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1. Introduction

The Cahn-Hilliard equation,

d
L+ Ao f@) =0 (1L.1)

is very important in science of materials. This equation is a simple model for the phase separation
processes of a binary at a fixed temperature. We refer the reader to [11, 12] for more details. The
function f : R — R is the derivative of a double-well potential F whose correspond to the phases of
material. A typical nonlinear model is given by

F(s) = 3(s* = 1)?

i.e.
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f(s)=s—s

The function ¢(x, ¢) represents the concentration of one of the metallic components of the alloy. It also
worth to note that the sole given by Eq (1.1) is not sufficient for the accurate description of the whole
variety of physical phenomena arising in this theory, so a number of various modifications this equation
was introduced (see [2, 13—16, 18, 19]). On the interesting from both mathematical and physical point
of view modifications of the Cahn-Hilliard equation is the following hyperbolic relaxation of the Cahn-
Hilliard equation or the Hyperbolic Cahn-Hilliard equation:

d? d
8+ LA~ () = (1.2)

which was introduced by P. Galenko and Coauthors (see [3—10]) in order to treat in a more accurate
way the non-equilibrium effects in spinodal decomposition. In a fact, the inertial term TD‘fo changes
the type of the equation (from parabolic to hyperbolic) and the analytical properties of its solutions.
Equation (1.2) endowed with Dirichlet boundary conditions has been studied in [1] by S. Gatti, V.
Pata and M. Grasselli, A. Miranville who proved the existence of Global attractors and exponential
attractors for the usual cubic nonlinear term in dimension one of space. In this paper, we consider the
problem in [1] by adding a source term that is,

2¢ + —¢ + A(A 1.3
by 6= [9) = 8(©) (1.3)
where g is defined by
_ ke P—
g(¢)_ k’+|¢|, k’k €R+

and function g : R — R is of class C!, Lipschitzian and bounded.

This article is organized as follows. In section 2, we present the problem and fix some notations of
operators and spaces. In section 3, we derive a priori estimates which allow us to prove, in section 4,
the existence, uniqueness and regularity of solutions. In section 5, setting of dissipativity and in section
6, dissipativity in higher-order spaces. Finally, in section 7, the existence of exponential attractors.

2. Setting of the problem

Let us consider the following initial and boundary value problem in a bounded open interval of R,
with boundary I :

(92
o+ S —"’ + %6~ AF(S) - g(@) = @1
09(0
WO =g and LDy, 2.2)
d=Ap=0 on I (2.3)

where ¢ is the order parameter, 7 is the relaxation time of the diffusion flow, f is the nonlinear regular
potentials and g the source term.
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Assume that :

f is of class C* (2.4)

f0)=0 (2.5)

f(s)s > F(s)—cy > ¢, c1,62 20, where F(s) = fs f(ndt (2.6)
0

F(s)>c35t —cy, ¢3>0,c0>0 22.7)

fi(s)z-cs, ¢520 (2.8)

The source term g satisfies the following properties:

g is of class C' (2.9)
g is bounded (2.10)
g is lipschitz (2.11)

Notations : We denote by ((.,.)) the usual scalar product on L*(0,[) associated to the norm ||.||.
Also we set ||.|l-.1 = ||(—A)‘%||, where —A stands for the minus Laplace operator associated with
(homogeneous) Dirichlet boundary conditions (it is a strictly positive, self-adjoint and unbounded
linear operator with compact inverse (—A)~') ). Note that ||.||_; is equivalent to the usual norm on
H7'(0,1), where H™'(0,1) = H,(0,1y. More generally, ||.|ly denotes the norm on the Banach space X.
We pose :

A=-A=-2 and Q=]0,/[cR

0x?

3. A priori estimates

In this section, we will establish a number of important inegalities that will be used later in the proof
of existence, uniqueness, regularity of solution and the existence of finite-dimensional attractors. In

what follows, the poincaré, Holder and young inegalities are extensively used, without further referring
to them. We rewrite (2.1) in the equivalent form:

0 0
s + o+ A+ AS(@) - 8(6) = 0 (3.1)

We multiply (3.1) by A~!¢, integrate over Q and have

d d d
d—<2rD<—¢,A-1¢> Al = 2012212, + 2Vl + 2 f F@ddx—2g@) A $) =0 (32)
t dt dt o
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We then multiply (3.1) by A~ 148 and have

d d d
S D||—¢|| L+ IVEIR +2 f F@)n) + 21501, - 256,470y =0 (33)

The sum of (3.3) and « times (3.2), (where a > 0 is small enough) we find

d d d
Q- 2aTD)IId—(f||31 +2a|IVolI* + 2a f f(@)pdx —2a(g(¢),A™' ) ~ 2(g(¢),A_ld—(f) =0 34
Q

where J p
H= 2mD<d—‘f,A‘1¢> + g2, + rDud—‘fn%l SV +2 f F(d)dx (3.5)
Q

Let @ > 0 such that @ € (0, %D) we have

d
|2cm)<—¢ A7) < 2IEIR, + ol

Owing to (2.7) we have
f F(@)dx 2 c3|ll}q, = ca(Q)
Q

The Eq (3.5) satisfies

d d
c6<rD||d—‘f||%l|| 4 IR, + IR + 81 o) — cs(@) < H < c7<rD||d—‘f||%l|| (3.6)

HIIZ, + VI + 11l ) + c5(), c6,¢7 > 0 and ¢, ¢4 > 0
Owing (2.10) and thanks to Young and Poincare inegalities we have

ade _1.de
I(g(@). A =Dl < ZI=HI% + ¢

and

2l(g(9), A7 p)| < %u«pni + c10

For 2 — atp > 0, the Eq (3.4) satisfies

d
d_H+ cnH < cpp (37)

Apply the Gronwall’s lamma to (3.7), we obtain

d¢(t) 2,

Tpll

+ S, + VDI + DI} g < e (H(0)) + 13 (3.8)
We multiply (3.1) by ¢, integrate over 2 and have

do do

d
12— d) + II*] - 2TD||E”2 + 2lABI” + 2(f ($)Ve, Vo) — 2(g(¢), ¢) = 0 (3.9)
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We then multiply (3.1) by fl—f and have
d¢ » 2 d¢ d¢ » d¢

d ) B
SIlI IR +I86IP1+ 207 @09, Vo0 + 2101 = 206), ) = 0

The sum of (3 10) and A times (3.9), (where A4 > 0 is small enough ) we find

—Y(t)+2(f (V4 V—¢)+2|| 90 i 90

F2A(f (p)Vp, V) — 2/l(g(¢), ¢) =

where

d d
y = and—fn2 F1IAGIP + 2Arg<d—‘f,¢) + AlgIP

Let A > O such that A € (0, %D) we have

d¢ p, 4% 2
SO < IIdtII + Al|oll

|2a’TD(

The Eq (3.12) satisfies

d d
Cuoll P + I9IE +IAGI) < ¥ < ers(el Pl + 11 + A1)
Owing (2.10) and thanks to Young and Poincare inegalities we have

¢ 1 do
I(g(e), EN < ZHE” + Ci6

and 1
A(g(¢), d)| < Z”"’”2 +c17

Owing (2.8), we have
Af' @)V, Vo) = -5Vl
Owing (2.2) and thanks to Young inegalitie and H'(Q) C L*(Q), we have

d d
|<f’<¢>V¢,vd—f>| <ol + ||¢||iw(g)>|w¢||||vd—fn
d
< el + ||V¢||2>||V¢||||vd—‘f||

1 _d
< cllVOIP + cioll VeI, o + Z"Vd_(fllz

For % —2Atp > 0 and (c19 — Acs) > 0, the Eq (3.4) satisfies

d
YW+ V@) + en(IVPIP + IV, + IV 2IP) < e
Apply the Gronwall’s lamma to (3.15), we obtain
TD||_¢|| + I + IAGIP < e (zp| ¢( )II I+ IO + IAGOIP) + 23
and
: d¢(0
f (1991 + IVl g, + 1V "’n )dx < & (x| "’( )|| IO + IAGO)IP) + 23

|| ~28(¢). ) — 247 D”_” +24]1A¢11

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

AIMS Mathematics Volume 7, Issue 8, 14672—-14695.



14677

4. Existence, uniqueness and regularity of solutions

L’existence of solution of the system is based on the Galerkin method.

Theorem 4.1. Suppose that the hypotheses (2.4), (2.6), (2.7), (2.8) and (2.11) are verified and for
(¢o, 1) € HI(Q) x H™Y(Q) then the system (2.1)-(2.3) has a unique solution (¢, d—‘f) such that:
(#, %) € L>(R*, HY(Q) x H™'(Q)) N LX0, T; H)(Q) x LXQ)),  forall T >0

Proof.

a) Existence

Consider a spectral basis (w;);>; of —A associated with eigenvalues 0 < 4; < 4, < .... < ... which forms
an orthonornal basis in L>(Q) and orthogonal in H(l) (Q). We pose V,, = span{wy, ........ , Wy} this spectral
basis and

n
= Z i n;
i1

Then we consider the following approximating problem, written in the functional form

d2
b, ddy
dr? dt

+A°¢, — Af($a) — 8(#,) =0 (4.1)

Tp

¢n(o) = ¢O,n and
Replacing ¢ by ¢, in Eqs (3.17), (3.16) and 3.8), we find:

= 1 (4.2)

1. ¢, is bounded in L*(R*, H}(Q)) N L*(0, T; Hy ()
2. % s bounded in L*(R*, H™'(Q)) N L*(0, T; L*(Q))

Finally, the passage to the limit is based on classical (Aubin-Lions type) compactness results, we find
the result of first part of Theorem (4.1).

b) Uniqueness.

Let us consider (¢, dtl) and (¢, d¢2) two solutions of system (2.1)-(2.3) with respective initial

conditions (¢o,1, = dbo, =) and (¢, ¢°2) in Hy(Q) x H'(Q). we pose

(6, 9) = ($1 — o, T — %)
The system (2.1)-(2.3) becomes

L& _¢ ) )
pog o TAGHA(G) — f(¢2) — (8(1) — 8(¢)) = (4.3)
d¢(0
#(0) = ¢o,1 — o and (i’(t ) =¢11— P12 (4.4)
We multiply (4.3) by A~'¢, integrate over Q and have
d d d
d—t[ZTD(d—(f,A_lfﬁ) + 11121 - 2Tulld—€f||31 + 2Vl +2(f (1) = f($2), $) (4.5)
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-2(g(¢1) — 8(¢2), A7) = 0
We then multiply (4.3) by A~! % and have

¢ d¢ ) do
d

d d d
E[TD”E”%] +IVBIP] + 2= 12, + 2(f(¢1) = f($2), )~ 8@ - 8(¢), A" =) =0

t dt

The sum of (4.6) and «a times (4.5), (where a > 0 is small enough) we find

d d | d
ZX() - 2om)||d—‘f||31 + 2aflAtgIR + 2||d—‘f||%1 £ 2a(f() — f@2).8) + 2/ (@) — f(d),

—2a(g(¢1) — 8(¢h), A™' ) — 2(8(¢h1) — g(¢2), A %) = 0

where

d d 1
X = zmp<d—‘f,A—l¢) +allol?, + rand—‘fn%1 £ IAtgIP)

Let a@ > 0 such that a € (0, %) we have

dp  _ Tp  do
|2QTD(E,A ')l < TDIIEIIQ +allgll?,

The Eq (4.8) satisfies
d¢ 1 d¢o 1
eau(Tpll—-IZ; + allgll, +1AZ4IF) < X < exs(rnll—IE, + allglZ, + 14241
Thanks to (2.8) and inequality of Poincare, we have

1
a(f(d1) - F(d2).6) = alo fo Flstn + (1= $)¢2)dsd, 6)

1
> —acsl|A2 ¢l

and
d | ! v d
(F(@) = f(b2), d—‘f» — AN f (s +<1—s>¢z)ds>,A-zd—‘f>
0
1 b _1d¢
<lAY@ fo F(s1 + (1= 9gdlIA~ 0|

Thanks to the inegality of Holder and H'(Q) N L~() (where n=1), we have

1 1
||A5(¢f0 f'(s¢r + (1 = 5)¢2)ds)ll < ||Aé¢f0 f'(s¢1 + (1 = s)¢o)ds]|

1
+[l¢ fo F(s¢1 + (1 = $)pa)(sA2 ¢y + (1 = )AZ¢)ds|

< es(1+ A2 + A2 gl PIIA @]

(4.6)

4.7)

(4.8)

4.9)
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Thanks to Young’s inequality, we have

¢

d d
I(F(@1) = f(¢2), I < CAIVl, IV DIV + ¢

1
Z”Z”gl (4.10)

Thanks to (2.21) and the inegalities of Young and Poincare, we have

al((g(¢1) — 8(#2), A'9))| < allg(¢r) — g(@)IIA™ ¢l
< acyllpy — BallllAZ g

@
< acal Vgl + 71911,

and
d d
(g() — g A™ d—‘fm < llg(é) - g<¢z>||||A-1d—‘f||
1 d
< cxlidr - ¢2||||A-zd—‘f||
| 1 d
< cullAtglP + an—fua

For 2 — 2atp > 0 and C(a, [[Véo, I, [[Véooll) = Q € L'(0, T)( because g1, pon € Hy(2)), the Eq (4.7)
satisfies

d
EXU) +0X(1 <0 4.11)
Applying Gronwall’s lemma to (4.11), we obtain
X(1) < e 2X(0) (4.12)

Hence the uniqueness, as well as the continuous dependence with respect to the initial data. O

Theorem 4.2. Suppose that the hypotheses of Theorem (4.1) are verified and for (¢, ¢1)
e (H*(Q)n Hé(Q)) x L*(Q) then the system (2.1)-(2.3) has a unique solution (¢, d—‘f) such that:

(o, ‘;—‘f) e LR H*(Q) N Hé(Q) x L2(Q)) N L*(0, T; Hé(Q) X Hé(Q)), forall T >0
Proof. Thanks to the estimates (3.17), (3.16) and 3.8), we find the result of the Theorem (4.2). O

5. Dissipativity

We set @;” = Hy(Q) x H™'(Q).
It follows from Theorem (4.1) that we can define the continuous family of operators
Sy (1) : D" — O

d
(b0 61) > (B(0), %)

where (¢(?), %) is the unique solution to our system.
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Theorem 5.1. The semigroup {S -, (t),t > 0} associated with (2.1)-(2.3) possesses a bounded absorbing
set By in @ such that, for every bounded set B C @, there exist ty = to(B) > 0 such that t > t, implies
S:,(t) C Bo. Therefore, S.,() is dissipative in d)(T)D .

Proof.
The result of theorem follows directly from (3.8). O

Remark 5.2. We can assume, without loss of generality that By is positively invariant by S ., (1), i.e.,
S ()0 C Bo, Vi > 0.

Lemma 5.3. For any R > 0, there exist K = K(R) > 0 such that, for any two initial data ¢o, ¢, € D"
with ||¢,-||q)(r)n < R, there holds

1S <5 (o = S, (D@1 llgrp < "o — Pillgr (6.1

where ¢y = (¢}, $2) and ¢ = (¢}, $?7)

Proof.
Given two solutions ¢' and ¢ corresponding to different initial data ¢y, ¢; € ®.", the difference
¢ = ¢! — ¢ fulfills

d2¢ ¢ 2 1 2
d2+—+A¢+A(f(¢) f(@%) — (g(8") — g(¢*) = 0 (5.2)

Multiplying (5.2) by A~ 1d¢ , we get

d ¢ , g » _ _ 2 d_‘ﬁ 1 _1dé
E(TD”E” +IVell*) + 2|| || | = =2(f(@") - f(D), dt) +2(g(¢") — g(¢"). A 7 —) (5.3)
Thanks to Theorem(5.1), we have
IAZ(f(8") = F(@DIl < casllA g
Thanks to (2.21) and the inegalities of Young and Poincare, we have
1d¢ 1 d¢
(g(¢") — 8(¢"), A~ )I lg(¢") — g(@MlIlA~ ||
< cnllé' — ||||A-7f||
i 1 d
< cullAgIF + I
s ® ®
S 100, L4z < Clo@, Lo (5.4)

Applying Gronwall’s lemma to (5.4), we obtam the resultant of the Lemma. O

Theorem 5.4. Under the hypotheses of Theorems (5.1) and (4.1), the Semi-group {S ;,(t),t > 0} defined
on the phase ®" itself has a global attractor A, in ®}" .
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Proof.
We decompose the semi-group {S -, (#), # > 0} into a sum of two semi-groups so that the first tends to 0
when t tends to infinity and the second is asymptotically compact in ®}”

S, =8SL(O+S2 @B, 120

Consider the following decomposition:

d d d
600, %”) - (W), %) + (v, 2

) (5.5)

dt
where (v(7), dv—(t’)) is the solution of system
d’ d
Tp o S A A@) = fO0) + esv =0 (5.6)
dv(0)
v(0) = ¢ 7 ¢ (5.7)
t
associated with the semi-group {S iD (1), t = 0} and (w(?), %) is the solution of system
d>w  dw
To—z + — AW Af(w) + esw = csh = g(¢) (5.8)
dw(0
w(0) = 0 v:ii ) _g (5.9)

associated with the semi-group {S ED(t), t > 0}. To continue the proof, we need the following lemma.

Lemma 5.5. Under the hypotheses of Theorem (5.1), the semi-group {S fD(t), t > 0} associated with
system (5.8)-(5.9) is dissipative in (I)(T)D.

Proof of the Lemma (5.5).

Multiplying (5.8) by A™'w and A™'%¥, we have

d dw dw !
—Qrpll—I2; + Wl = 2tpll—I1%, + 2f Fwwdx + 2cs|wi2; + 2[[Vwll* (5.10)
dt dt dt 0

—2¢s(¢, A™'w) = 2(g(¢), A™'w)
and

d dw ! dw _dw _dw
E(wllglliﬂlvwlﬁﬂfo F(w)dx+(:5||w||31)+2||E||31—2c§(¢,A 15) =2(g(¢), A IE) (5.11)

The sum of (5.11) and « times (5.10), (where @ > 0 is small enough) we find

d dw dw dw !
EH(” + ZIIEH%1 — 2¢s5(¢, A™" E) - 2mDIIE|E1 + 2af0 Fwwdx + 2acs|wll?, (5.12)

2]V — 2acs(9, A™'w) = 20(5(6), A~ w) + 2g(6), A~ 4
where

dw , 2 : 2 dw 2
H = ‘rDIIEH_1 + [|[Vw||~ + 2 F(w)dx + cs||wllZ, + 2QTD(E,A w) + alwllZ, (5.13)
0
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Thanks to (2.6), we get

!
a(f(w),w) > af F(w)dx — |9
0
Owing the Theorem (5.1) and the inegality of Poincare, we have

—acs(@, A7 w) - es(g, ALY

acs
2 ——||w - =\l
o 5l [ || || 1~

The Eq (5.12), satisfies ( for @ > 0 such that (% —2atp) > 0)

d
EH(I) +c3H(t) < e (5.14)

Applying Gronwall’s lemma to (5.14), we obtain the result of the Lemma. O

To continue the proof of the theorem, we will multiply Eq (5.6) by A™!'v and A~ 1?;, we get
—(ZTD( A D+ IVIE) + 209 + 2¢slvI?, - 2TD||—|| 1 T 2(/(@) = f(w),v) = (5.15)
and d d d d
% % %
d_t(TD”E”%l + VIR + cslvI)) + ZIIEIIZ +2(f(9) — f(w), E) =0 (5.16)

The sum of (5.16) and A times (5.15), (where A > 0 is small enough) we find
d dv dv
d—tY(t) + 2IIE||31 +2a||VVIP? + 2acs|vI?, - ZaTDIIZIIZLl +2a(f(¢) — f(w),v) (5.17)

=2(f(@) = f(w) = vf'(w), &)

where
dv , 2 2 dv 2 :
Y = TDHE”_l + V" + cslvIlZ, + 2QTD(E’A Y+alvllZ, +2 | (F(¢)— F(w) —vf(w)dx (5.18)
0

Thanks to (2.8), we get

! 1 c

ZI(F(@ - F(w) —vf(w))dx > —EIIVVII2 - ESIIVIIQ (5.19)
0

1 c

(f(@) — fw),v) 2 —EIIVVII2 - ESIIVIIﬂ (5.20)
The Eq (3.18), satisfies
dv dv

el laen ¥ < el Dl (5.21)

Thanks to the Lemma (5.5) and Hé (0, 1) is an algebra, we have

2(f(p) — f(w) —vf’ (W) )\ C35||—|| A (F(@) = Fw) = vF W)

AIMS Mathematics Volume 7, Issue 8, 14672—-14695.
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dw 5
< 035||E||—1||VV||

< c36llVVIP
The Eq (5.17), satisfies (for @ > 0 such that (2 — 2atp) > 0)
d
EY(z) +c37Y(1) <0 (5.22)

Applying Gronwall’s lemma to (5.22), we obtain the result of the first part of the theorem.

Multiplying (5.8) by w and 2%, we have

d

d ! d d
E(rpnd—v:nZ+||Aw||2+c5||w||2+ fo f’(w>|vW|2dx)+2||d—vf||2—2c5<¢, d—f) (5.23)

)
— [ I VwPLedx = 2(g(¢), L
and

d dw dw :
E(zTD(E’ w) +[wi*) - 2TD||E”2 +[lAw]? +f S Awdx +cs|wll* = 2¢5(p, w) = 2(g(¢), w) (5.24)
0
The sum of (5.23) and « times (5.24), (where @ > 0 is small enough) we find

d dw dw dw ! dw
—X 2ll—11> = 2 —) -2 —]? A 2—f " (w)|Vw|? — 2
7 () + 2| 7 Il cs(o, dt) atpl| 7 I” + allAwl| ; W) Vw| dtdx (5.25)

v [ fnAwdx + acs|wIP — 2acs(@, w) = 2a(g(@), w) + 2(g(¢), &
where

dw b dw
X = TD”EHZ +[IAwIP + esliwll? + f S WIVwidx + 2rp(—.w) + [Iwll®
0

for @ > 0 such that a € (0, ﬁ), we have

dw L dw
CSS(TD”EHZ + AWl + [Iwll* + f S IVwldx) < X(1) < C39(TD||E”2 + [|Aw]?
0

[
Wi + f FonIvwid)
0

Thanks to Theorem (5.1) and the inegalities of Young and Poincare, we have

dw dw
—2cs(¢, E) —2acs(g,w) = —C5||¢||||E|| — acs||@|[[[w]]

1 dw 1
> —05||A2¢|IIIEII — acs||A2¢||||wl|

I dw , acs
2 =5 ll—I" -

— 2_
=5 ) [lwl| acCyo
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Thanks to Lemma (5.5 ) and the inegalities of Young and Poincare, we get

[
7 dw dw
fof (W)|V|2de< C41”W”L""(Q)”VWHZHEH
L dw
< Awll2 || —
callAwll>]| 7 Il

1 1 dw
< =llAwl? + =|—I* +
4|| wl| 4|| 7 I” + ca2

The Eq (5.25), satisfies (for @ > 0 such that (f—1 —2atp) > 0)

d
EX(I) + C43X(Z) < Cy4, Cy3 > 0, c4e =0 (526)

Applying Gronwall’s lemma to (5.26), we obtain the result of the second part of the theorem. O

Corollary 5.6. The global attractor A, is bounded in ®", with a bound independent of Tp.
6. Dissipativity in higher-order spaces

Our goal in this part is to show that for f and g satisfying compatibility conditions, the semi-group
{S+,(t), t > 0} defined on the space ®,”( for 1 < n < 4) has an absorbing and closed set B} in @,".
We assume that:

feC™ R) and f'(0)=0 for n=3,4 6.1)

and
8" V(p) is bounded (6.2)

If n = 1, then (6.1)-(6.2) does not add anything to our previous assumptions on f and g. Notice that
the derivative of the classical Cahn-Hilliard potential satisfies (6.1) for every n € N.

Theorem 6.1. Let (6.1)-(6.2) hold for some 1 < n < 4.Then there exists R, > 0 such that the closed ball
B? of ®,” centered at zero of radius R, is a (bounded) absorbing set for {S.,(t), t > 0} in ®,;”.That
is, for every bounded set B C ®,”, there exists t, = t,(B) such that

S, (OBC B, , t>t,

™°

Theorem (6.1) is a straightforward consequence of Lemma (6.2). The proof follows directly from
the proof of the lemma.

Lemma 6.2. Let the hypotheses of Theorem (6.1) hold. Given p,_1,p, > 0, there are
K,.1 =K, 1(p,-1) 20, K, = K,(p,) = 0 and v, > 0 such that, if

(@0, pDlloo, < pu-t and  [l(bo, $Dllorp < pu

the following inegality holds:
||STD(t)(¢0a ¢1)||q>;l) < Kne_vnt + Kn—l
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Proof. Throughout this proof, ¢; > 0 for j € N may be depend on p,_;. We exploit an inductive
argument on n > 1. So, we assume that

> d
sup (AT + 7ol AT —¢||> V20 63)

”(¢O»¢l)”®7Dl <Pn-1
e

Notice that, for n = 1, (6.3) holds thanks to estimate (3.8). In particular, the assumptions on f yield
that

n+l

SUPZ If PPl <c  and  f(¢) € D(A?) (6.4)

20 2o

Thanks to formula the derivative of a composition of functions of the Faa di Bruno, there is

D'f(¢) = f'(@)D"¢p +T (6.5)

withI'=0ifn =1, and

n+l1

r=> P9
k=2

where I';, is a linear combination of terms of the for
(D'§) (D*$)"...(D" )"
for some nonnegative integers i, ....... ,1y—1 satisfying
i+ . +i,.1=k and 2i+..... +(n-Di,_1=n
: n— n-1d¢
We multiply (3.1) by A"~'¢ and A*' <= and have

d
—( TD(—¢ L) 41N GIP) + AT G - 204 L (6.6)

= —2(A%f(), A%¢) + 2(g(¢), A" 9)

d wet d n nd e d
S ollAT LR+ A g1 + 24 —‘% = _2(A%f(g), A} d—‘f) +2(g(9), A 1d—‘f) 6.7)
The sum of (6.7) and a times (6.6), (where a > 0 is small enough) we find
d n+ n— d n n n
SH() + 20JAT I - 2014 d—‘fn £ o)A ¢|| = 2a(ALf(g), Alg) 6.8)

+2a(5(¢), A" 9) = 2(AT f(9), AT G + 2(8(9), A" D)
Thanks to (6.3), (6.4) and (6.5), we get

||A I < cus
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and

—2a(A? f(¢), A% ) < acug
Owing (6.5), we have

2 d
24 (), Az—"’ - 2(f(p)ALe, Az—"’)—2<r A*—‘b)
n d
_ fo ALOP () ¢"x‘d7 f LGP (@)dx - 2(T, A2—¢>

Keeping in mind (6.3)-(6.4), we now evaluate the terms of the right-hand side of the above egality. If
n = 1, as in the proof of Theorem (5.4), we have

/
. dp 1 1 de
2 rr td < — 2 “nzr2
f0|Az¢| 1@ dx < SIAGE + 21 P + e

1 <n<4,then

.’ d w1 d
f AL 1D L dx < call e < 1A SEP 4
Concerning the last term, we have
¢ n—1 d¢ n 1 d(b 1 n—1 d¢ 2
—2FA2—< 2A2FA2— T —||<=||AT —
( ) ( ) < csollA 7 I 4|| o I” + cs
for & > 0 such that € (0, 5 5-), we have
Csz||STD(f)(¢o,¢1)||(2D;D SH< C53||STD(I)(¢O’¢1)”§);D (6.9)
Thanks to (6.2)-(6.3), we have
20(8(9). A" 9) = 2a(A" g(9). AT ¢)
< acsy
and
_,d¢ =1 w1 d
2 ,Anl— =2(A2 ,Az_
(g(9) p t) (A7 g(9) p t)
n—1 d
<esla®E)
1 ud(ﬁ 2
<A77 —|" +
2|| dr I Cs6
Finally, collecting the above inegalities, we end up with
d
EH(I) +cs7H(t) < ¢sg, €57 > 0,058 >0 (6.10)

The conclusion follows from the Gronwall lemma. O
Actually, up to (possibly) enlarging the radius R,, the absorbing set B} is exponentially attracting
in @ as well.
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Proposition 6.3. Let the hypotheses of Theorem (6.1) for 1 < n < 4 hold. Then there exist w, > 0 and
a positive increasing function J, such that, for any bounded set B C CDQD,

distgy (S, (1)B, B,) < J,(R)e™™', Nt >0

where R = supy, 4. cp [1(¢0: #1)lloy

Proof.
In the proof we will use the following two lemmas.

Lemma 6.4. Let S (t) be a strongly continuous semi group on a Banach space Phi. Let By, B, B3 C ®
be such that

diste(S(1)By, B)) < K17V, disto(S(1)By, By) < Koe™
for some vy,v, > 0 and K, K, > 0. Assume also that, for z;,z, € ©, then hold
IS (H)z1 = S Dzalle < ™llz1 — 22llo
for some vy > 0. Then it follows that

diste(S (H)By, By) < (K + Kz)e_"t

Viva
vo+vi+v2

where v = . Here, disty denotes the usual Hausdorff semidistance in ©.

The proof of Lemma (6.4) is given in [17].

Lemma 6.5. Let (6.1)-(6.2) hold for some 1 < n < 4. Then, up to toking a possibly larger R,, we have

distgy (S+,(0By," By,) < L™, V1> 0

™D °
for some L, > 0 and some w,, > 0

Proof.

We need to show that the solution map is the sum of a term exponentially decreasing (in norm) in the
space Q)QD, and a term uniformly bounded in @7 . Adapting the proof of the Theorem (5.4) (in view of
the proof of Lemma (6.2), it is immediate to see that the system (5.6)-(5.7) is exponentially stable in
CI)QD, whereas the solution w to (5.8)-(5.9) satisfies the uniform bound

dw
l(w(®), E)thgl) <c, Vt=0

for some ¢ depending on the radius R,_; of Bﬁ;l. Redefining R, to be greater than or equal to the above
constant ¢, we reach the desired conclusion. O

Proof of the Proposition 6.3. Till the end of the proof, we agree to redefine inductively the radius R,
so that Lemma (6.5) holds. Then, on account of the Lemma (5.3), Theorem (5.1), and Lemma (6.5),

applying recursively Lemma (6.5), we get the result. O
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Corollary 6.6. Let (6.1)-(6.2) hold for some 1 < n < 4. Then the global attractor A., is bounded in
®,”, with a bound independent of Tp.

Theorem 6.7. Let (6.1)-(6.2) hold for some 1 < n < 4. Then

lim [distq0(A-,, Ao)] = 0

TD—>0

where

Ag = (@) : ¢ € Ap, b = —A(Ad + f(9)) + g(9))

We point out that the Hausdorff semidistance in the above theorem is taken in ®! (and not just in
<D9D). Clearly, this is a stronger stability result.

