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1. Introduction

In previous few decades the field of fractional calculus has been gotten great attraction from
researchers. This is due to the significant applications in the area of nano-technology, rheology, physical
and biological sciences as well as engineering disciplines (see [1–3]). The aforesaid area has been
interrogated from various aspects in last few years. Recently this area is an hot field of research and
many researchers are working on different theories, tools and methodologies to investigate fractional
order differential equations (FODEs). In fact differential equations play significant roles in the description
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of various real world problems and phenomenons. Future prediction and planning can be designed by
using the idea of differential and integral equations. The area devoted to classical problems have been
enriched by plenty of papers, books and monographs. Further, researchers have expanded the concept
of derivatives and integration from integer order to any real or complex order. This concept was old as
classical one, but has not properly attracted until eighteenth hundred century. During the mentioned time,
Reimann and Liouville introduced properly the concept of fractional order derivatives and integration
(for detail see [4]). After that the concept of said operators have been defined in different ways. Recently,
we have different kinds of differential operators including Hadamard, Reimann-Liuoville, Caputo, etc.
(we provide some detail as [5–8]). Caputo and Fabrizio [9] in 2015 introduced a modified type derivative
called non-singular which has been given much attention by the researchers. The considered differential
operator involves non singular kernel of exponential type. Also the said operator has been further
generalized by Atangana and his co-authors in 2016 by replacing the exponential function by Mittag–
Leffler one.

Here, we remark that the aforementioned differential operators have led us to various classes of
differential and integral equations which are increasingly applied to deal large numbers of real world
problems more successively. One thing, we have to keep in mind that several real world phenomenon
have not unique behavior and they keep multiplicity in their dynamical behaviors. For instance fluctuation
in economy, earthquake, analogous behaviors of gaseous dynamics, etc. These behaviors mostly are
subjected to abrupt changes in their state of rest or uniform motion. This is also called impulsive
effect. For the mentioned process researchers increasingly are using different operators mentioned
earlier to reach better solutions. But these operators still do not describe the crossover behavior more
efficiently. Therefore to more properly investigate the mentioned behaviors, recently authors [10] have
introduced the concept of piecewise equations (PEs) of under fractional order derivative. Instead of
the classical Reimann-Liouville, Caputo, Caputo-Fabrizio and Atangana-Baleanue derivatives, their
piecewise versions work very well to explain the multiple behaviors of a process with more significant
ways. Recently some important applicable results by using non-singular type derivatives have been
studied, for further detail see [11–14].

Therefore, keeping in mind the aforesaid need and importance, we establish, the existence theory
and stability analysis for the following general Cauchy nonlocal implicit problem under the concept of
piecewise equations with CFD as

PCFDδ
xu(x) = f (x, u(x), PCFDδ

xu(x)), x ∈ [0,T ] = J ,

u(0) = u0 + ϕ(x), u0 ∈ R,
(1.1)

such that δ ∈ (0, 1], ϕ ∈ C(J) and f : J × R × R → R. The notion PCFDδ
x stands for piecewise CFD

which replicates the power law singular kernel via non singular kernel of exponential kind. For further
detailed of CFD, we refer for the readers [15–22].

Here, we first convert the proposed problem to integral form of piecewise via using elementary results
of fractional calculus. Further, on utilization of fixed point results, necessary and sufficient conditions
are developed to investigate the corresponding existence theory of (1.1). Since stability is an important
aspect in optimization theory and numerical analysis. Further, the stability results are fundamental to be
investigated for establishing various numerical algorithms and procedures. Therefore, variety of stability
concepts have been introduced in literatures including exponential, Laypunov and Mittag–Leffler type.
Recently, the H-U type stability theory has been increasingly investigated for usual FODEs (we refer few
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as [23–27]). Inspired from the aforesaid discussion, we establish some adequate conditions for various
forms of H-U type stability including generalized H-U, Hyers-Ulam -Rassias (H-U-R) and generalized
H-U-R for the proposed problem by using nonlinear functional analysis. Also for the demonstration of
our results, we provide pertinent examples.

The manuscript is organized as: Section first is devoted to literature overview. Second part is related
to elementary results. Third part is devoted to existence results. Fourth part is related to stability analysis.
Fifth part is enriched by examples. Last part is devoted to brief conclusion.

2. Elementary materials

We need some elementary results which we recall from [10].

Definition 2.1. Let y be a continues function, then the piecewise integral with fractional order δ ∈ (0, 1]
is defined by

PCFIδxy(x) =


∫ x1

0
y(s)ds, if x ∈ J1 = [0, x1],

1 − δ
CF(δ)

y(x) +
δ

CF(δ)

∫ x

x1

y(s)ds, if x ∈ J2 = [x1,T ],

where CF(δ) is normalization function.

Definition 2.2. Let y be continues function, then the piecewise derivative with classical and exponential
decay kernel with fractional order δ ∈ (0, 1] is defined as

PCFDδ
xy(x) =


dy
dx
, if x ∈ J1,

CFDδ
xy(x), if x ∈ J2,

where CFDδ
x represents CFD, for x ∈ J2 which is defined as

CFDδ
xy(x) =

CF(δ)
1 − δ

∫ x

0
exp

(
−δ(x − s)

1 − δ

)
y′(s)ds, x ≥ 0.

Lemma 2.1. Let h be continuous function, then the solution of the given problem under piecewise
equation with CFD

PCFDδ
xy(x) = h(x), δ ∈ (0, 1],

is given by

y(x) =


y(0) +

∫ x1

0
h(s)ds, x ∈ J1,

y(x1) +
1 − δ

CF(δ)
h(x) +

δ

CF(δ)

∫ x

x1

h(s)ds, if x ∈ J2.

The Banach space is defined by Z =

{
u : J → R : u ∈ C(J1 ∪ J2)

}
endowed with a norm

‖u‖Z =
sup

x ∈ J
|u(x)| .
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Theorem 2.3. [28] Let E ⊂ Z be closed, convex and non empty subset of Z, then there exist A1, A2 two
operators, such that

1) A1u1 + A2u2 ∈ E, for all u1, u2 ∈ E;
2) A1 is contraction and A2 is completely continuous operator,

then there exist atleast one fixed point u ∈ E with A1u + A2u = u.

3. Existence results

Lemma 3.1. On using Lemma 2.1, the solution of the problem with piecewise linear equation

PCFDδ
xu(x) = h(x), δ ∈ (0, 1],

u(0) = u0 + ϕ(u)
(3.1)

is computed as

u(x) =


u0 + ϕ(u) +

∫ x1

0
h(s)ds, x ∈ J1,

u(x1) +
(1 − δ)
CF(δ)

h(x) +
δ

CF(δ)

∫ x

x1

h(s)ds, x ∈ J2.

(3.2)

Proof. Applying the piecewise integral on both sides of (3.1), we have

u(x) =


u(0) +

∫ x1

0
h(s)ds, x ∈ J1,

u(x1) +
(1 − δ)
CF(δ)

h(x) +
δ

CF(δ)

∫ x

x1

h(s)ds, x ∈ J2.

(3.3)

Using u(0) = u0 + ϕ(u) in (3.3), we get

u(x) =


u0 + ϕ(u) +

∫ x1

0
h(s)ds, x ∈ J1,

u(x1) +
(1 − δ)
CF(δ)

h(x) +
δ

CF(δ)

∫ x

x1

h(s)ds, x ∈ J2.

�

Corollary 1. Inview of Lemma 3.1, the solution of our proposed problem (1.1) is given by

u(x) =


u0 + ϕ(u) +

∫ x1

0
f (s, u(s), PCFDδ

su(s))ds, x ∈ J1,

u(x1) +
(1 − δ)
CF(δ)

f (x, u(x), PCFDδ
xu(x)) +

δ

CF(δ)

∫ x

x1

f (s, u(s), PCFDδ
su(s))ds, x ∈ J2.

(3.4)

For our analysis the following hypothesis are needed to be hold:

(H1) For every u, v ∈ Z and constant Cϕ > 0, we have

|ϕ(u) − ϕ(v)| ≤ Cϕ|u − v|;
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(H2) For every u, v, ū, v̄ ∈ Z, and constants L f > 0, 0 < M f < 1, one has

| f (x, u, v) − f (x, ū, v̄)| ≤ L f |u − ū| + M f |v − v̄|.

Let us define the operator F : Z→ Z by

F(u(x)) =


u0 + ϕ(u) +

∫ x1

0
f (s, u(s), PCFDδ

su(s))ds, x ∈ J1,

u(x1) +
(1 − δ)
CF(δ)

f (x, u(x), PCFDδ
xu(x)) +

δ

CF(δ)

∫ x

x1

f (s, u(s), PCFDδ
su(s))ds, x ∈ J2.

(3.5)

Theorem 3.1. Inview of hypothesis (H1,H2), our proposed problem (1.1) has a unique solution if the
condition

K = max
{
Cϕ +

x1L f

1 −M f
,

1 − δ + δ(T − x1)
CF(δ)

L f

1 −M f

}
< 1

holds.

Proof. Consider u, ū ∈ Z, then one has∣∣∣PCFDδ
xu(x) − PCFDδ

xū(x)
∣∣∣ =

∣∣∣ f (x, u(x), PCFDδ
xu(x)) − f (x, ū(x), PCFDδ

xū(x))
∣∣∣

≤ L f |u(x) − ū(x)| + M f

∣∣∣PCFDδ
xu(x) − PCFDδ

xū(x)
∣∣∣ , (3.6)

hence, we have from (3.6) ∣∣∣PCFDδ
xu(x) − PCFDδ

xū(x)
∣∣∣ ≤ L f

1 −M f
|u(x) − ū(x)| . (3.7)

Therefore, we consider u, ū ∈ Z, and using (3.7)

‖F(u) − F(ū)‖Z ≤ sup
x∈J



|ϕ(u) − ϕ(ū)| +
∫ x1

0

∣∣∣ f (s, u(s), PCFDδ
su(s)) − f (s, ū(s), PCFDδ

sū(s))
∣∣∣ ds, x ∈ J1,( 1 − δ

CF(δ)

)∣∣∣∣∣ f (x, u(x), PCFDδ
xu(x)) − f (x, ū(x), PCFDδ

xū(x))
∣∣∣∣∣

+
δ

CF(δ)

∫ x

x1

∣∣∣ f (s, u(s), PCFDδ
su(s)) − f (s, ū(s), PCFDδ

sū(s))
∣∣∣ ds, x ∈ J2.

(3.8)

Thus, (3.8) yields

‖F(u) − F(ū)‖Z ≤ sup
x∈J



Cϕ |u − ū| +
∫ x1

0

[
L f |u(s) − ū(s)| + M f

∣∣∣PCFDδ
su(s) − PCFDδ

sū(s)
∣∣∣ ]ds, x ∈ J1,( 1 − δ

CF(δ)

)[
L f |u(x) − ū(x)| + M f

∣∣∣PCFDδ
xu(x)) − PCFDδ

xū(x))
∣∣∣ ]

+
δ

CF(δ)

∫ x

x1

[
L f |u(s) − ū(s)| + M f

∣∣∣PCFDδ
su(s)) − PCFDδ

sū(s))
∣∣∣ ]ds, x ∈ J2.

(3.9)

On further simplification, (3.9) gives

‖F(u) − F(ū)‖Z ≤ sup
x∈J


Cϕ |u − ū| +

∫ x1

0

L f

1 −M f
|u(s) − ū(s)| ds, x ∈ J1,( 1 − δ

CF(δ)
L f

(1 −M f )
|u(x) − ū(x)| +

δ

CF(δ)
L f

(1 −M f )

∫ x

x1

|u(s) − ū(s)| ds, x ∈ J2.

(3.10)
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Hence, we have from(3.10) that

‖F(u) − F(ū)‖Z ≤


(
Cϕ +

x1L f

1 −M f

)
‖u − ū‖Z , x ∈ J1,(1 − δ + δ(T − x1)

CF(δ)

) L f

1 −M f
‖u − ū‖Z , x ∈ J2.

(3.11)

Therefore, (3.12) can be written as

‖F(u) − F(ū)‖Z ≤ K‖u − ū‖Z.

Hence F is contraction operator. Therefore invew of Banach contraction theorem, the proposed problem
has a unique solution. �

To derive existence criteria for atleast one solution, we utilize Theorem 2.3. The given assumptions to
be holds true:

(H3) Let for constants a > 0, C f > 0 and 0 < D f < 1, we have

| f (x, u(x), v(x))| ≤ a f (x) + C f (x)|u(x)| + D f (x)|v(x)|.

Further, assume
a∗ = sup

x∈J
|a f (x)|, b∗ = sup

x∈J
|C f (x)|, c∗ = sup

x∈J
|D f (x)| < 1.

Theorem 3.2. Reference to the hypothesis (H1) − (H3), the proposed problem has atleast one solution if

the condition max
{
Cϕ,

(1−δ)
CF(δ)

L f

(1−M f )

}
< 1 holds.

