Citation: Qian Li, Zhenghong Jin, Linyan Qiao, Aichun Du, Gang Liu. Distributed optimization of nonlinear singularly perturbed multi-agent systems via a small-gain approach and sliding mode control[J]. AIMS Mathematics, 2024, 9(8): 20865-20886. doi: 10.3934/math.20241015
[1] | L. Y. Cao, H. M. Schwartz, Complementary results on the stability bounds of singularly perturbed systems, IEEE Trans. Automat. Control, 49 (2004), 2017–2021. https://doi.org/10.1109/TAC.2004.837546 doi: 10.1109/TAC.2004.837546 |
[2] | T. Nguyen, Z. Gajic, Finite Horizon optimal control of singularly perturbed systems: a differential Lyapunov equation approach, IEEE Trans. Automat. Control, 55 (2010), 2148–2152. https://doi.org/10.1109/TAC.2010.2051187 doi: 10.1109/TAC.2010.2051187 |
[3] | C. X. Qiang, J. P. Sun, Y. H. Zhao, Exponential stability analysis for nonlinear time-varying perturbed systems on time scales, AIMS Math., 8 (2023), 11131–11150. https://doi.org/10.3934/math.2023564 doi: 10.3934/math.2023564 |
[4] | J. X. Chen, C. X. He, Modeling, fault detection, and fault-tolerant control for nonlinear singularly perturbed systems with actuator faults and external disturbances, IEEE Trans. Fuzzy Syst., 30 (2022), 3009–3022. https://doi.org/10.1109/TFUZZ.2021.3099470 doi: 10.1109/TFUZZ.2021.3099470 |
[5] | H. Shen, F. Li, Z. G. Wu, J. H. Park, V. Sreeram, Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters, IEEE Trans. Fuzzy Syst., 26 (2018), 3428–3439. https://doi.org/10.1109/TFUZZ.2018.2832614 doi: 10.1109/TFUZZ.2018.2832614 |
[6] | E. Fridman, Effects of small delays on stability of singularly perturbed systems, Automatica, 38 (2002), 897–902. https://doi.org/10.1016/S0005-1098(01)00265-5 doi: 10.1016/S0005-1098(01)00265-5 |
[7] | M. Corless, L. Glielmo, On the exponential stability of singularly perturbed systems, SIAM J. Control Optim., 30 (1992), 1338–1360. https://doi.org/10.1137/0330071 doi: 10.1137/0330071 |
[8] | A. Saberi, H. Khalil, Stabilization and regulation of nonlinear singularly perturbed systems–composite control, IEEE Trans. Automat. Control, 30 (1985), 739–747. https://doi.org/10.1109/TAC.1985.1104064 doi: 10.1109/TAC.1985.1104064 |
[9] | H. Wang, C. Y. Yang, X. M. Liu, L. N. Zhou, Neural-network-based adaptive control of uncertain MIMO singularly perturbed systems with full-state constraints, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 3764–3774. https://doi.org/10.1109/TNNLS.2021.3123361 doi: 10.1109/TNNLS.2021.3123361 |
[10] | F. Li, W. X. Zheng, S. Y. Xu, Finite-time fuzzy control for nonlinear singularly perturbed systems with input constraints, IEEE Trans. Fuzzy Syst., 30 (2022), 2129–2134. https://doi.org/10.1109/TFUZZ.2021.3072737 doi: 10.1109/TFUZZ.2021.3072737 |
[11] | H. Shen, Y. Wang, J. Wang, J. H. Park, A fuzzy-model-based approach to optimal control for nonlinear Markov jump singularly perturbed systems: a novel integral reinforcement learning scheme, IEEE Trans. Fuzzy Syst., 31 (2023), 3734–3740. https://doi.org/10.1109/TFUZZ.2023.3265666 doi: 10.1109/TFUZZ.2023.3265666 |
[12] | H. Shen, C. J. Peng, H. C. Yan, S. Y. Xu, Data-driven near optimization for fast sampling singularly perturbed systems, IEEE Trans. Automat. Control, 2024, 1–6. https://doi.org/10.1109/TAC.2024.3352703 |
[13] | E. S. Tognetti, T. R. Calliero, I. C. Morarescu, J. Daafouz, Synchronization via output feedback for multi-agent singularly perturbed systems with guaranteed cost, Automatica, 128 (2021), 109549. https://doi.org/10.1016/j.automatica.2021.109549 doi: 10.1016/j.automatica.2021.109549 |
[14] | J. Cortés, F. Bullo, Coordination and geometric optimization via distributed dynamical systems, SIAM J. Control Optim., 44 (2005), 1543–1574. https://doi.org/10.1137/S0363012903428652 doi: 10.1137/S0363012903428652 |
[15] | P. Colli, G. Gilardi, J. Sprekels, Distributed optimal control of a nonstandard nonlocal phase field system, AIMS Math., 1 (2016), 225–260. https://doi.org/10.3934/Math.2016.3.225 doi: 10.3934/Math.2016.3.225 |
[16] | B. M. Huang, Y. Zou, Z. Y. Meng, W. Ren, Distributed time-varying convex optimization for a class of nonlinear multiagent systems, IEEE Trans. Automat. Control, 65 (2020), 801–808. https://doi.org/10.1109/TAC.2019.2917023 doi: 10.1109/TAC.2019.2917023 |
[17] | Y. K. Zheng, Y. X. Li, C. K. Ahn, Adaptive fuzzy distributed optimization for uncertain nonlinear multiagent systems, IEEE Trans. Fuzzy Syst., 32 (2024), 1862–1872. https://doi.org/10.1109/TFUZZ.2023.3337170 doi: 10.1109/TFUZZ.2023.3337170 |
[18] | G. Carnevale, G. Notarstefano, Nonconvex distributed optimization via Lasalle and singular perturbations, IEEE Control Syst. Lett., 7 (2023), 301–306. https://doi.org/10.1109/LCSYS.2022.3187918 doi: 10.1109/LCSYS.2022.3187918 |
[19] | L. Zhang, S. Liu, Distributed average consensus of stochastic singularly perturbed systems, IEEE Trans. Control Netw. Syst., 10 (2023), 1913–1924. https://doi.org/10.1109/TCNS.2023.3256271 doi: 10.1109/TCNS.2023.3256271 |
[20] | Z. P. Jiang, A. R. Teel, L. Praly, Small-gain theorem for ISS systems and applications, Math. Control Signals Syst., 7 (1994), 95–120. https://doi.org/10.1007/BF01211469 doi: 10.1007/BF01211469 |
[21] | A. R. Teel, A nonlinear small gain theorem for the analysis of control systems with saturation, IEEE Trans. Automat. Control, 41 (1996), 1256–1270. https://doi.org/10.1109/9.536496 doi: 10.1109/9.536496 |
[22] | Z. P. Jiang, I. M. Y. Mareels, Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica, 32 (1996), 1211–1215. https://doi.org/10.1016/0005-1098(96)00051-9 doi: 10.1016/0005-1098(96)00051-9 |
[23] | Z. H. Jin, Z. X. Wang, Input-to-state stability of the nonlinear singular systems via small-gain theorem, Appl. Math. Comput., 402 (2021), 126171. https://doi.org/10.1016/j.amc.2021.126171 doi: 10.1016/j.amc.2021.126171 |
[24] | T. Tatarenko, B. Touri, Non-convex distributed optimization, IEEE Trans. Automat. Control, 62 (2017), 3744–3757. https://doi.org/10.1109/TAC.2017.2648041 doi: 10.1109/TAC.2017.2648041 |
[25] | Z. H. Jin, C. K. Ahn, J. W. Li, Momentum-based distributed continuous-time nonconvex optimization of nonlinear multi-agent systems via timescale separation, IEEE Trans. Netw. Sci. Eng., 10 (2023), 980–989. https://doi.org/10.1109/TNSE.2022.3225409 doi: 10.1109/TNSE.2022.3225409 |
[26] | T. F. Liu, Z. Y. Qin, Y. G. Hong, Z. P. Jiang, Distributed optimization of nonlinear multiagent systems: a small-gain approach, IEEE Trans. Automat. Control, 67 (2022), 676–691. https://doi.org/10.1109/TAC.2021.3053549 doi: 10.1109/TAC.2021.3053549 |
[27] | Q. S. Liu, J. Wang, A second-order multi-agent network for bound constrained distributed optimization, IEEE Trans. Automat. Control, 60 (2015), 3310–3315. https://doi.org/10.1109/TAC.2015.2416927 doi: 10.1109/TAC.2015.2416927 |
[28] | J. Wang, K. M. Tsang, Second-order sliding mode controllers for nonlinear singular perturbation systems, ISA Trans., 44 (2005), 117–129. https://doi.org/10.1016/S0019-0578(07)60049-4 doi: 10.1016/S0019-0578(07)60049-4 |
[29] | J. Alvarez-Gallegos, G. Silva-Navarro, Two-time scale sliding-mode control for a class of nonlinear systems, Int. J. Robust Nonlinear Control, 7 (1997), 865–879. |
[30] | T. F. Liu, Z. P. Jiang, A small-gain approach to robust event-triggered control of nonlinear systems, IEEE Trans. Automat. Control, 60 (2015), 2072–2085. https://doi.org/10.1109/TAC.2015.2396645 doi: 10.1109/TAC.2015.2396645 |
[31] | Y. T. Chang, Adaptive sliding mode control of multi-input nonlinear systems with perturbations to achieve asymptotical stability, IEEE Trans. Automat. Control, 54 (2009), 2863–2869. https://doi.org/10.1109/TAC.2009.2033748 doi: 10.1109/TAC.2009.2033748 |
[32] | X. Y. Zhang, H. Y. Su, R. Q. Lu, Second-order integral sliding mode control for uncertain systems with control input time delay based on singular perturbation approach, IEEE Trans. Automat. Control, 60 (2015), 3095–3100. https://doi.org/10.1109/TAC.2015.2411991 doi: 10.1109/TAC.2015.2411991 |
[33] | C. A. Martinez-Fuentes, R. Seeber, L. Fridman, J. A. Moreno, Saturated Lipschitz continuous sliding mode controller for perturbed systems with uncertain control coefficient, IEEE Trans. Automat. Control, 66 (2021), 3885–3891. https://doi.org/10.1109/TAC.2020.3034872 doi: 10.1109/TAC.2020.3034872 |