mp,u,v € Band A € [0, 1).

AT 7. T, v)) = d(%, 4“%) — ok (3.12)

AIMS Mathematics Volume 7, Issue 8, 14631-14651.



14638

And

( { dE.TE 0. d(u. T, ), }]” { A (£ 55)d (1. 1) }J”
max = | max ’

A T ). d(€. T (. v) d (s 505) - (& 565

30kl 2Rl 4
= max{ }] . (3.13)

2\“‘%\, 2665

Now the four cases arise for &, u € (0, 1]:

Case.l if d(¢,T(£,n)) = 204! is the maximum term in (3.13), then we have the following subcases for
&, u € (0, 1] are discussed with 4 = 0.3.

1-(1). If ¢ = 0.1 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that

399

2 #l01-0.1 (zmlml)‘” = 1 < 1.0209,
. . A .
= dIEm. T y) < (dETED)  with =03,

1-(i1). If € = 0.1 and u = 0.2, then from (3.1), (3.12), and (3.13), we have that

399

2010102 < (2101)™ = 1,0001 < 1.0209,

= d(TE M. T v) < (dETED) with A =03,
1-(iii). If £ = 0.2 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that

200201 < (230020)™ = 1.0001 < 1.0423,

= d(TE m. T v) < (dETED)  with 2 =03,

1-Giv). If ¢ = 0.1 and u = 0.5, then from (3.1), (3.12), and (3.13), we have that

399

2400103 < (2301)™ = 1.0006 < 1.0209,

= d(TE M T v) < (dETED) with =03,
1-(v). If £ = 0.5 and u = 0.1, then rom (3.1), (3.12), and (3.13), we have that

2001051 < (28003 = 1,0006 < 1.1092,

= d(TE . T v) < (dETED) with 2 =03,

1-(vi). If ¢ = 0.1 and u = 1, then from (3.1), (3.12), and (3.13), we have that

399

20011 < (2301) 51,0015 < 1.0209,

= d(TEm. T v) < (dETED)  with 2 =03,
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1-(vii). If ¢ =1 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that

399

Q=01 o (zmm)“ = 1.0015 < 1.2305,

= d(T(€,7).T(,v)) < (d(€ T, n)))ﬁ with 2 = 0.3.

Hence, (3.1) is satisfied for all the subcases (1-(i-vii)) for the first maximum term, that
is, d(¢,T(£,m)) = 230K

Case.2 If d(u, ['(u,v)) = 2 M is the maximum term in (3.13), then we have the following subcases for
&, € (0, 1] are discussed with 4 = 0.3:

2-(1). For ¢ = 0.1 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that
20101 < (2301)™ = 1 < 1.0200,
= d(T(& 7). T v)) < (d(u. T, v)))‘ with 1 = 0.3.
2-(i1). If ¢ = 0.1 and i = 0.2, then from (3.1), (3.12), and (3.13), we have that
2 #10.1-02 (z%lwl)‘” — 1.0001 < 1.0423,
= d(T(& 7). T v)) < (d(u. T, v)))d with 1 = 0.3.
2-(ii). If ¢ = 0.2 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that
200201 < (2301 = 1,0002 < 1.0209,
= d(T & m. T, v) = (d@.T))  with 2 = 03.

2-(iv). If £ = 0.1 and u = 0.5, then from (3.1), (3.12), and (3.13), we have that

399

2 710.1-051 (zmlo-5|)°'3 — 1.0006 < 1.1092,

= d(T & m. T, v) = (d@.T))  with 2 = 03.

2-(v). If ¢ = 0.5 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that

399

200501 < (23001)™ = 1.0006 < 1.0209,

= d(T & m. T, v) = (d@.T))  with 2 = 03.
2-(vi). If £ = 0.1 and u = 1, then from (3.1), (3.12), and (3.13), we have that

20011 < (231)" = 1.0015 < 1.2305,

= d(T & m. T, v) = (d@T))  with 2 = 03.
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2-(vii). If ¢ =1 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that

399

21011 < (2301 51,0015 < 10209,
= d(T (M. T, v) < (AT v))  with 2 = 0.3,

Hence, (3.1) is satisfied for all the subcases (2-(i-vii)) for the second maximum term in
(3.13), that is, d(u, T(u, v)) = 20k,

Case.3 If d(u,T'(£, 1)) = 2‘” _4%‘ is the maximum term in (3.13), then we have the following subcases
for &, 1 € (0, 1] are discussed with 4 = 0.3.

3-(i). For ¢ = 0.1 and i = 0.1, then from (3.1), (3.12), and (3.13), we have that

200101 < (21-81)" 5 1 < 10209,
. . A .
= 7). Tt ) < (d.TE ) with =03,

3-(ii). If ¢ = 0.1 and i = 0.2, then from (3.1), (3.12), and (3.13), we have that

200102 < (202-%1)" 5 1.0001 < 1.0424,
. . a .
= 7). T4t ) < (d.TE ) with 1= 03,

3-(iii). If ¢ = 0.2 and i = 0.1, then from (3.1), (3.12), and (3.13), we have that

200201 < (215 1) 5 11,0001 < 1.0209,
. . A .
= d(T(E. ). D) = (dGe.TEn) with 1= 03,

3-(iv). If ¢ = 0.1 and i = 0.5, then from (3.1), (3.12), and (3.13), we have that

20101035 < (2°5-%1)" 5 1.0006 < 1.1095,
. . A .
= d(T(E. ). D) = (dGe.TEn) with 1= 03,

3-(v). If ¢ = 0.5 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that

203011 < (2001-451)" = 1.0006 < 10207,
. . P! .
= d(T(€ 7). T, ) < (d@.TE 7)) with 1=0.3.

3-(vi). If ¢ = 0.1 and u = 1, then from (3.1), (3.12), and (3.13), we have that

2aal01-11 < (2|‘-%|)°'3 = 1.0015 < 1.0205,

= d(T & m. T, v) < (d@.TE ) with 2= 0.3,
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3-(vii). If £ = 1 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that
21011 < (2P 1-3)" 51,0015 < 1.2310,
. . 1 .
= d(TE . T v) < (d@.TE ) with A =03,

Hence, (3.1) is satisfied for all the subcases (3-(i-vii)) for the third maximum term in
(3.13), that is, d(u, T(&, n)) = 2],

Case.4 If d(&,T(u,v)) = 2l6=1%| is the maximum term in (3.13), then we have the following subcases
for &, 1 € (0, 1] are discussed with 4 = 0.3.

4-(1). If ¢ = 0.1 and i = 0.1, then from (3.1), (3.12), and (3.13), we have that

201011 < (20181 S 1 < 1.0209,

= A, T, ) = (dE T ) with =03,
4-(ii). If £ = 0.1 and p = 0.2, then from (3.1), (3.12), and (3.13), we have that

200102 < (2P1-51)" 51,0001 < 1.0209,

= d(TE m. T v) < (dETwv))  with 1= 03.
4-(iii). If ¢ = 0.2 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that

D l02-0.11 < (ﬂo.z-% )0'3 —y 000025 (20.19975)03 = 1.0001 < 1.0424,
= d(TE m. T ) < (dET@ ) with1=023.

4-(iv). If £ = 0.1 and u = 0.5, then from (3.1), (3.12), and (3.13), we have that

20101031 < (2151 5 1.0006 < 1.0207,

= d(T(E m). T, v) < (dETwv))  with 1= 03,
4-(v). If £ = 0.5 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that

200501 < (21°5-%1)" = 1.0006 < 11095,

= d(T(€, 7). T, ) < (d& T, v)))” with 1 = 0.3.
4-(vi). If ¢ = 1 and u = 0.1, then from (3.1), (3.12), and (3.13), we have that

panll =011 < (2l1=5l)" = 1.0015 < 1.2310,

= d(TE m. T v) < (dETwv))  with 1= 03.
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4-(vii). If ¢ = 0.1 and u = 1, then from (3.1), (3.12), and (3.13), we have that

2ﬁmk”gcmhﬁw3=10m5<10ﬂn
= d(TE 1), T, ) < (€T )' with 103,

Hence, (3.1) is satisfied for all the subcases (4-(i-vii)) for the fourth maximum term in
(3.13), that is, d(&, T(, v)) = 2w,

Thus, from the above cases, we conclude that all the conditions of Theorem 3.1 are satisfied with
A = 0.3 and the mapping I has a unique coupled FP, that is, I'(£,n) = % +4=1(8,8) =8.

Theorem 3.5. Let (B, d) be a complete MM-space, let a mapping T : B X B — B, satisfies,

| | (d(&, )"
AU, ). T v) < | -@ETEM)" - @ET@m)® |, (3.14)
e TE M - (@G, T, v)

forall é,m,u,v € B, 41 € (0,1), and A5, A3, A4, A5 € [0, 1) with (4; + Ao + 243 + A4 + A5) < 1. Then a
mapping I has a unique coupled FP.

Proof: Let &y, 1y € B be the arbitrary points and we define the iterative sequences in B such that

§K+1 = F(‘fk’ 77K) and Nx+1 = F(UK, fk) for k > 0.
Now from (3.14)

d(éjk’ §K+l) = d(r(fk—b nk—l)9 F(éjk’ 77/())’

| (d(Ec1,£0)"
<| (@1, TEe1, 1)) - (d (€1, TG 1))
(d(fk’ F(‘fk—l > M1 )))/14 ' (d(glﬁ F(fk’ UK)))/IS

. (d.(é:/(—l s f‘K))/ll
=| dEar 60" dEr b

(d(é:/(’ ‘fk))/l4 : (d(‘fka §K+1))AS

. (d(fk—l’é‘fk))/ll
=| (-1, 6" - ([dEr, €)'
(d(é €)'

(dEer, EQ)" ]

IA

(dEcr, £ - (AEmr, £
(A Eo £V - ([AEe )

((dEr, N2 - (d(Er ) T)).

After simplification, we get that

/11+/12+/l3

d(é‘:m §K+1) =< (d.(fk—l"fk))h’ where 7 = m <

(3.15)
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Similarly,
. . Ai+A+A4
A1) < @AE b)) where = e S <. (3.16)
Now from (3.15) and (3.16), and by induction, we have
. . h
A€ €err) = (dEr, £0)
. 2
< (d€a &) (3.17)

<2 (d@.8)) -1 ask— o

Hence proved that the sequence {&,} is contractive in MM-space. Now « > j,

d(En &) S d(Enér) - dEr,E) - d(Ejn, Ei) - A€, €))
Fx-2 #l

< (d¢oen) - (dnen) - (de)) - (dE.é)
. (142 nI* 40T

< (d(&.£0)

< (dco, )"

s@&mf

nl
— 1, asj— oo.

Hence proved that {&,} is a Cauchy sequence in MM-space (B, d). Similarly, for sequence {1} and from
(3.14),

d(r(nk—l > ‘fK—l ), r(’?x, év‘:K))’
(d(nk—l ’ Ux))ﬂl ]

d(ﬂm N+1 )

IA

'(d(ﬂk—1, C(1-1,Ec1)))" - (ﬁ?(ﬂx—b L6 )"
(d(ﬂk, r(nk—l s fk—l)))/l4 ' (d(ﬂk, F(’YK, fk)))/ls
) (d(nk—l » TZK))/“
= .(d('nk—l’ 77/())/12 : 4(77/(—1 s 77/(+1)/13
(d @ 1™ - (15 1e41))
. (d(nk—l s 7?1())/11
= | (d-1,10)2 - (A1, D))
(d (1> 1e41))

(A1, MM )

IA

'(d(ﬂk—l, UK))AZ ' (C?(Uk—l, 77/())/13
(> e 1)) - (AW Mies1))'

((d(nk—l , nk))/h +A2+43 (d(nm st ))/13+/l5) )

After simplification, we get that

A+ +A /11+/12+/l3

. . 1742773 .
< (d(@),- C) = 1)), wh =—— <1 1
d(Me> Mer1) = (A1, 1)) =5 (d@-1,m0)",  where i = —— L) - (3.18)
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Similarly,

A1+ +ds /ll+/12+/13

d(M-1, M) = (d(ezs 1)) "B T = = (d(-1,10))",  where h= m <1 (3.19)

Now from (3.18) and (3.19), and by induction,

. . h
A 1) = (de1,m0)
< (de2men)” (3.20)

. e
ﬁ---ﬁ(d(no,m)) — 1, ask — oo,
Hence proved that the sequence {7,} is contractive in MM-space. Now « > j,

d’(m, 771) =< d(m, Me-1) * d(nk—l’ Ne=2) ** 'd(ﬂj+2, 77j+1) : d(ﬂjﬂ, 77j)

< (dGp. Ul))hm - (dGno, m))hk_z -+ (dGno, m))hjﬂ - (dGno, m))hj

)(hk Vi 2t i 40

IA

(dGro, m)
(dGro. m1
=(

IA

) (W A+ ot 2411

L

d(ﬂo,fh)) h — 1, asj— oo

Hence proved that {£,} and {7, } are Cauchy sequences in MM-space (B, d). Since, by the completeness
of MM-space, there exist £*,n* € B such that lim &, = £* and lim 5, = *, therefore

limd(£.,&*) =1, and limd®.7n*) = 1. (3.21)

Now, we prove that I'(£*, %) = &*. Then, by the view of (3.14) and (3.21), and by using the triangular
property of MM-space, we have that

dTE "), ) < dTE 1), Er) - dEr €
= dTE* 7). TEon0) - A€t €)

. (d(E*, &))" ‘
<| -dETE 7" - @dE TE N |- (dEen,€9)
(d(ETE TN - ([dEeTE )™

‘ dE* e .
=| dE,TE )" - [dEEa)® |- (dEar,€Y).
(d(Ea TE N - (dEe )™

Taking limit k — co, we get
drE* ). € < (dTE 0.6 . where f= (4 + ) < 1.
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So, 1
(dare.p.en) " <.

Hence, d(T'(¢*,7%),&*) = 1. Thus I'(¢*,7*) = &*. Similarly, we can prove that d(T(n*, &%), %) =
1 = I'(n*, &%) = n*. Hence, we get that (I'(*, n*), T(n*, &) = (£*, %), this implies that (£*,n*) is a

coupled FP of I' in MM-space (B, d).
Uniqueness: let (¢,7') is another coupled FP of I" in MM-space (B, d) such that

¢ n)=¢ and T07.&)=17"
First, we prove &* = &, then from (3.14) and (3.22), we have
d&,&) = dTE ,n),TE ™)
| (d€, "
<| @@, T )" dE T nm®
(d(E* L&, )" - (d(E*, TE )"
GG
=| dE.&)t-@d@.enn
(d(E*,ENN - (d(E,E%))
= ((d(&, )" - (@d(E&, &5 - (@dE*,&))").

Hence,
(d&.9) < (d€.&H)" where T = (A + 43 + ) < 1.
Thus,
(d&.e) " <.
We get that

dé, &) =1=¢ =¢.
Next, we prove n* = n’, then from (3.14) and (3.22), we have
dy',n*) = d(T(n', &), T(n*, "))
. CUMML
<| -@Gr.TGr, )" - @', Tar*, &))"
(dm* Ty, ENYM - (dp*, Tap*, €)'
RGOS
=| @@, 7)®-da,g)h
(dOr*, )™ - dor, )
= (', D" - G,y - (drt ).

Hence,

(d(n’,n*)) < (d(n’, 77"))1r where T = (1) + A3 + Ay) < 1.

Thus,
-7

(day.n) = 1.

(3.22)

(3.23)
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We get that

dof,n*)=1=n=n" (3.24)
Now, from (3.23) and (3.24), we get that (¢/,77") = (£*,n%). Hence proved that the mapping I" has a
unique coupled FP in B. This completes the proof.

Corollary 3.6. Let (B, d) be a complete MM-space and let a mapping I' : B X B — B satisfies,

d(TE,m), T, v)) < (@dE )" - (dETE )™ - (dE T )" - (d, T, )™,

forall &,n,u,v € B, 1 € (0,1), and A,, A3, A4 € [0, 1) with (A, + A, + 243 + Ay4) < 1. Then mapping I’
has a unique coupled FP.

Corollary 3.7. Let (B, d) be a complete MM-space and let a mapping T : B X B — B satisfies,

d(r(é‘:’ 7])’ r(ﬂa V)) =< (d(é::’ F(é‘:’ 77)))/[] : (d(fa r(ﬂ? V)))/lz : (d(/"l7 F(/'l, V)))/bv

forall &,n,u,v € B, 4; € (0,1), and Ay, A3 € [0, 1) with (1; + 24, + A3) < 1. Then a mapping I has a
unique coupled FP.

Example 3.8. Let B = [0, +oo[ and a mapping d : BXB — R be a complete MM-space which is defined
as d(&,m) = 27 for all £, € B. Now we define a mapping I' : BXx B — Bby I'(¢,n) = ‘§ for &,n €
B = [0, +00). Now from Theorem (3.14), we have that
d(T(E,m), T, v)) = 27FH
< DRkl

_ (e (et )

§b BB
_2‘ AR i 2R AR

(5~ %‘ G %‘ |6 (6-5)I+ ‘10 H%(l“‘%)l
1

- (290)" (2le5)" ey
.(2|<u—$>\)1° (2l

= (de.0)" - (derie )" - (de. T )"

(da. T )" - (dee, T, )’
This implies that

| | (d(&, "
AT ). Tw,v) < | @d(ETEMN® - (@dE T )"
(. TE M) - (@ T, )

Hence all conditions of Theorem 3.5 are satisfied for particular 4; = bL=A3=A4=

and a mapping I has a unique coupled FP, that is, I'(0,0) = 0

and As = 1,

10’ 10’
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4. Application

In this section, we present an integral type application, that is the two Urysohn integral equations
(UIEs) for the existing result of a common solution. Chen et al. [32], Gupta et al. [33], Shamas et
al. [34,35], and Waheed et al. [36] proved some FP, common FP and coupled FP theorems for different
contractive type mappings and spaces with the applications of integral equations and differential
equations.

Let B = C([a,b],R) be the Banach space of all continuous functions defined on [a,b] with
supremum norm

ligll = sup [£(r)l, where ¢ € C([a, b], R).

re€la,b]
and the induced metric is defined as

d€m) = sup |E(r) = n(r)l, where &1 € C(la,b],R).

re€la,b]

Now, we are in the position to give the two UIEs for common solution to support our result.

Theorem 4.1. The two UIEs are
b b
HUE f Ki(l,s,6(s)ds + fi(D) and () = f K, s,u(s))ds + fo(D), 4.1)

where | € [a,b] C R and &, 1, fi, f» € B. Let K|,K, : [a,b]*> x R — R such that Gen»Guy € B,
therefore

b b
G m = f Ki(l,s,(&n)(s)ds and  Gu,v)(]) = f Ky(1, s, (u, v)(s))ds,
where [ € [a, b]. If there exists A € (0, 1) such that ,

1(Geamy + F1) = (Guny + SN = (N(E 1), (11, V)"
where

4.2)

N(E ), () = max{ G em + fi = EL NGy + fo — ul, } |

1Gem + fi = 1l Gy + f2 =€l

Then the two UIEs (4.1), have a unique common solution.
Proof: Define a mappingl': BX B — B

I'¢,n)=Gepn+fi and I'(u,v) = Gy + fo. YER UV, Gy Gy f15 f2 € B.

Then, we may have the following four cases;

(@) If |Gy + fi — €]l 1s maximum in (4.2), then
N((&m), (1, ) =Gy + f1 =€l

Hence, we obtain
AT 7). T, v) = IFEm) ~ Tl < (I0Em) — ) = (dETE)) -
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(b) If |G,y + f> — pll is maximum in (4.2), then
N((&n), (1, v) = 1G ) + fo — .

Hence, we obtain
7). T v) = I0ED = T < (M) — ) = (de. T )
(©) If |Gy + fi — pll is maximum in (4.2), then

N((& m), (u,v) = IGeny + f1 — .
Hence, we obtain
AT 7). T, v) = IFEm) ~ Tl < (I0Em) - ) = (du.TED))
(d) If |Gy + f> — €Il is maximum in (4.2), then

N((&m), @, v) = |Gy + f2 =€l
Hence, we obtain
2

AT, n). T, v) = ICE 1) = T vl = (DG, v) = ED* = (d(&, T, v))

for every &,n,u, v € B. Hence from all the cases, we conclude that all the conditions of Theorem 3.1
are satisfied with A € (0, 1). Thus the two UIEs (4.1) have a unique common solution in B.

5. Conclusions

In this paper, we studied and proved some generalized coupled FP theorems by using nonlinear
contractive type mapping in MM-space. Our presented work consists of the maximum type and some
other expressions in the framework of MM-space. We also provided illustrative examples and an
application of the two UIEs in support of our new generalized results. Our results expand and develop
a variety of latest outcomes in the existing literature. In this direction, one can prove more different
contractive type coupled FP theorems on complete MM-space with different types of applications.
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