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1. Introduction

1.1. Motivation

Nonlinear singularly perturbed systems represent a class of dynamic systems where certain
components exhibit significantly different time scales. These systems are ubiquitous in various fields,
including control theory, engineering, and natural sciences [1–5]. The presence of multiple timescales
introduces challenges in analysis and control, as traditional methods may fail to capture the system’s
intricate behavior accurately. Singular perturbation theory provides a powerful framework for studying
such systems by decomposing them into fast and slow subsystems. This decomposition enables the
analysis of the system’s behavior on different timescales separately, leading to simplified models and
insights into system dynamics.

1.2. Related work

In recent years, there has been growing interest in nonlinear singularly perturbed systems due to
their relevance in practical applications and their rich mathematical properties. Researchers have
explored various aspects of these systems, including stability analysis [6, 7], control design [8],
and adaptive techniques [9], aiming to develop robust and efficient control strategies capable of
handling the inherent complexities. In [10], the issue of finite-time fuzzy control for discrete-time
nonlinear singularly perturbed systems with input constraints is addressed, focusing on establishing
conditions for state boundedness using matrix inequality techniques and overcoming issues related
to small singularly perturbed parameters. In [11], the fuzzy-model-based approach is proposed
for optimizing nonlinear Markov jump singularly perturbed systems using reinforcement learning,
featuring robust offline and online parallel learning algorithms that ensure convergence and efficacy.
In [12], a composite controller is designed for fast sampling singularly perturbed systems, designed
without full system dynamics, improving convergence speed and eliminating the need for a stabilizing
control strategy. The integration of multi-agent systems with singularly perturbed dynamics presents
a compelling area of research with profound implications for the design and control of complex
distributed systems [13]. In these systems, the agents may exhibit fast and slow dynamics, resulting
in intricate interactions and nontrivial behaviors. Understanding and effectively controlling such
systems pose significant challenges, as traditional control techniques may fail to capture their
dynamics accurately.

Distributed optimization is a method of cooperative optimization among multiple distributed agents
to achieve global optimization objectives [14–17]. Nonlinear singularly perturbed systems are a
class of dynamic systems characterized by significantly different timescales and nonlinear properties.
Combining these two fields, distributed optimization and nonlinear singularly perturbed systems, can
be applied in various domains such as information fusion, network flow optimization, and multi-robot
coordination. Against this backdrop, researchers have begun to focus on how to effectively optimize
nonlinear singularly perturbed systems in distributed environments [18,19]. This optimization problem
is challenging because the complexity of the system and multiple timescales can render traditional
optimization techniques ineffective or suboptimal. Therefore, developing new distributed optimization
algorithms to address these issues becomes crucial. Nonlinear small-gain theorem [20, 21] is an
important tool for analyzing the interaction between distributed optimization and singular perturbation
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systems with multiple timescales.
The small-gain theorem stands as a cornerstone in control theory, offering profound insights into

the stability analysis of interconnected systems [22, 23]. This theorem provides a powerful tool for
assessing the stability of interconnected systems by establishing a connection between the gains of
individual subsystems and the overall stability of the interconnected system. At its core, the nonlinear
small-gain theorem asserts that if the gains of interconnected subsystems are suitably bounded, then
the overall system will exhibit stability, even if individual subsystems may be unstable. This property
is particularly valuable in the analysis of complex systems composed of interconnected components
with varying dynamics and behaviors.

This paper aims to explore the application of distributed optimization in nonlinear singularly
perturbed systems via the small-gain theorem and sliding mode control. We will investigate how
to leverage cooperation among distributed agents to effectively optimize performance metrics of such
systems, such as stability, convergence, and robustness. By combining the theories and methods of
distributed optimization and nonlinear singularly perturbed systems, we aim to provide new insights
and solutions for addressing complex distributed system problems in practice.

1.3. Contributions

The main contributions of this study are as follows:

(1) Compared with distributed optimization multi-agent systems [24, 25], our paper considers the
more general multi-timescales singular perturbation systems, which have broader prospects for
practical applications.

(2) In contrast to a previous study [26], our paper avoids assuming input-to-state stability (ISS)
properties of the reference signal and instead achieves reference signal tracking by designing
sliding mode controllers with fast and slow timescales.

(3) Compared with previously reported approaches [27], our proposed algorithm can avoid the use
of the analytical form of the gradient function and only relies on the gradient function values
to achieve the optimization objective. Furthermore, the convergence and robustness of the
distributed optimization algorithm can be guaranteed.

1.4. Structure and notation

The rest of the paper is organized as follows. In Section 2, we present the problem formulation
of this paper. The proof of the main result is placed in Sections 3 and 4. In Section 5, we employ
numerical examples to verify the effectiveness of the theoretical result. Section 6 concludes this paper.