Proof. Here we first define the operators as

A1u(x) =


ϕ(u), x ∈ J1,

u(x1) +
(1 − δ)
CF(δ)

f (x, u(x), PCFDδ
xu(x))

(3.12)

and

A2u(x) =


∫ x1

0
f (s, u(s), PCFDδ

su(s))ds, x ∈ J1,

δ

CF(δ)

∫ x

x1

f (s, u(s), PCFDδ
su(s))ds, x ∈ J2.

(3.13)

We now perform the following steps.
Step 1: We describe a set by Ω = {u ∈ Z : ‖u‖Z ≤ r}, as ϕ and f are continuous, so is A1. Now to

show that A1 is contraction operator, taking u, ū ∈ Ω, and use (3.12), we have

‖A1u − A1ū‖ ≤ sup
x∈J


|ϕ(u) − ϕ(ū)|, x ∈ J1,∣∣∣∣∣ (1 − δ)CF(δ)

f (x, u(x), PCFDδ
xu(x)) −

(1 − δ)
CF(δ)

f (x, ū(x), PCFDδ
xū(x))

∣∣∣∣∣, x ∈ J2.
(3.14)
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Excising the aforesaid Hypothesis (H1), (H2) and using the condition

max
{
Cϕ,

(1 − δ)
CF(δ)

L f

(1 −M f )

}
= H1 < 1,

one has from (3.14)

‖A1u − A1ū‖Z ≤ H1‖u − v‖Z.

Thus A1 is condensing operator.
Step 2: To show that A2 is completely continuous operator, let u ∈ Ω, one has from (3.13)

‖A2u‖Z ≤ sup
x∈J


∫ x1

0

∣∣∣ f (s, u(s), PCFDδ
su(s))

∣∣∣ ds, x ∈ J1,

δ

CF(δ)

∫ x

x1

∣∣∣ f (s, u(s), PCFDδ
su(s))

∣∣∣ ds, x ∈ J2.

(3.15)

Thank to Hypothesis (H3), we have from (3.15) that

‖A2u‖Z ≤ sup
x∈J


∫ x1

0

[
|a f (s)| + |C f (s)| + |D f (s)|

]
ds, x ∈ J1,

δ

CF(δ)

∫ x

x1

[
|a f (s)| + |C f (s)| + |D f (s)|

]
ds, x ∈ J2,

which further yields that

‖A2u‖Z ≤


x1(a∗ + rb∗)

(1 − c∗)
,

δ

CF(δ)
(T − x1)(a∗ + rb∗)

(1 − c∗)
.

(3.16)

Putting

max
{ x1(a∗ + rb∗)

(1 − c∗)
,

δ

CF(δ)
(T − x1)(a∗ + rb∗)

(1 − c∗)

}
= H∗,

(3.16) takes the form

‖A2u‖Z ≤ H∗. (3.17)

Therefore, operator A2 is bounded.
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Step 3: Now to deduce equi-continuity, let x2 < x3 ∈ J , then one has

|A2u(x3) − S2u(x2)| =

∣∣∣∣∣ δ

CF(δ)

[ ∫ x3

x1

f (s, u(s), PCFDδ
su(s))ds −

∫ x2

x1

f (s, u(s), PCFDδ
su(s))ds

]∣∣∣∣∣
=

∣∣∣∣∣ δ

CF(δ)

[ ∫ x2

x1

f (s, u(s), PCFDδ
su(s))ds +

∫ x3

x2

f (s, u(s), PCFDδ
su(s))ds

−

∫ x2

x1

f (s, u(s), PCFDδ
su(s))ds

]∣∣∣∣∣
≤

δ

CF(δ)

∣∣∣∣∣ ∫ x3

x2

f (s, u(s), PCFDδ
su(s))ds

∣∣∣∣∣
≤

δ

CF(δ)

∫ x3

x2

[
|a f (s)| + |C f (s)||u(s)| + |D f (s)||PCFDδ

su(s))|
]

ds

≤
δ

CF(δ)
(a∗ + b∗r)

1 − c∗
(x3 − x2)→ 0, as x3 → x2.

Further as A2 is bounded and continuous on J so is uniformly continuous. Thus one has

‖A2u(x3) − S2u(x2)‖Z → 0, as x3 → x2.

Hence A2 is equi-continuous. Therefore, the operator A2 is relatively compact. Hence inview of Arzelá-
Ascoli theorem A2 is completely continuous operator. Thus all the conditions of theorem are satisfied,
hence the proposed problem has atleast one solution. �

4. Stability analysis

Here we describe the results about H-U stability and its various version for the proposed problem. We
recall some definition and results given in [29] as:

Definition 4.1. The proposed problem (1.1) is H-U stable if for every ε > 0, and for the inequality

|PCFDδ
xu(x) − f (x, u(x), PCFDδ

xu(x))| < ε, for all, x ∈ J ,

there exists a unique solution ū ∈ Z and a constantH f > 0, such that

‖u − ū‖Z ≤ H f ε, for every, x ∈ J .

Further, if there exist a nondecreasing function φ : [0,∞)→ R+ for the given inequality

‖u − ū‖Z ≤ H fφ(ε), at every, x ∈ J

such that φ(0) = 0, then the concerned solution is generalized H-U stable.

Definition 4.2. Our proposed problem (1.1) is H-U-R stable corresponding to a function ψ : [0,∞) →
R+, if for every ε > 0 and for the inequality

|PCFDδ
xu(x) − f (x, u(x), PCFDδ

xu(x))| < εψ(x), x ∈ J ,
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there exists a unique solution ū ∈ Z of problem (1.1) and constantH f ,ψ > 0, such that

‖u − ū‖Z ≤ H f ,ψεψ(x), x ∈ J .

Again, if there exists ψ : [0,∞)→ R+, for the inequality

|PCFDδ
xu(x) − f (x, u(x), PCFDδ

xu(x))| < ψ(x), x ∈ J ,

there exists a unique solution ū ∈ Z and constantH f ,ψ > 0, such that

‖u − ū‖Z ≤ H f ,ψψ(x), at ever, x ∈ J ,

then the solution is generalized H-U-R stable.

Before to derive main result of stability, we present some remarks as:

Remark 1. Consider a function α ∈ C(J) independent of u ∈ Z, such that α(0) = 0, then

|α(x)| ≤ ε, x ∈ J;
PCFDδ

xu(x) = f (x, u(x), PCFDδ
xu(x)) + α(x), x ∈ J .

Lemma 4.1. Consider the perturbed problem

PCFDδ
xu(x) = f (x, u(x), PCFDδ

xu(x)) + α(x), at every, x ∈ J , (4.1)
u(0) = u0 + ϕ(u).

The solution of (4.1) is computed as

u(x) =



u0 + ϕ(u) +

∫ x1

0
f (s, u(s), PCFDδ

su(s))ds +

∫ x1

0
α(s)ds, x ∈ J1,

u(x1) +
(1 − δ)
CF(δ)

[
f (x, u(x), PCFDδ

xu(x)) + α(x)
]

+
δ

CF(δ)

[ ∫ x

x1

f (s, u(s), PCFDδ
su(s))ds +

∫ x2

x1

α(s)ds
]
, x ∈ J2.

(4.2)

Moreover the solution fulfils the criteria by using (3.5)

‖u − F(ū)‖Z ≤


x1ε, x ∈ J1[1 − δ + δ(T − x1)

CF(δ)

]
ε = Λε, x ∈ J2.

(4.3)

Proof. Like the proof of Lemma 3.1, the solution of the problem (4.1) given in (4.2) can be computed
easily. Further on usual analysis and using Remark 1, the relation (4.3) can be obtained. �

Theorem 4.3. Inview of Lemma 4.1 and if the condition L f

1−M f
< 1 holds, then the solution of the

considered problem (1.1) is H-U stable and further generalized H-U stable.
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Proof. Consider any solution u ∈ Z of (1.1) and unique solution ū ∈ Z of (1.1), then we have
Case I. for x ∈ J1, one has

‖u − ū‖Z = sup
x∈J

∣∣∣∣∣u − (
u0 + ϕ(ū) +

∫ x1

0
f (s, ū(s), PCFDδ

sū(s))ds +

∫ x1

0
α(s)ds

)∣∣∣∣∣
≤ sup

x∈J

∣∣∣∣∣u − [
u0 + ϕ(u) +

∫ x1

0
f (s, u(s), PCFDδ

su(s))ds
∣∣∣∣∣

+ sup
x∈J

∣∣∣∣∣ϕ(u) − ϕ(ū) +

∫ x1

0
f (s, u(s), PCFDδ

su(s))ds −
∫ x1

0
f (s, ū(s), PCFDδ

sū(s))ds
∣∣∣∣∣

≤ x1ε +
L f

1 −M f
‖u − ū‖Z . (4.4)

Therefore on simplification of (4.4), one has

‖u − ū‖Z ≤
( x1

1 − L f

1−M f

)
ε. (4.5)

Case II. When x ∈ J2, one has

‖u − ū‖Z ≤ sup
x∈J

∣∣∣∣∣u − [
u(x1) +

(1 − δ)
CF(δ)

[
f (x, u(x), PCFDδ

xu(x))
]

+
δ

CF(δ)

[ ∫ x

x1

f (s, u(s), PCFDδ
su(s))ds

]∣∣∣∣∣
+ sup

x∈J

(1 − δ)
CF(δ)

∣∣∣∣∣ f (x, u(x), PCFDδ
xu(x)) − f (x, ū(x), PCFDδ

xū(x))
∣∣∣∣∣

+ sup
x∈J

δ

CF(δ)

∫ x

x1

∣∣∣ f (s, u(s), PCFDδ
su(s))ds − f (s, ū(s), PCFDδ

sū(s))
∣∣∣ ds. (4.6)

On simplification (4.6) yields and using Λ =

[
1−δ+δ(T−x1)

CF(δ)

]
, we have

‖u − ū‖Z ≤ Λε + Λ
L f

1 −M f
‖u − ū‖Z . (4.7)

Hence, we get from (4.7) that

‖u − ū‖Z ≤
(

Λ

1 − ΛL f

1−M f

)
ε‖u − ū‖Z. (4.8)

Using

H = max
{ x1

1 − L f

1−M f

,
Λ

1 − ΛL f

1−M f

}
,

then from (4.5) and (4.7), one has

‖u − ū‖Z ≤ Hε, at each x ∈ J . (4.9)
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Hence the solution of (1.1) is H-U stable. Further replacing φ(ε) = ε, then, from (4.17), we get

‖u − ū‖Z ≤ Hφ(ε), at each x ∈ J .

Since we see that φ(0) = 0 which means that the solution of (1.1) is also generalized H-U stable. �

To deduce the results of Rassias stability and its generalized form, we state the following remark.

Remark 2. Let the function α ∈ C(J) is independent of u ∈ Z, with α(0) = 0, then

|α(x)| ≤ ψ(x)ε, x ∈ J ;
PCFDδ

xu(x) = f (x, u(x), PCFDδ
xu(x)) + α(x), x ∈ J ;∫ x

0
ψ(s)ds ≤ Cψ ψ(x), x ∈ J .

Lemma 4.2. The solution of the problem

PCFDδ
xu(x) = f (x, u(x), PCFDδ

xu(x)) + α(x), at every, x ∈ J , (4.10)
u(0) = u0 + ϕ(u),

satisfies the relation given by

‖u − F(ū)‖Z ≤


x1Cψψ(x)ε, x ∈ J1,[1 − δ + δ(T − x1)

CF(δ)

]
H f ,ψCψψ(x)ε = H f ,Cψ,Λ ψ(x) ε, x ∈ J2,

(4.11)

whereH f ,ψ,Λ = ΛH f ,ψ.

Proof. Using Lemma 3.1, the solution of (4.10) can be computed easily. Further on usual analysis and
using Remark 2, the relation (4.11) can be obtained. �

Theorem 4.4. Inview of (H1), (H2) and Lemma 4.2, the solution of the proposed problem (1.1) is H-U-R
stable if M f < 1.

Proof. We deduce this results in two cases as:
Case I. For x ∈ J1, we have

‖u − ū‖Z = sup
x∈J

∣∣∣∣∣u − (
u0 + ϕ(ū) +

∫ x1

0
f (s, ū(s), PCFDδ

sū(s))ds +

∫ x1

0
α(s)ds

)∣∣∣∣∣
≤ sup

x∈J

∣∣∣∣∣u − [
u0 + ϕ(u) +

∫ x1

0
f (s, u(s), PCFDδ

su(s))ds
∣∣∣∣∣

+ sup
x∈J

∣∣∣∣∣ϕ(u) − ϕ(ū) +

∫ x1

0
f (s, u(s), PCFDδ

su(s))ds −
∫ x1

0
f (s, ū(s), PCFDδ

sū(s))ds
∣∣∣∣∣

≤ x1Cψψ(x)ε +
L f

1 −M f
‖u − ū‖Z . (4.12)

Therefore, on simplification of (4.12), one has

‖u − ū‖Z ≤
( x1Cψ

1 − L f

1−M f

)
ψ(x)ε = H f ,Cψ,x1 ψ(x) ε. (4.13)
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Case II. For x ∈ J2, one has

‖u − ū‖Z ≤ sup
x∈J

∣∣∣∣∣u − [
u(x1) +

(1 − δ)
CF(δ)

[
f (x, u(x), PCFDδ

xu(x))
]

+
δ

CF(δ)

[ ∫ x

x1

f (s, u(s), PCFDδ
su(s))ds

]∣∣∣∣∣
+ sup

x∈J

(1 − δ)
CF(δ)

∣∣∣∣∣ f (x, u(x), PCFDδ
xu(x)) − f (x, ū(x), PCFDδ

xū(x))
∣∣∣∣∣

+ sup
x∈J

δ

CF(δ)

∫ x

x1

∣∣∣ f (s, u(s), PCFDδ
su(s))ds − f (s, ū(s), PCFDδ

sū(s))
∣∣∣ ds. (4.14)

On further simplification yields by using Λ =

[
1−δ+δ(T−x1)

CF(δ)

]
‖u − ū‖Z ≤ ΛCψψ(x)ε + Λ

L f

1 −M f
‖u − ū‖Z . (4.15)

Hence we get from (4.15)

‖u − ū‖Z ≤
( ΛCψ

1 − ΛL f

1−M f

)
ψ(x)ε. (4.16)

Using

HΛ,Cψ = max
{ x1

1 − L f

1−M f

,
( ΛCψ

1 − ΛL f

1−M f

)}
then from (4.13) and (4.16), we have

‖u − ū‖Z ≤ HΛ,Cψψ(x) ε, at each, x ∈ J . (4.17)

Therefore the solution of the proposed problem (1.1) is H-U-R stable. �

Remark 3. Let the function α be independent of u ∈ Z, such that α(0) = 0, then

1) |α(x)| ≤ ψ(x), x ∈ J ;

Theorem 4.5. Inview of (H1), (H2), Remark 3 and Lemma 4.2, the solution of the proposed problem (1.1)
is generalized H-U-R, if M f < 1.

Proof. We derive the required result in two cases as:
Case I. For x ∈ J1, we have

‖u − ū‖Z = sup
x∈J

∣∣∣∣∣u − (
u0 + ϕ(ū) +

∫ x1

0
f (s, ū(s), PCFDδ

sū(s))ds +

∫ x1

0
α(s)ds

)∣∣∣∣∣
≤ sup

x∈J

∣∣∣∣∣u − [
u0 + ϕ(u) +

∫ x1

0
f (s, u(s), PCFDδ

su(s))ds
∣∣∣∣∣

+ sup
x∈J

∣∣∣∣∣ϕ(u) − ϕ(ū) +

∫ x1

0
f (s, u(s), PCFDδ

su(s))ds −
∫ x1

0
f (s, ū(s), PCFDδ

sū(s))ds
∣∣∣∣∣
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≤ x1Cψ ψ(x) +
L f

1 −M f
‖u − ū‖Z . (4.18)

Further from (4.18), one has

‖u − ū‖Z ≤
( x1Cψ

1 − L f

1−M f

)
ψ(x) = H f ,Cψ,x1ψ(x). (4.19)

Case II. For x ∈ J2, one has

‖u − ū‖Z ≤ sup
x∈J

∣∣∣∣∣u − [
u(x1) +

(1 − δ)
CF(δ)

f (x, u(x), PCFDδ
xu(x))

+
δ

CF(δ)

∫ x

x1

f (s, u(s), PCFDδ
su(s))ds

]∣∣∣∣∣
+ sup

x∈J

(1 − δ)
CF(δ)

∣∣∣∣∣ f (x, u(x), PCFDδ
xu(x)) − f (x, ū(x), PCFDδ

xū(x))
∣∣∣∣∣

+ sup
x∈J

δ

CF(δ)

∫ x

x1

∣∣∣ f (s, u(s), PCFDδ
su(s))ds − f (s, ū(s), PCFDδ

sū(s))
∣∣∣ ds. (4.20)

On further simplification of (4.20) and using Λ =

[
1−δ+δ(T−x1)

CF(δ)

]
, we have

‖u − ū‖Z ≤ ΛCψ ψ(x) + Λ
L f

1 −M f
‖uū‖Z . (4.21)

Hence, we get from (4.21)

‖u − ū‖Z ≤
( ΛCψ

1 − ΛL f

1−M f

)
ψ(x). (4.22)

Using

HΛ,Cψ = max
{ x1

1 − L f

1−M f

,
( ΛCψ

1 − ΛL f

1−M f

)}
,

from (4.19) and (4.22), we have

‖u − ū‖Z ≤ HΛ,Cψ ψ(x), at each, x ∈ J .

Therefore the solution of the proposed problem (1.1) is generalized H-U-R stable. �

5. Pertinent examples

We provide some examples to verify our results.

Example 1. Consider the problem as

PCFD0.5
x u(x) =

exp(−πx) sin |u(x)| + sin |PCFD0.5
x u(x)|

50 + x4 , x ∈ J ,

u(0) = 1 +
exp(−|u|)

30
.

(5.1)
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Taking T = 1 and x1 = 0.5 and we see that L f = 1
50 = M f , Cϕ = 1

30 . Then we see that on using calculation
by Theorem 3.1

K = max
{
Cϕ +

x1L f

1 −M f
,

1 − δ + δ(T − x1)
CF(δ)

L f

1 −M f

}
= max{0.914, 0.015}
= 0.914 < 1.

Hence by using Theorem 3.1, the given problem has a unique solution. Further upon calculation we see
that a∗ = 0, b∗ = 1

50 , c∗ = 1
50 . Now inview of Theorem 3.2, we see that

H1 = max
{ 1

30
,

1
98

}
=

1
30

< 1.

Hence the conditions of Theorem 3.2 fulfill so the given problem has atleast one solution. Moreover the
condition for H-U stability and generalized are obvious as we see that Λ = 0.75, L f

1−M f
= 1

49 < 1. Further
if we take ψ(x) = x, then the conditions of H-U-R and generalized H-U-R stabilities are obviously verified
given in Theorems 4.4 and 4.5 respectively. Here the graphical behavior of solution is given in Figure 1.

0.2 0.4 0.6 0.8 1.0

0.55

0.60

0.65

0.70

0.75

Figure 1. Graphical presentation of solution at given jump of 0.5 for Example 1.

Example 2. Consider another example as

PCFD0.7
x u(x) =

exp(− cos x) exp(−|u(x)|) + sin |PCFD0.7
x u(x)|

100 + cos x
, x ∈ J ,

u(0) = 0.5 +
sin(|u|)

60
.

(5.2)

Taking T = 1.5 and x1 = 0.8 and we see that L f = 1
100 = M f , Cϕ = 1

60 . Applying Theorem 3.1 to get

K = max
{
Cϕ +

x1L f

1 −M f
,

1 − δ + δ(T − x1)
CF(δ)

L f

1 −M f

}
= max{0.024747, 0.00797}
= 0.024747 < 1.

Hence by using Theorem 3.1, the given problem has a unique solution. Also see that a∗ = 0, b∗ =
1

100 , c∗ = 1
100 . Thank to Theorem 3.2, we see that

H1 = max
{ 1

60
,

1
330

}
=

1
60

< 1.
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Thus conditions of Theorem 3.2 are satisfied the given problem has atleast one solution. Also H-U and
generalized H-U stability results are satisfied as we see that Λ = 0.79, L f

1−M f
= 1

99 < 1. Consider
nondecreasing function ψ(x) = x, then the conditions of H-U-R and generalized H-U-R stabilities can
easily be verified given by using Theorems 4.4 and 4.5 respectively. Further, the graphical behavior of
solution is given in Figure 2.

0.2 0.4 0.6 0.8 1.0

x

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 2. Graphical presentation of solution at given jump of 0.8 for Example 2.

6. Conclusions

Some new concept of piecewise equations under CFD have been introduced in this work. Keeping in
mind the importance of fractional calculus in recent time, we have established some results devoted to the
existence, uniqueness and stability analysis for a nonlocal Cauchy type problem. The concerned results
have been established by using the concept of fixed point approach and nonlinear functional analysis.
Sufficient conditions have been developed which guaranteed the existence of atleast one solution and
its uniqueness to the proposed nonlocal Cauchy problem. Further its stability has been deduced via
nonlinear analysis tools. Pertinent test problems have been provided to illustrate the results. Some
graphical presentation have also given. We see that these kinds derivatives more excellently express the
sudden change in behavior of dynamical systems. Hence we conclude that this type of calculus in near
future will open new area of research. In future more further investigation that how to deal boundary
value problems of piecewise equations under various fractional order derivative will be treated.
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