7. Existence of exponential attractors

Provided that (6.1)-(6.2) hold for n = 4, there a robust family of exponential attractors {M-,} which
is uniformly bounded in @7 . Besides, the basin of attraction of each M;, coincides with the whole
phase-space (DQD. In particular, A, C M,,.

We define the application J by

J:B > DA™?)
¢ - J(@) = —A(Ad + f(P)) + g(¢)

We then introduce the lifting maps L.,,: B; — ®? as

(¢9J¢)’ lf Tp > 0

LTD¢:{ ¢’ l‘f TD:()

Remark 7.1. Endowing Bg with the metric topology of D(A‘%), it is straightforward to check that J

is %—Holder continuous from By into D(A™?). Indeed, such a Holder continuity is essential in order to
apply the following Lemma (7.3) this is the reason why we shall work in Bé.

Theorem 7.2. Let (6.1)-(6.2) hold for n = 4. Then the semigroups S ., (t) possess compact positively
invariant sets My, C By (called exponential attractors ) with fulfill the following conditions.

0
™’

(T1) There exist w > 0 and a positive increasing function J such that, for any bounded set B C ®
there holds

distgy (S o ()B. My,) < JR)E™, V1> 0
where R = sup s, 5, 10, $1)llag
(12) The fractal dimension of M., is uniformly bounded with respect to Tp.

(T3) There exist € € (0, %) and C > 0 such that

LTDM()) < CTE

D°

di st';f;,’" (M-
™
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The quantities w, J, € and C are independent of Tp. Here, M., is the symmetric Hausdor{f distance in
@Y .
D

Lemma 7.3. There exist A; > 0, k € (0, %) and t* > t,( all independent of Tp such that the following
conditions hold.

(L1) The map S, = S.,(t*) satisfies, every z; = (¢, 1), 22 = ($3, ¢?) in B,
Sp21 = Sep22 = Ley(21,22) + Nopy (21, 22)

where

ey (@1 22)lloy < Allzr = 22lloy

Nz, (21, 22t < Adllzr = 2ol
(L2) The lifting map L., fulfills

IS5,z = LepSgPryzllon, < A3/Tp, Vze By, VkeN

where P, : ]B%‘T‘D - Bg is the projection onto the first component when tp > 0, and the identity
map, otherwise.
(L3) For any z € B‘T‘D, there holds

”STDZ - LTDSOPTDZ”qng < A3 \S/T_D, Vl‘ € [t*, 2t*]
(L4) The map
(t,2) 1> Sop(Dz : [, 201 X B} — B}

is (%) — Holder continuous. Besides, the map z :+— S .,(t)z is lipschitz continuous on BﬁD, with a
lipschitz constant independent of Tp and t € [t*,2t"]

Proof of Lemma 7.3

Throughout the proof, the generic constant ¢; may be depend on the (common) radius R, of the
absorbing balls B}

Proof of (L1)

Let z; = (@), ¢)), 22 = (¢(2), ¢7) in B . Then we write the difference

Sz = S22 = (¢, dt) w(t), & yr dwy C ), where w and v are the solutions to the problems

av dv — —
st + AT+ A(f($) — f(W) + csv =0 (7.1)
AR - (N
v(0) = ¢ ( ) = ¢ (7.2)
and P g
T d—w + APW + Af(W) + csw — ¢sp = g(9) (7.3)
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dw(0)
dt

w(0) = =0 (7.4)

Multiplying the equation (7.3) by & 7> we find
d . _ dw _ S dw L o dW
E(IIAWIIZ+TDIIE||2+65||WII2+fOf(W)IVWI2dX)+2||E||2=f0f (W)IVWI2de (7.5)

+2(g(¢)’ dt) + 2C5(¢, dr
Thanks to Lemma (5.5), Lemma (5.3) and Lemma of Gronwall, we find

II(W )||q>1 < csef ||(¢o,¢1||q>0 (7.6)

Multiplying the Eq (7.1) by A~'v and A~ 1‘7 and thanks to first part of the proof the Theorem (5.4) we
have

—IIC )”cI) + cll(v, )”cDO < (7.7)
Applying Gronwall’s lemma to (7.7), we obtam
I, )||¢o < e N0, $)llos,

Taking ¢* > ¢, large enough, we have

_odw
Ny, (z1,22) = (W(t), d—v:(t*))

and

dv
Lo, (z1.22) = (), d—‘;(t*»

Proof of (L.2) and (L3)
Both assertions follows by the same form

e 4
1S -,z — LTDSOPTDZHQQD <ce'ftp+ce™, Vi>0, zeB (7.8)
To prove the above estimate, we first need

d2e°
supf ||A" ¢ (7.9)

do €B4

Lemma 7.4. There holds

where S o()¢) = ¢°

Proof of Lemma 7.4
Since ¢, is bounded in D(A%), then J(¢p) is bounded in D(A%). Consider the problem obtained by
differentiating with respect to time (2.1) for 7 = 0, that is

d
LAY+ W) = 98 @) (7.10)
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and

Y(0) = J(¢o) (7.11)
where ¢ = d¢

It is a standard matter to see that there exists a unique solution for the problem (7.10)-(7.11) in
C(0,T] D(Al) forany 7 > 0.

Multiplying the Eq (7.10) by @A™y + A~ % we have

dt’

d 1 1 1 ld 1 1
a{,—t(llz‘lflﬁll2 +allAT2YP) + 242y + 2IIA_2a,—l/t/||2 = “20(A2 (' (¢°), A72Y) (7.12)

~2(A3 (W (8°), AT L) + 2a(g (000, A7) + 2(g (800w, AT L)

On account of the controls

Az f (D < cllAZyl,

and

18" @)Wl < cllwll < cllAyll
The Eq (7.12), satisfies (for @ > 0 large enough)

d 1 1 Id 1 1
d—t(llAfl/'II2 +IA72¢) + IIA_Zd—lfII2 < c(lAyI? + 11472y (7.13)

Applying Gronwall’s lemma to (7.13), we obtain the estimate. O

Given z = (¢, ¢1) € B? , we set
(¢, dz%) =S,z and (¢°, i0) =L, So(OPr,z
The difference ¢ = ¢™ — ¢° solves the problem
dzf + —¢ +A(AG + (™) = f@°) = =1 d;go +8(¢™) — g(¢") (7.14)
and
$(0) =0 62—‘?(0) = ¢1 — J(¢o) (7.15)

Multiplying the Eq (7.14) by A™'%, we get

dé 1d¢

d d
—(anA-f—n )+ 2044 ¢ ¢

DA, A7) — 2(AZ F(6™P) — F(B)), A7 —
|| 2A%¢, A7) = 2A () - (D). A ) (7.16)
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+2(@™) - g(@"), A7 %) — 2mp(a L AT
The right-hand side of the above equality seen to be controlled by
1 d¢ ¢0

A 2—|"+c+ecT A
I o II* pll

ar
Hence, by (7.9) and the Gronwall lemma, we conclude that
d i
TD||A—5d—‘f||2 < ce ™ +2c1p (7.17)

On the other hand, we may rewrite (7.16) as

d do_, ! d¢ o 41 do

— — + 2||A™2 =2(A2f(¢p™ ATl —

dt”(¢’ dr)”q’ I d (A2 f(¢™) = F(@"), dt)

2
F2(¢™) - g(¢"), A7) — 2rp(A L ATH Y
This time, we control the right-hand side by

_1d¢ do. ., 1 v d?¢°
2||A ZEH + cll(¢, E)” o + TD||A P Il

So to obtain 24
d d¢ de¢ -1 d°¢
T, =Dl < ell@ NG, + erollAT =3

Applying Gronwall’s lemma to (7.18) on (/Tp,? + +/7p),along with (7.17 and (7.9), we obtain

[& (7.18)

1 1 d 1 1 d
A2t + T)IP + TD”A_zd_(f(t + VDI < e“(IAZg(VTp)IP + TDHA_Zd_(f( Vool®) (7.19)
< (AT GVTD)IP + ce” TV + 2ctp) (7.20)

But, from Theorem (5.1), we get at once that

t
1 3 _1 _ld
IAZ 6Ol < A3 @llIA2¢ll < ¢ f 1A zd—f<y)||dy<cw
0
Hence,

1A (VT < ¢ {7
The inegality (7.20), satisfies
¢ »

: L
(¢, —)|| e“(cftp + ce VP + 2cTp)

Hence the proof of (L2) and (L3). O
Proof of the (L4)
For any ', t € [¢*,2¢"] and for any z;,2; € B‘T‘D, in view of Lemma (5.3), there holds

1S+, (D21 = S, (2allag, < NSy (D21 = Sy ()zillgy + 1S 7, ()21 = Sy ()22l
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2KF*
< S 7y (Dz1 — Srp(t,)zlll(bgn +e |z - Z2||c1>2D

Setting ¢ = ¢, we get at once the second assertion of (L4). To prove the first one, we will show that

21"
sup f I, —¢<y)>||®o dy < (7.21)

4
z€B7,,

where, as usual, ¢(7) denotes the first component of S, (#)z.
Multiplying (3.1) by A%, we have

d d 3 d d
=@l d‘fn +lAYgIP) + 24t ¢|| —2(A2f<¢),A%d—‘f) " 2<A5g(¢>,A%d—‘f> (7.22)
Thanks to the proof of Lemma (6.2), we have
—( D||A2—¢|| AP + (14} fu <c
1
Hence, integrating on (¢*, 2¢*), we find
21
d
f 142 Gypdy < (7.23)
" dt
Multiplying (3.1) by ALe 0 ¢ we get
,,d g N ﬁd 1 d
CUALELIP 4 2439, 470 4 2(al fip), A 90 arplat 0 = 2t

2
L2/ DG )+ 28, AT G
On account of the above estimates, an integrating on (¢, 2¢*) yields the remaining part of (7.21).

Remark 7.5. Actually, the coefficient in the Holder continuity does not need to be independent of Tp to
deduce the uniform(with respect to tp) finite fractal dimensionality of the family of robust exponential
attractors M-.,. Recall that the fractal dimension of a(relatively) compact set K in a metric space X is
defined by

. . H, (K, X)
dimp(K, X) = lim sup —
u—0 lOg(;)

where H,(K,X) = logN,H,X,X) denotes the so-called Kolmogorov u-entropy of K in X,
N,(H,(K, X) being the minimal number of the u-balls of X to cover K. So, if the constant in the Holder
continuity is independent of Tp, as it is the case here, we further deduce that the Kolmogorov u-entropy
of the family of robust exponential attractors is, for fixed u > 0, bounded from above independently of
Tp.
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