Notations: Throughout this paper, R+ denotes the positive real number set. We use 1N and IN to
represent the N-dimensional vector [1, · · · , 1]T and N-dimensional identity matrix, respectively. We
use | · | and ⊗ to represent the Euclidean norm for real vectors and the Kronecker product, respectively.
The function sgn takes the sign of real values, that is, sgn(r) = 1 if r > 0, sgn(r) = −1 if r < 0, and
sgn(r) = 0 if r = 0. We use Id to represent the identity function on R+. For a matrix A, A† denotes
the Moore-Penrose pseudo-inverse of the matrix A. f ◦ g denotes the composition of appropriately
defined functions f and g. ∥z∥T = sup

t∈T
|z(t)| denotes the supremum norm of a continuous function

z(t) : R+ → Rn.
Given continuous function α : R + → R + and β : R + × R + → R + , α(0) = 0, it follows that:
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• The function α is called:

(1) positive definite if α(s) > 0 (s > 0);
(2) a class K function (α ∈ K) if α is a strictly increasing function;
(3) a class K∞ function (α ∈ K∞) if α is K function and satisfies lim

s→∞
α (s) = ∞.

• The function β is called a classKL function (β ∈ KL) if β (·, t) is a classK function (t ∈ R+) and
β (s, ·) is a decreasing function satisfying lim

t→∞
β (s, t) = 0.

2. Preliminaries and problem formulation

Consider the following multi-agent system characterized by singular perturbations:

ẋi = f1i(xi) + F1i(xi)zi + g1i(xi)ui, (2.1)
εżi = f2i(xi) + F2i(xi)zi + g2i(xi)ui, (2.2)
yi =ψi(xi, zi), (2.3)

for i ∈ N = {1, · · · ,N}, where xi ∈ R
nxi and zi ∈ R

nzi are the slow and fast state, respectively. ε is
a small positive constant, ui ∈ R

nui is the control input, and yi ∈ R
ny is the output. f1i : Rnxi → Rnxi ,

F1i : Rnxi → Rnxi×nzi , g1i : Rnxi → Rnxi×nui , f2i : Rnxi → Rnzi , F2i : Rnxi → Rnzi×nzi , and g2i : Rnxi → Rnzi×nui

represent the system dynamics. ψi : Rnxi × Rnzi → Rny represents the output map. Specifically, ψi is
a linear function with respect to xi and zi. Suppose f1i, f2i, and all elements in matrices g1i, g2i, F1i,
and F2i are smooth bounded functions, and F2i is a nonsingular matrix for xi ∈ R

nxi . Let xi(t0) = xi0,
zi(t0) = zi0, where t0 denotes initial time. Notice that the outputs of all outputs of the agents have the
same dimension while their states could have different dimensions.

Consider the optimization problem

min
r∈Rny

c(r), c(r) =
∑
i∈N

ci(r) (2.4)

for i ∈ N , where ci : Rny → R are differentiable functions, which are called local objective functions.
Define y∗ ∈ Rny as the global minimizer of c.

Next, we provide a description of the problem that this paper aims to address.
Problem: The objective of this paper is to design a distributed controller for the multi-agent system

with singular perturbation (2.1)–(2.3) to steer the outputs yi of all agents to the optimal solution y∗ of
optimization problem (2.4). Specifically,

lim
t→∞

yi(t) = y∗,∀i ∈ N (2.5)

where y∗ can be either a constant or a continuous function of time and ẏ∗ is any measurable and locally
essentially bounded.

The following assumptions will be made regarding the local objective functions and the state
functions.

Assumption 2.1. f1i(0) = 0, f2i(0) = 0, and for ui = 0, i ∈ N , the origin (0, 0) is an isolated
equilibrium point. The equation f2i(xi)+F2i(xi)zi + g2i(xi)ui = 0 of the multi-agent system (2.1) has a
unique continuous solution over [0,+∞), which is described:

zi = hi(xi, ui), (2.6)
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where hi : Rnxi × Rnui → Rnzi .

Assumption 2.2. For each i ∈ N , ci isω-strongly convex over Rny with constantω > 0, and its gradient
∇ci is ϑ-Lipschitz with constant ϑ > 0. Specifically,

(∇T ci(ξ1) − ∇T ci(ξ2))(ξ1 − ξ2) ≥ ω|ξ1 − ξ2|
2, (2.7)

|∇ci(ξ1) − ∇ci(ξ2)| ≤ ϑ|ξ1 − ξ2|. (2.8)

for any ξ1, ξ2 ∈ R
ny .

Remark 2.1. Based on the Assumption 2.2, we have that (2.7) and (2.8) hold. Therefore,

(∇T c(ξ1) − ∇T c(ξ2))(ξ1 − ξ2) = (∇T
∑
i∈N

ci(ξ1) − ∇T
∑
i∈N

ci(ξ2))(ξ1 − ξ2) ≥ Nω|ξ1 − ξ2|
2,

and

|∇c(ξ1) − ∇c(ξ2)| = |∇
∑
i∈N

ci(ξ1) − ∇
∑
i∈N

ci(ξ2)| ≤ Nϑ|ξ1 − ξ2|,

for any ξ1, ξ2 ∈ R
ny , that is, c is strongly convex with the constant Nω and ∇c is ϑ-Lipschitz with the

constant Nϑ, which guarantees the existence of the unique global minimizer.

The information exchange topology of the multi-agent system is described by a digraph G =
{N ,B,A}. Specifically, each agent is represented by a node in G, and (i, j) ∈ B if the information
of agent i is available to agent j. The element of A =

[
ai j

]
denotes the adjacency matrix weight of

edge (i, j).

Assumption 2.3. The digraph G is quasi-strongly connected (QSC) and weight-balanced.

Through distributed optimal output agreement, we aim to ensure that each agent’s control
incorporates both local information, denoted as ∇ci(yi), and exchanged information from neighboring
agents. The objective is to maintain the boundedness of all signals within the closed-loop system and
guide the agents’ outputs toward the optimal point.

This paper aims to pioneer the development of a novel class of distributed optimal output agreement
strategies within multi-agent systems, leveraging a sophisticated two-time scale framework. At its core,
the distributed optimal coordinator harnesses available data intelligently, crafting optimal reference
signals yr

i tailored for each agent’s individual requirements. Following this, a meticulously designed
two timescale reference-tracking composite sliding mode controller assumes the helm as the agents’
primary controller, orchestrating precise maneuvers to faithfully track these reference signals.

For each agent, the reference-tracking composite sliding mode controllers will be designed in the
form of

˙̃ξi = f̃ci(ξ̃i, xi, zi, ε, yr
i ), (2.9)

ui = g̃ci(ξ̃i, xi, zi, ε, yr
i ), (2.10)

where ξ̃i ∈ R
mi is the internal state, and f̃ci : Rmi ×Rnxi ×Rnzi ×R×Rny → Rmi and g̃ci : Rmi ×Rnxi ×Rnzi ×

R × Rny → Rnui represent the dynamics and the output map of the control law, respectively. Moreover,
f̃ci is designed to be locally Lipschitz, i ∈ N .
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3. Distributed optimal coordinators

In an ideal scenario, if the controlled agents can effectively track any reference signal, the
optimal output agreement problem simplifies to determining optimal reference signals for the agents.
This section centers on designing distributed optimal coordinators, assuming the reference-tracking
capability of the controlled agents.

3.1. Two timescales multi-agent systems

According to Eqs (2.1)–(2.3) and [28], the slow subsystem is written as

ẋsi = fi(xsi) + gi(xsi)usi, (3.1)
zsi = hi(xsi, usi) := −F−1

2i (xsi)
[
f2i(xsi) + g2i(xsi)usi(xsi)

]
, (3.2)

fi(xsi) := f1i(xsi) − F1i(xsi)F−1
2i (xsi) f2i(xsi), (3.3)

gi(xsi) := g1i(xsi) − F1i(xsi)F−1
2i (xsi)g2i(xsi), (3.4)

for i ∈ N , xsi(t0) = xsi0, where xsi ∈ R
nxi , zsi ∈ R

nzi , and usi ∈ R
nui represent the slow components of

state variables xi, zi and ui, respectively. It is also said to be the reduced system (RS) and is locally
Lipschitz.

Define the fast timescale:
τ =

t − t0

ε
. (3.5)

Define coordinate transformation zτi = zi − hi (xi, ui), and the singularly perturbed multi-agent
systems in (2.1) take the form with the τ timescale

dxτi

dτ
=ε

[
f1i(xτi) + F1i(zτi) (hi(xτi, ui) + zτi) + g1i(xτi)ui

]
, (3.6)

dzτi

dτ
= f2i(xτi) + F2i(zτi) (hi(xτi, ui) + zτi) + g2i(xτi)ui

− ε

[
∂hi

∂xτi
(F1i(zτi) (hi(xτi, ui) + zτi) + f1i(xτi) + g1i(xτi)ui) +

∂hi

∂ui
u̇i

]
, (3.7)

for i ∈ N .
When ε = 0, it is obtained that

dzτi

dτ
= f2i(xτi) + F2i(zτi) (hi(xτi, ui) + zτi) + g2i(xτi)ui. (3.8)

It is said to be the boundary layer system (BLS) or fast subsystem, which is locally Lipschitz. We can
obtain an O(ε) approximation by setting ε = 0,

dẑτi

dτ
= F2i (xτi) ẑτi + g2i (xτi) u f i, ẑτi(0) = zτi(0) − hi(xi0, 0). (3.9)

Based on above analysis and [29], system (2.1) is rewritten as

ẋi = fi(xi) + F1i(xi)zτi + gi(xi)usi + g1i(xi)u f i, (3.10)
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εżi = F2i(xi)zτi + g2i(xi)u f i (3.11)

for i ∈ N , where usi and u f i denote the control law of the slow subsystem and control law of the fast
subsystem, respectively. Here, (3.10) and (3.11) describe the interconnection properties between slow
and fast variables.

Definition 3.1. The xi-subsystem is ISS with zi, usi, u f i as the inputs and the zi-subsystem is ISS with
xi, u f i, ε as the inputs. Specifically, there exist βxi, βzi ∈ KL, γ12, γ21, γ

usi
xi , γ

u f i
xi , γ

usi
zi , γ

ε
zi ∈ K such that

|xi (t)| ⩽ max
{
βxi

(∣∣∣xi0

∣∣∣ , t) , γ21 (∥zi∥∞) , γusi
xi (∥usi∥∞) , γu f i

xi

(∥∥∥u f i

∥∥∥
∞

)}
, (3.12)

|zi (t)| ⩽ max
{
βzi

(∣∣∣zi0

∣∣∣ , t) , γ12 (∥xi∥∞) , γu f i
zi

(∥∥∥u f i

∥∥∥
∞

)
, γεzi (∥ε∥∞)

}
(3.13)

for any initial state and any measurable and locally essentially bounded input.

By using fast timescale model transformation, the reference-tracking controllers (2.9) and (2.10)
can be written as

ξ̇i = fci(ξi, xτi, zτi, ε, yr
i ), (3.14)

ui = gci(ξi, xτi, zτi, ε, yr
i ), (3.15)

where ξi = ξ̃i/ε ∈ R
mi is the fast timescale internal state of ξ̃i, and fci : Rmi ×Rnxi ×Rnzi ×R×Rny → Rmi

and gci : Rmi × Rnxi × Rnzi × R × Rny → Rnui represent the fast timescale dynamics and the output map
of the control law, respectively. In addition, fci is locally Lipschitz function.

Remark 3.1. In the following section, all reference signals for the output of agent i and the auxiliary
states are in τ timescale.

4. Design of output tracking sliding mode controller

4.1. Slow sliding mode control

For the slow subsystem (3.1), the output tracking integral sliding mode surface is chosen as

ssi(t) = xsi + Eesi +

∫ t

0
ksixsi(τ)dτ, (4.1)

where i ∈ N , ksi is the parameter to be designed, and E ∈ Rnxi×ny is a constant matrix with ∥E∥ = 1.
The output error is esi = ψi(xsi, 0) − yr

i .
Based the slow subsystem (3.1) and output tracking integral sliding mode surface (4.1), it can be

seen that

ṡsi(t) = ẋsi + Eėsi + ksixsi

= ksixsi + fi(xsi) + gi(xsi)usi + E
∂ψi

∂xsi
( fi(xsi) + gi(xsi)usi) − Eẏr

i .
(4.2)

Note that ∂ψi
∂xsi

is a constant matrix. When the state trajectories of the slow subsystem enter the sliding
mode, it has ssi(t) = 0 and ṡsi(t) = 0. Consequently, according to ṡsi(t) = 0 and (4.1), we obtain the
following equivalent control law

ueq
si =

((
I + E

∂ψi

∂xsi

)
gi(xsi)

)† (
Eẏr

i − ksixsi −

(
I + E

∂ψi

∂xsi

)
fi(xsi)

)
, (4.3)
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where I denotes the suitable dimensional identity matrix.
Then, by substituting (4.3) into (3.1), the following sliding mode dynamics of the slow subsystem

can be obtained:

ẋsi = fi(xsi) + gi(xsi)u
eq
si = (I + E

∂ψi

∂xsi
)−1(Eẏr

i − ksixsi). (4.4)

Theorem 4.1. The sliding mode dynamics of slow subsystem (4.4) are ISS with the ẏr
i being taken as

the input under output tracking integral sliding mode surface (4.1) if ksi > 0 holds for i ∈ N .

Proof. Consider a Lyapunov function candidate as follows:

V1(t) =
1
2

xT
si(t)xsi(t). (4.5)

The time derivative of V1(t) along the trajectories of system (4.4) is given by

V̇1(t) =xT
si(t)

(
(I + E

∂ψi

∂xsi
)−1(Eẏr

i − ksixsi)
)

≤ −
ksi

∥I + E ∂ψi
∂xsi
∥
∥xsi(t)∥2 +

∥ẏr∥ ∥xsi(t)∥∥∥∥∥I + E ∂ψi
∂xsi

∥∥∥∥ . (4.6)

Therefore, we have

V̇1(t) ≤ −α∥xsi(t)∥2 +

∥∥∥ẏr
i

∥∥∥ ∥xsi(t)∥∥∥∥∥1 + ∂ψi
∂xsi

∥∥∥∥ ,

where α = ksi

∥I+E ∂ψi
∂xsi
∥
> 0 for any i ∈ N .

Based on the ISS property [30], the sliding mode dynamics of slow subsystem (4.4) are ISS with
the ẏr

i being taken as the input.
The proof is completed. □

Remark 4.1. Theorem 4.1 obtains a sufficient condition ksi > 0, which guarantees that the sliding
mode dynamics of slow subsystem (4.4) are ISS. In most singular perturbation systems, the output ψi

is a linear function and the partial derivative of ψi is constant.

The following output tracking sliding mode controller with exponential reaching law of the slow
subsystem (3.1) is designed:

usi =

((
I + E

∂ψi

∂xsi

)
gi(xsi)

)† (
Eẏr

i − ksixsi −

(
I + E

∂ψi

∂xsi

)
fi(xsi) − η(ssi)

)
(4.7)

for i ∈ N , where η(ssi) = βissi(t) + δisgn(ssi(t)), and βi and δi are two known positive constants. Since
the external disturbance and uncertainty of the slow subsystem are not considered in this paper, δi can
be chosen as 0.

Remark 4.2. In the actual controller design, since there may be a situation where xsi = 0, we use
ςI +

((
I + E ∂ψi

∂xsi

)
gi(xsi)

)†
instead of

((
I + E ∂ψi

∂xsi

)
gi(xsi)

)†
in the denominator of (4.7), where the ς is a

small positive constant. This can avoid the jump of sliding mode controller.
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Theorem 4.2. The slow subsystem (3.1) can reach the output tracking integral sliding mode
surface (4.1) in finite time under the sliding mode controller (4.7).

Proof. Consider a Lyapunov function candidate as follows:

V2(t) =
1
2

sT
si(t)ssi(t). (4.8)

Calculating the time derivative of V2(t) along the trajectory of system (4.4), we have

V̇2(t) = sT
si(t)

(
ksixsi + fi(xsi) + gi(xsi)usi + E

∂ψi

∂xsi
( fi(xsi) + gi(xsi)usi) − Eẏr

i

)
. (4.9)

Substituting (4.7) into (4.9) yields

V̇2(t) = sT
si(t)

(
−βissi(t) − δisgn(ssi(t))

)
(4.10)

≤ −βi ∥ssi(t)∥2 . (4.11)

According to the sliding mode control theory, the finite time reachability can be guaranteed, that
is, the trajectory of the slow subsystem (3.1) converges to the output tracking integral sliding mode
surface (4.1) in finite time and remains thereafter.

The proof is completed. □

For the slow subsystem, the sliding mode controller (4.7) and output tracking integral sliding mode
surface (4.1) are designed such that condition ksi > 0.

Remark 4.3. In the previous results related to sliding mode control (see [31–33]), it has been shown
that the sliding mode dynamics are asymptotically stable, and it was proven that the system can reach
the sliding mode surface in finite time, and then concluded that the system is asymptotically stable
under the action of the designed sliding mode controller and sliding mode surface. When considering
the slow system, the difference between this paper and the existing results is that by proving that the
sliding mode dynamic has the ISS property, and then we obtain the conclusion that the system is ISS
under the effect of the designed sliding mode controller and the output tracking sliding surface.

Examples 4.1. Consider the following multi-agent system with three singular perturbation slow
subsystems:

ẋsi = fi(xsi) + gi(xsi)usi, i = 1, 2, 3, (4.12)
yi = ψi(xsi) (4.13)

where f1(xs1) = −x2
s1, g1(xs1) = −x2

s1, f2(xs2) = x3
s2, g2(xs2) = −xs2, f3(xs3) = x2

s3, g3(xs3) = sin(xs3/2),
ψi(xsi) = xsi + 0.5, i = 1, 2, 3. The reference signal yr

i is set as 0.5.
The integral sliding mode surface is designed as

si = xsi + esi +

∫ t

0
ksixsi(τ)dτ (4.14)

for i = 1, 2, 3, where ks1 = 0.2, ks2 = 0.4, ks3 = 0.1. The sliding mode controller is designed as

usi = −
ksixsi(t) + 2 fi(xsi) + βissi(t) + δisgn(ssi(t))

0.1+2gi(xsi)
(4.15)
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for i = 1, 2, 3, where βi = 0.1, δ = 0.2 .
Under integral sliding mode surface (4.14) and (4.15) and xs1(0) = 1, xs2(0) = −1, xs3(0) = −2,

then we obtain the system state response of the closed-loop system shown in Figure 1. The response
of integral sliding mode surface is shown in Figure 2. Figure 3 depicts the response of the controller
force. The states of three agents will converge to zero within 40s under the integral sliding mode
controller (4.14) and the sliding mode surface (4.15).
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Figure 1. The state responses of the system (4.12).
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Figure 2. The integral sliding surface si(t) (4.14).
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Figure 3. Sliding mode controller ui(t) (4.15).

4.2. Fast sliding mode control

For the fast subsystem (3.9), the output tracking integral sliding mode surface is chosen as

s f i(τ) = ẑτi + Êe f i +

∫ τ

0
k f iẑτi(ξ)dξ (4.16)

for i ∈ N , k f i is the parameter to be designed. The output error is e f i = ψi(0, ẑτi) − yr
i , and Ê ∈ Rnzi×ny is

a constant matrix with ∥Ê∥ = 1.
Similarly, based the fast subsystem (3.9) and output tracking integral sliding mode surface (4.16),

it can be seen that

ṡ f i(τ) = ˙̂zτi + Êė f i + k f iẑτi

= k f iẑτi + F2i(ẑτi) + g2i(ẑτi)u f i + Ê
∂ψi

∂ẑτi

(
F2i(ẑτi) + g2i(ẑτi)u f i

)
− Êẏr

i . (4.17)

Based on (4.17), we have

ṡ f i(τ) = k f iẑτi + (I + Ê
∂ψi

∂ẑτi
)F2i(ẑτi) + (I + Ê

∂ψi

∂ẑτi
)g2i(ẑτi)u f i − Êẏr

i . (4.18)

When the state trajectories of the fast subsystem enter the sliding mode, it has s f i(τ) = 0 and ṡ f i(τ) = 0.
Consequently, according to ṡ f i(τ) = 0 and (4.18), we obtain the following equivalent control law:

ueq
f i =

((
I + Ê

∂ψi

∂ẑτi

)
g2i(ẑτi)

)† (
Êẏr

i − k f iẑτi −

(
I + Ê

∂ψi

∂ẑτi

)
F2i(ẑτi)

)
. (4.19)

Then, by substituting (4.19) into (3.9), the following sliding mode dynamics of the fast system can
be obtained:

˙̂zτi = F2i(ẑτi) + g2i(ẑτi)u
eq
f i =

(
I + Ê

∂ψi

∂ẑτi

)−1

(Êẏr
i − k f iẑτi). (4.20)
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Theorem 4.3. The sliding mode dynamics of fast subsystem (4.20) are ISS with the ẏr
i being taken as

the input under output tracking integral sliding mode surface (4.16) if there exists k f i > 0 for i ∈ N .

Proof. Consider a Lyapunov function candidate as follows:

V1(τ) =
1
2

ẑT
τi(τ)ẑτi(τ). (4.21)

The proof is a similar version of proof of Theorem 4.1, and it will not be explained. Based on the ISS
property [30], the sliding mode dynamics of fast subsystem (4.20) are ISS with the ẏr

i being taken as
the input.

The proof is completed. □

Remark 4.4. Theorem 4.3 obtains a sufficient condition k f i > 0, which guarantees the sliding mode
dynamics of fast subsystem (4.20) are ISS.

The following output tracking sliding mode controller with exponential reaching law of the fast
subsystem (3.9) is designed:

u f i =

((
I + Ê

∂ψi

∂ẑτi

)
g2i(ẑτi)

)† (
Êẏr

i − k f iẑτi −

(
I + Ê

∂ψi

∂ẑτi

)
F2i(ẑτi) − η(s f i)

)
, (4.22)

where η(s f i) = βis f i(t) − δisgn(s f i(t)), and βi and δi are two known positive constants for i ∈ N .

Remark 4.5. Similar to Remark 4.4, since there may be a situation where g2i(ẑτi) = 0, we use ςI +(
I + Ê ∂ψi

∂ẑτi

)
g2i(ẑτi) instead of

(
I + Ê ∂ψi

∂ẑτi

)
g2i(ẑτi) in the denominator of (4.22), where the ς is a small

positive constant.

Theorem 4.4. The fast subsystem (3.9) can reach the output tracking integral sliding mode
surface (4.16) in finite time under the sliding mode controller (4.22).

Proof. Consider a Lyapunov function candidate as follows:

V2(τ) =
1
2

sT
f i(τ)s f i(τ). (4.23)

Calculating the time derivative of V2(τ) along the trajectory of system (4.20), we have

V̇2(τ) = sT
f i(τ)

 k f iẑτi + F2i(ẑτi) + g2i(ẑτi)u f i

+Ê ∂ψi
∂ẑτi

(
F2i(ẑτi) + g2i(ẑτi)u f i

)
− Êẏr

i

 . (4.24)

Substituting (4.22) into (4.24) yields

V̇2(τ) = sT
f i(τ)

(
−βis f i(τ) − δisgn(s f i(τ))

)
(4.25)

≤ −βi

∥∥∥s f i(τ)
∥∥∥2
. (4.26)

According to the sliding mode theory, the finite time reachability can be guaranteed, that is,
the trajectory of the fast subsystem (3.9) converges to the output tracking integral sliding mode
surface (4.16) in finite time and remains thereafter.

The proof is completed. □

For the fast subsystem, the sliding mode controller (4.22) and output tracking integral sliding mode
surface (4.16) are designed such that condition k f i > 0.
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4.3. A gradient-based design and its robustness

This subsection presents a category of distributed optimal coordinators and demonstrates their
robustness concerning output-tracking errors. The concept of ISS is utilized to characterize this
robustness. With the information exchange of topology G, consider the following distributed optimal
coordinators:

ẏr
i = −∇ci(yi) −

∑
j∈N

ai j(qi − q j), (4.27)

q̇i = µ
∑
j∈N

ai j(yr
i − yr

j), (4.28)

where the reference signal yr
i ∈ R

ny is intended for the output of agent i to track in the fast timescale τ.
An auxiliary state qi ∈ R

ny is introduced in the fast timescale τ, while ai j represents nonnegative
constants defined by the weighted digraph G, and µ > 0 is a designated parameter for design purposes.

Denote y = [yT
1 , . . . , y

T
N]T , yr = [yrT

1 , . . . , y
rT
N ]T , q = [qT

1 , . . . , q
T
N]T , ∆c(y) =

[∇T c1(y1), . . . ,∇T cN(yN)]T , and ∆c(yr) = [∇T c1(yr
1), . . . ,∇T cN(yr

N)]T . Then, (4.27) and (4.28) can be
rewritten as

ẏr = −∆c(yr) − L ⊗ Inyq + (∆c(yr) − ∆c(y)), (4.29)
q̇ = µLT

⊗yr, (4.30)

where (∆c(yr) − ∆c(y)) represents the influence of the output tracking error y − yr of the agents.
The following proposition gives the equilibrium of (4.29) and (4.30) with y ≡ yr.

Proposition 4.1. With Assumptions 2.2 and 2.3 satisfied, (4.29) and (4.30) with y ≡ yr admits a unique
equilibrium [yrT

0 , q̂
T
0 ]T defined by

L⊗q̂0 = −∆c(1N ⊗ y∗), (4.31)
yr

0 = 1N ⊗ y∗. (4.32)

Denote ȳ = yr − yr
0 and q̄ = q̂ − q̂0, where yr

0 and q̂0 are defined by (4.31) and (4.32). Then, (4.29)
and (4.30) can be rewritten as

˙̄y = −(∆c(yr) − ∆c(yr
0)) − L ⊗ Iny q̄ + (∆c(yr) − ∆c(y)), (4.33)

˙̄q = µL ⊗ Iny ȳ. (4.34)

Throughout the rest of the paper, we use the notation ȳi = yr
i − y∗ for i ∈ N . By using the definitions

of yr
0 in (4.32) and ȳi above, we have ȳ = [ȳT

1 , . . . , ȳ
T
N]T . Also, we use ỹ = [ỹT

1 , . . . , ỹ
T
N]T with ỹi =

yi − yr
i for i ∈ N to represent the reference-tracking errors. For convenience of discussions, denote

Z = [ȳT , q̄T ]T .
The following proposition employs ISS to formulate the robustness of (4.33) and (4.34) with respect

to the reference-tracking errors ỹ.

Proposition 4.2. With Assumptions 2.2 and 2.3 satisfied, (4.33) and (4.34) are ISS with ỹ as the input
and Z as the state. Specifically, there exist constants k1 > 0, k2 > 0, and 0 < ϵ < 1 such that

P =
[
µk1IN k2L
k2LT k1IN

]
, Q =

[
Q1 0
0 Q2

]
,
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where

Q1 = (2µk1ω − µk1ϵ − k2ϑ
2)IN − 2µk2LLT ,

Q2 = k2(1 − ϵ)LT L

are positive definite, and

V0(Z) = ZT (P ⊗ Iny)Z (4.35)

is an ISS-Lyapunov function satisfying

V̇0(Z) ≤ −b1V0(Z) + b2 |ỹ|2 (4.36)

with b1 = λmin(Q)/λmax(P), b2 = (µk1 + k2)ϑ2/ϵ.

Proof. The similar conclusion has been proven in [26], so specific evidence can be found in [26]. □

4.4. A small-gain condition with singular perturbation for optimal output consensus

In this subsection, we assume that the state of each controlled agent is bounded and convergent.
The paper employs the ISS property to characterize convergence: if the reference signal is constant or
converging, the output converges to the reference signal; If the reference signal is time-varying, then
all states remain bounded.

In Theorems 4.1–4.4, we conclude that the slow and fast subsystems (3.10) and (3.11) can achieve
ISS with respect to ẏr as the input by the sliding mode controller. Therefore, there exists an ISS-
Lyapunov function Vi(Xi) : Rnxi × Rny → R such that

αi(|Xi|) ≤ Vi(Xi) ≤ αi(|Xi|), (4.37)

Vi(Xi) ≥ max
i∈N
{γ

ẏr
i

Vi
(|yr

i |)} ⇒ ∇Vi(Xi)Fi(Xi, yr
i ) ≤ −αi(Vi(Xi)), (4.38)

where Xi = [xT
i , z

T
i ]T , αi, αi, and γẏr

i
Vi

are classK∞ functions, and αi is a continuous and positive definite
function. Fi(Xi, yr

i ) denotes the dynamics of the slow and fast subsystems.

Theorem 4.5. Consider the closed-loop singular perturbation system composed of (2.1)–(2.3),
composite sliding mode controller (2.9) and (2.10), and distributed optimal coordinators (4.27)
and (4.28). Under Assumptions 2.1–2.3, all the signals in the system are bounded, and the distributed
optimization objective (2.4) is achieved if the following small-gain conditions are satisfified:

γ
ẏr

i
Vi
◦ γ

ỹi
V0
≤ Id, (4.39)

where γỹi
V0

(s) = b2
σb1

s2 for s ∈ R+.

Proof. Based on Proposition 4.2, we have

V̇0(Z) ≤ −(1 − σ)b1V0(Z) − σb1V0(Z) + b2 |ỹ|2 , (4.40)

where 0 < σ < 1 is a constant.
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Therefore, we have

V0(Z) ≥ γỹi
V0

(|ỹ|) ⇒ ∇V0(Z)FZ(Z, ỹi) ≤ −(1 − σ)b1V0(Z), (4.41)

where FZ(Z, ỹi) denotes the dynamics of distributed optimal coordinators.
The entire system can be considered as an interconnected system, as shown in Figure 4.

Properties (4.41) and (4.38) characterize the gain properties between V0(Z) and Vi(Xi). Choose
γ

ẏr
i

Vi
∈ K∞ to satisfy the nonlinear small-gain condition (4.39). Then, we construct a Lyapunov function

for the entire system as

V(X,Z) = max
i∈N
{V0(Z), σi(Vi(Xi))}, (4.42)

where X = [XT
1 , X

T
2 , · · · , X

T
N]T , which satisfies

V̇(X,Z) ≤ −αV(V̄(X,Z)) (4.43)

for any (xi(0), zi(0), yr
i (0), qi(0)) and for almost all t ≥ 0, where σi is of class K∞ and continuously

differentiable on (0,∞), and satisfies σi > γ
ẏr

i
Vi

and σi ◦ γ
ỹi
V0
< Id,

αV =
1
3

min
i∈N
{σd

i (σ−1
i (s))αi(σ−1

i (s))} (4.44)

with

σd
i =


∂σi(s)
∂s

, s > 0,

lim
s→0+

∂σi(s)
∂s

, s = 0.
(4.45)

This means that the closed-loop system is asymptotically stable at the equilibrium, i.e.,
limt→+∞ |yi(t) − y∗| = 0. □

V0(Z)

ẏr
i

ỹi

Vi(Xi)

Figure 4. The interconnections within the controlled system.

5. Example

This section delves into the intricate process of designing distributed optimal coordinators and
sliding mode controllers tailored specifically for a multi-agent system comprising five agents, i.e.,
N = 5. The dynamics of each agent are described as follows:

ẋi =x2
i + sin(xi)zi + ui, (5.1)
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εżi =2x3
i − xizi + ui, (5.2)

yi =xi (5.3)

for i = 1, 2, 3, 4, 5, where ε = 0.1, xi and zi denote the system state, and yi denotes the output,
respectively.

In Figure 5, the digraph and the adjacency matrix are presented, which mean that Assumption 2.3
is satisfied. The local objective functions are chosen as

ci(r) = 0.1(r − 1)2 (5.4)

for i = 1, 2, 3, 4, 5, and we can check that Assumption 2.2 is satisfied with ω = 0.2 and ϑ = 0.2. The
optimal solution of the optimization problem defined by (2.4) is y∗ = 3. In addition, the Assumption 2.1
can be easily verified to hold.

A1

A2

A3

A4

A5 A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0



Figure 5. The information exchange digraph and the adjacency matrix.

For the design of fast-slow sliding mode controller, the parameters are set as ksi = 0.2, k f i = 0.5,
βi = 0.1 and δi = 3 for i = 1, 2, 3, 4, 5. The distributed optimal coordinators (4.27) and (4.28) are
designed with µ = 0.8. Based on Proposition 4.2 and Theorem 4.2, k1 = 264, k2 = 18, ϵ = 0.5,
b1 = 0.07, b2 = 18.24. We set as σ = 12 and γẏr

i
Vi

(s) = 0.001
√

s , then, γỹi
V0

(s) = 21.7143s2 and (4.39) is
satisfied.

A numerical simulation is addressed to verify the proposed design with initial state xi(0) =
[0, 0.1, 0.2, 0.3, 0.4]T , zi(0) = [−0.5,−0.4,−0.3,−0.2,−0.1]T , yr

i = [0, 0.1, 0.1, 0.2, 0.2]T , qi(0) =
[0, 0, 0.1, 0.1, 0]T . Under the aforementioned design and initial conditions, the simulation results are
depicted in Figures 6–11. Figure 6 illustrates the convergence of the output of the controlled system
to the optimal value point of the global objective function. Figures 7 and 8 present the tracking
errors of the control inputs of controlled system and the reference signals generated by the optimizer,
respectively. As shown in Figures 8 and 11, it can be observed that as ε varies from 0.1 to 0.9,
the convergence of tracking error remains unchanged, but the convergence time increases. From the
simulation results, it can be observed that the proposed method successfully drives the output of the
singular perturbed multi-agent system to the optimal value point of the objective function.
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Figure 6. Convergence of the outputs yi of the controlled singular perturbed agents.
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Figure 7. Control inputs ui of the controlled singular perturbed agents.
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Figure 8. Reference-tracking capability of controlled singular perturbed agents.
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Figure 9. Reference-tracking capability of controlled singular perturbed agents, when ε =
0.3.
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Figure 10. Reference-tracking capability of controlled singular perturbed agents, when ε =
0.5.
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Figure 11. Reference-tracking capability of controlled singular perturbed agents, when ε =
0.9.
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6. Conclusions

This paper presents a comprehensive exploration of distributed optimization within nonlinear
singular perturbation systems. Initially, the singular perturbation system is dissected into fast and slow
subsystems, laying the groundwork for subsequent methodologies. Robustness in tracking reference
signals is ensured through the implementation of fast-slow sliding mode controllers. Moreover, to
mitigate errors between reference signals and optimal values, a distributed optimizer is proposed to
generate reference signals, ensuring robustness in the face of uncertainties. The stability of the entire
closed-loop system is rigorously scrutinized using the small-gain theorem, bolstering the theoretical
underpinnings of the proposed framework. A numerical example is provided to substantiate the
efficacy of the proposed approach. Through this study, significant strides have been made in addressing
the formidable challenges inherent in distributed optimization within nonlinear singular perturbation
systems, laying a solid foundation for future advancements in this field.

The future of networked sliding mode control is promising, with numerous advancements expected
in robustness, communication integration, cybersecurity, distributed control, artificial intelligence
integration, and practical applications. These developments will pave the way for more resilient,
efficient, and intelligent control systems, driving innovation across various industries.
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