Research article Special Issues

Utilizing fixed point approach to investigate piecewise equations with non-singular type derivative

  • Received: 10 May 2022 Revised: 31 May 2022 Accepted: 01 June 2022 Published: 08 June 2022
  • MSC : 26A33, 34A08

  • In this research work, we establish some new results about piecewise equation involving Caputo Fabrizio derivative (CFD). The concerned class has been recently introduced and these results are fundamental for investigation of qualitative theory and numerical interpretation. We derive some necessary results for the existence, uniqueness and various form of Hyers-Ulam (H-U) type stability for the considered problem. For the required results, we need to utilize usual classical fixed point theorems due to Banach and Krasnoselskii's. Moreover, results devoted to H-U stability are derived by using classical tools of nonlinear functional analysis. Some pertinent test problems are given to demonstrate our results.

    Citation: Kamal Shah, Thabet Abdeljawad, Bahaaeldin Abdalla, Marwan S Abualrub. Utilizing fixed point approach to investigate piecewise equations with non-singular type derivative[J]. AIMS Mathematics, 2022, 7(8): 14614-14630. doi: 10.3934/math.2022804

    Related Papers:

  • In this research work, we establish some new results about piecewise equation involving Caputo Fabrizio derivative (CFD). The concerned class has been recently introduced and these results are fundamental for investigation of qualitative theory and numerical interpretation. We derive some necessary results for the existence, uniqueness and various form of Hyers-Ulam (H-U) type stability for the considered problem. For the required results, we need to utilize usual classical fixed point theorems due to Banach and Krasnoselskii's. Moreover, results devoted to H-U stability are derived by using classical tools of nonlinear functional analysis. Some pertinent test problems are given to demonstrate our results.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [2] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [3] G. S. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach: Elesvier, 1993.
    [4] J. I. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [5] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simulat., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [6] J. R. Wang, X. Z. Li, A uniform method to Ulam-Hyers stability for some linear fractional equations, Mediterr. J. Math., 13 (2016), 625–635. https://doi.org/10.1007/s00009-015-0523-5 doi: 10.1007/s00009-015-0523-5
    [7] T. Zhang, Y. Li, Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowl.-Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675
    [8] R. Garra, E. Orsingher, F. Polito, A note on Hadamard fractional differential equations with varying coefficients and their applications in probability, Mathematics, 6 (2018), 4. https://doi.org/10.3390/math6010004 doi: 10.3390/math6010004
    [9] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [10] A. Atangana, S. I. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [11] T. Zhang, Y. Li, S-asymptotically periodic fractional functional differential equations with off-diagonal matrix Mittag-Leffler function kernels, Math. Comput. Simulat., 193 (2022), 331–347. https://doi.org/10.1016/j.matcom.2021.10.006 doi: 10.1016/j.matcom.2021.10.006
    [12] T. Zhang, Y. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709
    [13] T. Zhang, J. Zhou, Y. Liao, Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise Caputo derivatives, IEEE Trans. Cybernetics, 135 (2021), 1–14. https://doi.org/10.1109/TCYB.2021.3054946 doi: 10.1109/TCYB.2021.3054946
    [14] T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. https://doi.org/10.1016/j.aml.2019.106072 doi: 10.1016/j.aml.2019.106072
    [15] K. Shah, F. Jarad, T. Abdeljawad, On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative, Alex. Eng. J., 59 (2020), 2305–2313. https://doi.org/10.1016/j.aej.2020.02.022 doi: 10.1016/j.aej.2020.02.022
    [16] T. M. Atanackovic, S. Pilipovic, D. Zorica, Properties of the Caputo-Fabrizio fractional derivative and its distributional settings, Fract. Calc. Appl. Anal., 21 (2018), 29–44. https://doi.org/10.1515/fca-2018-0003 doi: 10.1515/fca-2018-0003
    [17] M. Caputo, M. Fabrizio, On the notion of fractional derivative and applications to the hysteresis phenomena, Meccanica, 52 (2017), 3043–3052. https://doi.org/10.1007/s11012-017-0652-y doi: 10.1007/s11012-017-0652-y
    [18] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. https://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0
    [19] K. Shah, M. A. Alqudah, F. Jarad, T. Abdeljawad, Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo-Febrizio fractional order derivative, Chaos Soliton. Fract., 135 (2020), 109754. https://doi.org/10.1016/j.chaos.2020.109754 doi: 10.1016/j.chaos.2020.109754
    [20] M. Al-Refai, T. Abdeljawad, Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, Adv. Differ. Equ., 2017 (2017), 315. https://doi.org/10.1186/s13662-017-1356-2 doi: 10.1186/s13662-017-1356-2
    [21] K. A. Abro, A. Atangana, A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal-fractional differentiations, Eur. Phys. J. Plus, 135 (2020), 226. https://doi.org/10.1140/epjp/s13360-020-00136-x doi: 10.1140/epjp/s13360-020-00136-x
    [22] R. Kumar, S. Jain, Time fractional generalized Korteweg-de Vries equation: Explicit series solutions and exact solutions, Journal of Fractional Calculus and Nonlinear Systems, 2 (2021), 62–77. https://doi.org/10.48185/jfcns.v2i2.315 doi: 10.48185/jfcns.v2i2.315
    [23] A. Zada, S. Faisal, Y. Li, On the Hyers-Ulam stability of first-order impulsive delay differential equations, J. Funct. Space., 2016 (2016), 8164978. https://doi.org/10.1155/2016/8164978 doi: 10.1155/2016/8164978
    [24] Z. P. Yang, T. Xu, M. Qi, Ulam-Hyers stability for fractional differential equations in quaternionic analysis, Adv. Appl. Clifford Algebras, 26 (2016), 469–478. https://doi.org/10.1007/s00006-015-0576-3 doi: 10.1007/s00006-015-0576-3
    [25] S. Abbas, M. Benchohra, J. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Differ. Equ., 2017 (2017), 180. https://doi.org/10.1186/s13662-017-1231-1 doi: 10.1186/s13662-017-1231-1
    [26] Asma, A. Ali, K. Shah, F. Jarad, Ulam-Hyers stability analysis to a class of nonlinear implicit impulsive fractional differential equations with three point boundary conditions, Adv. Differ. Equ., 2019 (2019), 7. https://doi.org/10.1186/s13662-018-1943-x doi: 10.1186/s13662-018-1943-x
    [27] D. Baleanu, A. Mousalou, S. Rezapour, A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative, Adv. Differ. Equ., 2017 (2017), 51. https://doi.org/10.1186/s13662-017-1088-3 doi: 10.1186/s13662-017-1088-3
    [28] T. A. Burton, T. Furumochi, Krasnoselskii's fixed point theorem and stability, Nonlinear Anal. Theor., 49 (2002), 445–454. https://doi.org/10.1016/S0362-546X(01)00111-0 doi: 10.1016/S0362-546X(01)00111-0
    [29] A. Naimi, B. Tellab, Y. Altayeb, A. Moumen, Generalized Ulam-Hyers-Rassias stability results of solution for nonlinear fractional differential problem with boundary conditions, Math. Probl. Eng., 2021 (2021), 7150739. https://doi.org/10.1155/2021/7150739 doi: 10.1155/2021/7150739
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1689) PDF downloads(118) Cited by(17)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog