Research article

Distributed optimization of nonlinear singularly perturbed multi-agent systems via a small-gain approach and sliding mode control

  • Received: 24 April 2024 Revised: 11 June 2024 Accepted: 24 June 2024 Published: 27 June 2024
  • MSC : 93A16, 93C10, 93C70

  • This paper addressed the challenging problem of distributed optimization for nonlinear singular perturbation multi-agent systems. The main focus lies in steering the system outputs toward the optimal points of a globally objective function, which was formed by the combination of several local functions. To achieve this objective, the singular perturbation multi-agent system was initially decomposed into fast and slow subsystems. Compared to traditional methods, robustness in reference-tracking signals was ensured through the design of fast-slow sliding mode controllers. Additionally, our method ensured robustness against errors between reference signals and optimal values by employing a distributed optimizer to generate precise reference signals. Furthermore, the stability of the entire closed-loop system was rigorously guaranteed through the application of the small-gain theorem. To demonstrate the efficacy of the proposed approach, a numerical example was presented, providing empirical validation of its effectiveness in practical scenarios.

    Citation: Qian Li, Zhenghong Jin, Linyan Qiao, Aichun Du, Gang Liu. Distributed optimization of nonlinear singularly perturbed multi-agent systems via a small-gain approach and sliding mode control[J]. AIMS Mathematics, 2024, 9(8): 20865-20886. doi: 10.3934/math.20241015

    Related Papers:

  • This paper addressed the challenging problem of distributed optimization for nonlinear singular perturbation multi-agent systems. The main focus lies in steering the system outputs toward the optimal points of a globally objective function, which was formed by the combination of several local functions. To achieve this objective, the singular perturbation multi-agent system was initially decomposed into fast and slow subsystems. Compared to traditional methods, robustness in reference-tracking signals was ensured through the design of fast-slow sliding mode controllers. Additionally, our method ensured robustness against errors between reference signals and optimal values by employing a distributed optimizer to generate precise reference signals. Furthermore, the stability of the entire closed-loop system was rigorously guaranteed through the application of the small-gain theorem. To demonstrate the efficacy of the proposed approach, a numerical example was presented, providing empirical validation of its effectiveness in practical scenarios.


    加载中


    [1] L. Y. Cao, H. M. Schwartz, Complementary results on the stability bounds of singularly perturbed systems, IEEE Trans. Automat. Control, 49 (2004), 2017–2021. https://doi.org/10.1109/TAC.2004.837546 doi: 10.1109/TAC.2004.837546
    [2] T. Nguyen, Z. Gajic, Finite Horizon optimal control of singularly perturbed systems: a differential Lyapunov equation approach, IEEE Trans. Automat. Control, 55 (2010), 2148–2152. https://doi.org/10.1109/TAC.2010.2051187 doi: 10.1109/TAC.2010.2051187
    [3] C. X. Qiang, J. P. Sun, Y. H. Zhao, Exponential stability analysis for nonlinear time-varying perturbed systems on time scales, AIMS Math., 8 (2023), 11131–11150. https://doi.org/10.3934/math.2023564 doi: 10.3934/math.2023564
    [4] J. X. Chen, C. X. He, Modeling, fault detection, and fault-tolerant control for nonlinear singularly perturbed systems with actuator faults and external disturbances, IEEE Trans. Fuzzy Syst., 30 (2022), 3009–3022. https://doi.org/10.1109/TFUZZ.2021.3099470 doi: 10.1109/TFUZZ.2021.3099470
    [5] H. Shen, F. Li, Z. G. Wu, J. H. Park, V. Sreeram, Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters, IEEE Trans. Fuzzy Syst., 26 (2018), 3428–3439. https://doi.org/10.1109/TFUZZ.2018.2832614 doi: 10.1109/TFUZZ.2018.2832614
    [6] E. Fridman, Effects of small delays on stability of singularly perturbed systems, Automatica, 38 (2002), 897–902. https://doi.org/10.1016/S0005-1098(01)00265-5 doi: 10.1016/S0005-1098(01)00265-5
    [7] M. Corless, L. Glielmo, On the exponential stability of singularly perturbed systems, SIAM J. Control Optim., 30 (1992), 1338–1360. https://doi.org/10.1137/0330071 doi: 10.1137/0330071
    [8] A. Saberi, H. Khalil, Stabilization and regulation of nonlinear singularly perturbed systems–composite control, IEEE Trans. Automat. Control, 30 (1985), 739–747. https://doi.org/10.1109/TAC.1985.1104064 doi: 10.1109/TAC.1985.1104064
    [9] H. Wang, C. Y. Yang, X. M. Liu, L. N. Zhou, Neural-network-based adaptive control of uncertain MIMO singularly perturbed systems with full-state constraints, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 3764–3774. https://doi.org/10.1109/TNNLS.2021.3123361 doi: 10.1109/TNNLS.2021.3123361
    [10] F. Li, W. X. Zheng, S. Y. Xu, Finite-time fuzzy control for nonlinear singularly perturbed systems with input constraints, IEEE Trans. Fuzzy Syst., 30 (2022), 2129–2134. https://doi.org/10.1109/TFUZZ.2021.3072737 doi: 10.1109/TFUZZ.2021.3072737
    [11] H. Shen, Y. Wang, J. Wang, J. H. Park, A fuzzy-model-based approach to optimal control for nonlinear Markov jump singularly perturbed systems: a novel integral reinforcement learning scheme, IEEE Trans. Fuzzy Syst., 31 (2023), 3734–3740. https://doi.org/10.1109/TFUZZ.2023.3265666 doi: 10.1109/TFUZZ.2023.3265666
    [12] H. Shen, C. J. Peng, H. C. Yan, S. Y. Xu, Data-driven near optimization for fast sampling singularly perturbed systems, IEEE Trans. Automat. Control, 2024, 1–6. https://doi.org/10.1109/TAC.2024.3352703
    [13] E. S. Tognetti, T. R. Calliero, I. C. Morarescu, J. Daafouz, Synchronization via output feedback for multi-agent singularly perturbed systems with guaranteed cost, Automatica, 128 (2021), 109549. https://doi.org/10.1016/j.automatica.2021.109549 doi: 10.1016/j.automatica.2021.109549
    [14] J. Cortés, F. Bullo, Coordination and geometric optimization via distributed dynamical systems, SIAM J. Control Optim., 44 (2005), 1543–1574. https://doi.org/10.1137/S0363012903428652 doi: 10.1137/S0363012903428652
    [15] P. Colli, G. Gilardi, J. Sprekels, Distributed optimal control of a nonstandard nonlocal phase field system, AIMS Math., 1 (2016), 225–260. https://doi.org/10.3934/Math.2016.3.225 doi: 10.3934/Math.2016.3.225
    [16] B. M. Huang, Y. Zou, Z. Y. Meng, W. Ren, Distributed time-varying convex optimization for a class of nonlinear multiagent systems, IEEE Trans. Automat. Control, 65 (2020), 801–808. https://doi.org/10.1109/TAC.2019.2917023 doi: 10.1109/TAC.2019.2917023
    [17] Y. K. Zheng, Y. X. Li, C. K. Ahn, Adaptive fuzzy distributed optimization for uncertain nonlinear multiagent systems, IEEE Trans. Fuzzy Syst., 32 (2024), 1862–1872. https://doi.org/10.1109/TFUZZ.2023.3337170 doi: 10.1109/TFUZZ.2023.3337170
    [18] G. Carnevale, G. Notarstefano, Nonconvex distributed optimization via Lasalle and singular perturbations, IEEE Control Syst. Lett., 7 (2023), 301–306. https://doi.org/10.1109/LCSYS.2022.3187918 doi: 10.1109/LCSYS.2022.3187918
    [19] L. Zhang, S. Liu, Distributed average consensus of stochastic singularly perturbed systems, IEEE Trans. Control Netw. Syst., 10 (2023), 1913–1924. https://doi.org/10.1109/TCNS.2023.3256271 doi: 10.1109/TCNS.2023.3256271
    [20] Z. P. Jiang, A. R. Teel, L. Praly, Small-gain theorem for ISS systems and applications, Math. Control Signals Syst., 7 (1994), 95–120. https://doi.org/10.1007/BF01211469 doi: 10.1007/BF01211469
    [21] A. R. Teel, A nonlinear small gain theorem for the analysis of control systems with saturation, IEEE Trans. Automat. Control, 41 (1996), 1256–1270. https://doi.org/10.1109/9.536496 doi: 10.1109/9.536496
    [22] Z. P. Jiang, I. M. Y. Mareels, Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica, 32 (1996), 1211–1215. https://doi.org/10.1016/0005-1098(96)00051-9 doi: 10.1016/0005-1098(96)00051-9
    [23] Z. H. Jin, Z. X. Wang, Input-to-state stability of the nonlinear singular systems via small-gain theorem, Appl. Math. Comput., 402 (2021), 126171. https://doi.org/10.1016/j.amc.2021.126171 doi: 10.1016/j.amc.2021.126171
    [24] T. Tatarenko, B. Touri, Non-convex distributed optimization, IEEE Trans. Automat. Control, 62 (2017), 3744–3757. https://doi.org/10.1109/TAC.2017.2648041 doi: 10.1109/TAC.2017.2648041
    [25] Z. H. Jin, C. K. Ahn, J. W. Li, Momentum-based distributed continuous-time nonconvex optimization of nonlinear multi-agent systems via timescale separation, IEEE Trans. Netw. Sci. Eng., 10 (2023), 980–989. https://doi.org/10.1109/TNSE.2022.3225409 doi: 10.1109/TNSE.2022.3225409
    [26] T. F. Liu, Z. Y. Qin, Y. G. Hong, Z. P. Jiang, Distributed optimization of nonlinear multiagent systems: a small-gain approach, IEEE Trans. Automat. Control, 67 (2022), 676–691. https://doi.org/10.1109/TAC.2021.3053549 doi: 10.1109/TAC.2021.3053549
    [27] Q. S. Liu, J. Wang, A second-order multi-agent network for bound constrained distributed optimization, IEEE Trans. Automat. Control, 60 (2015), 3310–3315. https://doi.org/10.1109/TAC.2015.2416927 doi: 10.1109/TAC.2015.2416927
    [28] J. Wang, K. M. Tsang, Second-order sliding mode controllers for nonlinear singular perturbation systems, ISA Trans., 44 (2005), 117–129. https://doi.org/10.1016/S0019-0578(07)60049-4 doi: 10.1016/S0019-0578(07)60049-4
    [29] J. Alvarez-Gallegos, G. Silva-Navarro, Two-time scale sliding-mode control for a class of nonlinear systems, Int. J. Robust Nonlinear Control, 7 (1997), 865–879.
    [30] T. F. Liu, Z. P. Jiang, A small-gain approach to robust event-triggered control of nonlinear systems, IEEE Trans. Automat. Control, 60 (2015), 2072–2085. https://doi.org/10.1109/TAC.2015.2396645 doi: 10.1109/TAC.2015.2396645
    [31] Y. T. Chang, Adaptive sliding mode control of multi-input nonlinear systems with perturbations to achieve asymptotical stability, IEEE Trans. Automat. Control, 54 (2009), 2863–2869. https://doi.org/10.1109/TAC.2009.2033748 doi: 10.1109/TAC.2009.2033748
    [32] X. Y. Zhang, H. Y. Su, R. Q. Lu, Second-order integral sliding mode control for uncertain systems with control input time delay based on singular perturbation approach, IEEE Trans. Automat. Control, 60 (2015), 3095–3100. https://doi.org/10.1109/TAC.2015.2411991 doi: 10.1109/TAC.2015.2411991
    [33] C. A. Martinez-Fuentes, R. Seeber, L. Fridman, J. A. Moreno, Saturated Lipschitz continuous sliding mode controller for perturbed systems with uncertain control coefficient, IEEE Trans. Automat. Control, 66 (2021), 3885–3891. https://doi.org/10.1109/TAC.2020.3034872 doi: 10.1109/TAC.2020.3034872
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(554) PDF downloads(38) Cited by(0)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog