Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article Special Issues

Stability analysis of a class of nonlinear magnetic diffusion equations and its fully implicit scheme

  • We studied a class of nonlinear magnetic diffusion problems with step-function resistivity η(e) in electromagnetically driven high-energy-density physics experiments. The stability of the nonlinear magnetic diffusion equation and its fully implicit scheme, based on the step-function resistivity approximation model ηδ(e) with smoothing, were studied. A rigorous theoretical analysis was established for the approximate model of one-dimensional continuous equations using Gronwall's theorem. Following this, the stability of the fully implicit scheme was proved using bootstrapping and other methods. The correctness of the theoretical proof was verified through one-dimensional numerical experiments.

    Citation: Gao Chang, Chunsheng Feng, Jianmeng He, Shi Shu. Stability analysis of a class of nonlinear magnetic diffusion equations and its fully implicit scheme[J]. AIMS Mathematics, 2024, 9(8): 20843-20864. doi: 10.3934/math.20241014

    Related Papers:

    [1] Eunjung Lee, Dojin Kim . Stability analysis of the implicit finite difference schemes for nonlinear Schrödinger equation. AIMS Mathematics, 2022, 7(9): 16349-16365. doi: 10.3934/math.2022893
    [2] Jinran Yao, Zhengwei Yin . Numerical contractivity preserving implicit balanced Milstein-type schemes for SDEs with non-global Lipschitz coefficients. AIMS Mathematics, 2024, 9(2): 2766-2780. doi: 10.3934/math.2024137
    [3] Hyam Abboud, Clara Al Kosseifi, Jean-Paul Chehab . Stabilized bi-grid projection methods in finite elements for the 2D incompressible Navier-Stokes equations. AIMS Mathematics, 2018, 3(4): 485-513. doi: 10.3934/Math.2018.4.485
    [4] Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131
    [5] Mubashara Wali, Sadia Arshad, Sayed M Eldin, Imran Siddique . Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations. AIMS Mathematics, 2023, 8(7): 15129-15147. doi: 10.3934/math.2023772
    [6] Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112
    [7] Xiaopeng Yi, Chongyang Liu, Huey Tyng Cheong, Kok Lay Teo, Song Wang . A third-order numerical method for solving fractional ordinary differential equations. AIMS Mathematics, 2024, 9(8): 21125-21143. doi: 10.3934/math.20241026
    [8] Xiao Qi, Mejdi Azaiez, Can Huang, Chuanju Xu . An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise. AIMS Mathematics, 2022, 7(12): 20684-20710. doi: 10.3934/math.20221134
    [9] Alessandra Jannelli, Maria Paola Speciale . On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations. AIMS Mathematics, 2021, 6(8): 9109-9125. doi: 10.3934/math.2021529
    [10] Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175
  • We studied a class of nonlinear magnetic diffusion problems with step-function resistivity η(e) in electromagnetically driven high-energy-density physics experiments. The stability of the nonlinear magnetic diffusion equation and its fully implicit scheme, based on the step-function resistivity approximation model ηδ(e) with smoothing, were studied. A rigorous theoretical analysis was established for the approximate model of one-dimensional continuous equations using Gronwall's theorem. Following this, the stability of the fully implicit scheme was proved using bootstrapping and other methods. The correctness of the theoretical proof was verified through one-dimensional numerical experiments.


    This article investigates the stability of the nonlinear magnetic diffusion equation and its fully implicit discrete scheme for the following equation system in [1]:

    {tB(x,t)=x(η(e)μ0xB(x,t)),t(e(x,t)+12μ0B2(x,t))=x(η(e)B(x,t)μ20xB(x,t)), (1.1)

    where B is the magnetic field, e is the internal energy density (that is, internal energy per volume), μ0 is the vacuum permeability constant (μ0=4π×107N/A2), and η(e) is the resistivity in the material. The relationship between η(e) and e results in nonlinearity of the diffusion term x(η(e)μ0xB(x,t)) in (1.1).

    The resistivity η(e) in the equation system (1.1) is a step-function, as shown in Figure 1a:

    η(e)=η(x,t)={ηS=9.7×105,e[0,ec],ηL=9.7×103,e(ec,+), (1.2)

    ec=0.11084958, representing the critical value of internal energy density.

    Figure 1.  Comparison between step-function and smoothed step-function resistivity.

    In electromagnetic loading experiments[2], when the magnetic field outside the metal wall is relatively small (below 10 T), the driving current is also very small, the heating in the metal is weak, the temperature rise is slow, and the change in metal resistivity is not significant. At this point, the diffusion of the magnetic field exhibits behavioral characteristics similar to common diffusion phenomena such as thermal diffusion and concentration diffusion. When the magnetic field outside the metal wall reaches a strong magnetic field level of 100 T, the diffusion of the magnetic field in the metal will exhibit a nonlinear magnetic diffusion wave phenomenon. Compared to ordinary magnetic diffusion in metals, nonlinear magnetic diffusion waves have higher penetration rates and velocities, which can cause rapid magnetic flux leakage and device load erosion in high-energy-density physical experiments. Although nonlinear magnetic diffusion waves in metals with strong magnetic fields were proposed as early as 1970, it was not until after 2000 that phenomena related to nonlinear magnetic diffusion waves gradually attracted people's attention with the widespread development of electromagnetic driven high-energy-density physics experiments. The fundamental reason for the formation of nonlinear magnetic diffusion waves is that during the process of metal temperature rise caused by magnetic diffusion, the metal resistivity also changes accordingly[3]. Before the metal forms a highly conductive plasma, the overall resistivity shows an upward trend. After metal gasification, as the temperature increases, the degree of metal vapor ionization increases, and the resistivity gradually decreases. In [4,5], authors such as B. Xiao assume that the electrical resistivity of metals undergoes a sudden change of several orders of magnitude after reaching a critical temperature, while the electrical resistivity before and after the sudden change is independent of temperature. They consider an approximate theoretical analytical solution for one-dimensional steep-gradient surface magnetic diffusion waves under the step-function resistivity model. In [1], C. H. Yan et al. designed an explicit finite volume discretization scheme for one-dimensional magnetic field diffusion problems based on the step resistivity model. By relaxing the time step, the formulas for excessive magnetic flux transport and total internal energy transport were truncated when solving strong magnetic diffusion problems. On the basis of using the truncated magnetic flux transport capacity and total internal energy transport capacity, the program can allow for larger time steps without causing oscillation dispersion. In addition, there are also some studies on magnetic diffusion problems, such as [6,7,8].

    The stability of solutions is an important issue in the study of differential equations. Stability generally refers to the behavior of the solution remaining unchanged or tending to a certain equilibrium state when there is a small disturbance in the initial or boundary conditions of the equation. In [9], Y. L. Zhou et al. studied a class of parallel nature difference schemes for the initial boundary value problem of quasi-linear parabolic systems, and proved the unconditional stability of the constructed parallel nature difference scheme solutions under the discrete W(2,1)2 norm. In [10], author G. W. Yuan proved the uniqueness and stability of the obtained difference solution under the general non-uniform grid difference scheme. In [11,12], based on the non-uniform grid difference scheme, the authors constructed and developed an implicit discrete scheme that maintains the conservation of the implicit scheme while maintaining the required accuracy and unconditional stability for parallel computing through various methods such as estimation correction, to meet the needs of large-scale numerical solutions to radiation fluid dynamics problems.

    The magnetic diffusion problem studied in this article is also based on the step-function resistivity model. We first reproduced the results of equation system (1.1) in [1] (under explicit finite volume discretization scheme):

    Figure 2.  Magnetic field and internal energy density with step-function resistivity.
    Note: The c in the above figure is the time step influence factor. In this paper, the solution under the explicit finite volume scheme at c=0.4 is considered as the true solution of the problem.

    Next, in the magnetic diffusion equation system (1.1), the smoothed step-function resistivity ηδ(e) is used, where δ is used to describe the distance from the smooth curve inflection point to ec, as shown in Figure 1b. The experimental results of the implicit finite volume method are as follows:

    Figure 3.  Magnetic field and internal energy density with smoothed step-function resistivity.

    The above experiment indicates that by replacing the step-function resistivity η(e) in equation system (1.1) and using the smoothed step-function resistivity model ηδ(e), the experimental results in [1] can be well reproduced. Can the modified resistivity maintain the stability of the solution to the magnetic diffusion equation? What are the advantages of the corrected resistivity compared to the step-function resistivity? These are the starting points of this study and will be answered one by one in the following text. Below, we will first theoretically prove that the solution of the one-dimensional nonlinear magnetic diffusion equation and its fully implicit scheme under the smoothed step-function resistivity are stable with initial values. Then, the correctness and stability of the magnetic diffusion model under the smoothed step-function resistivity in the implicit finite volume discrete scheme are further verified through comparative experiments of explicit and implicit schemes[13].

    A measurable function u[0,T]X that satisfies the following conditions:

    (1)uLp(0,T;X):=(T0u(t)pdt)1/p<,1p<,(2)uL(0,T;X):=esssup0<tTu(t)<,

    forms the Lp(0,T;X) space.

    The polishing function J(x) satisfies

    J(x)={ce1x21,|x|<1,0,|x|1,c=111e1x21dt, (2.1)

    and the conclusions are as follows.

    Lemma 1 ([14]). For any ϵ>0, when taking Jϵ(x)=1ϵJ(xϵ), J(x) and Jϵ(x) satisfy the following properties:

    (1) J(x)C(R), and when |x|1,kN, J(k)(x)=0;

    (2) RJ(x)dx=RJϵ(x)dx=1.

    Then, the step-function resistivity (1.2) can be smoothed to the following continuous differentiable function:

    ηδ(e)=ηδ(x,t)={ηϵ(e),e[ecϵ,ec+ϵ],η(e),else, (2.2)

    where,

    ηϵ(e)=ηϵ(x,t)=Iη(y)Jϵ(xy)dy,I=[ecϵ,ec+ϵ]. (2.3)

    According to [14], it is easy to know that the resistivity (2.3) after the effect of the polishing function (2.1) satisfies the following properties:

    ηϵC(R),andηϵ(x)=Rη(y)Jϵ(xy)dy,x,yI. (2.4)

    Thereby, ηδ(e) in (2.2) is continuously differentiable across all real number fields. Further, ηδ(e) converges to η(e): η(e) is integrable on Iϵ=[ecϵ,ec+ϵ]. By the Lemma 1, for each xIϵ=[ecϵ,ec+ϵ], there is RJϵ(xy)dy=1, and for any ϵ>0, it is easily available that

    |ηδ(x)η(x)|=|Rη(y)Jϵ(xy)dyRη(x)Jϵ(xy)dy|R|η(y)η(x)|Jϵ(xy)dyCec+ϵecϵ|η(y)η(x)|dy=Cececϵ|ηSη(x)|dy+ec+ϵec|ηLη(x)|dy2C(ηLηS)ϵ, (2.5)

    where C=max|Jϵ(xy)|, and ηS,ηL are the minimum and maximum values of η(e). Thus, it can be concluded that limϵ0ηδ(x)=η(x).

    Remark: This provides us with a theoretical basis for a stability proof by replacing the step-function resistivity η(e) in equation system (1.1) with the smoothed resistivity ηδ(e) (continuous, differentiable).

    Lemma 2. (Young's inequality) If p>1,q>1, such that 1p+1q=1, then a,b0, the following inequality holds:

    abapp+bqq,

    and specifically, when a=εu,b=v2ε, Young's inequality can be expressed as

    uvεu2+14εv2. (2.6)

    Lemma 3. (Continuous Gronwall' inequality) Let g(t) and h(t) be non negative integrable functions, and satisfy f(t)f(t)g(t)+h(t). The following inequality holds:

    f(t)et0g(s)ds(f(0)+t0h(s)ds).

    Lemma 4. (Discrete Gronwall' inequality)[15] Let {fn}, {gn}, and {hn} be sequences of non-negative functions satisfying, fn+1fnΔtfn+1gn+1+hn+1, for α>1, such that

    Δtmax1nNgnα1α,

    where Δt>0. Then, the following inequality holds:

    fnCe3τmax1nNgn(f0+nk=0hkΔt), (2.7)

    where C and τ are constants that depend on the initial conditions.

    Lemma 5. (Abel's identity) Let {an} and {bn} be sequences of real or complex functions. If Qn=ni=1bi, the following identity holds:

    S=ni=1aibi=Qnann1i=1Qi(ai+1ai). (2.8)

    Lemma 6. (Embedding inequality)

    w(,s)2 (2.9)

    derived from the Poincaré inequality, w(\cdot, t) \in H_0^1(0, l) . Then, the inequality \|w(\cdot, t)\|_{2} \lesssim \|w_x(\cdot, t)\|_{2} holds. Substituting this inequality into (2.9) yields \|w(\cdot, t)\|_{\infty}^2 \lesssim \|w_x(\cdot, t)\|_{2}^2 .

    Lemma 7. (Discrete embedding inequality) (space direction)

    \begin{align} &||w_{h}^{k}||_{\infty}^{2}\lesssim\varepsilon \|\delta w_{h}^{k}\|_{2}^{2}+\frac{1}{\varepsilon}\| w_{h}^{k}\|_{2}^{2}, \end{align} (2.10)

    and similar to Lemma 6, it is easy to derive \|w_{h}^{k}(\cdot, t)\|_{\infty}^2 \lesssim \|\delta w{_{h}^{k}}(\cdot, t)\|_{2}^2 .

    Remark: The conclusions of Lemmas 6 and 7 hold only in one dimension.

    Lemma 8. (Discrete embedding inequality) (time direction)

    \begin{equation} \begin{aligned} &||w_{h}^{k}||_{2}^{2}\leq\sum\limits_{m = 1}^{k}(\varepsilon\|\Delta_\tau w_{h}^{m}\|_2^2+\frac{1}{2\varepsilon}\|w_{h}^{m}\|^2)+\|w_{h}^{0}\|_2^{2}. \end{aligned} \end{equation} (2.11)

    This section proves that the equation is stable with initial values. Now, we will transform the non-zero boundary value problem into a non-zero initial value problem.

    \begin{equation} \begin{cases} \dfrac{\partial }{{\partial t}}B(x,t) = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{\eta_\epsilon (e)}}{{{\mu _0}}}\dfrac{\partial }{{\partial x}}B(x,t)} \right),\\ B(0,t) = 0.2, \quad B(0.5,t) = 0, t\in (0,1],\\ B(x,0) = 0, x\in (0,0.5]. \end{cases} \end{equation} (3.1)

    Let B({x}, t) = u({x}, t)+v({x}, t) , and v({x}, t) satisfies the boundary conditions in (3.1), that is,

    v({x},t)|_{x = 0} = 0.2,\qquad v({x},t)|_{x = 0.5} = 0.

    Construct auxiliary functions v({x}, t) = 0.2-\dfrac{2}{5}{x} , x\in [0, 0.5] , based on boundary conditions. Then, the equation satisfying the definite solution condition in (3.1) with respect to u({x}, t) is

    \begin{equation} \begin{cases} \dfrac{\partial }{{\partial t}}u(x,t) = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{\eta_\epsilon (e)}}{{{\mu _0}}}\dfrac{\partial }{{\partial x}}u(x,t)} \right), \\ u({x},0) = -(0.2-\dfrac{2}{5}{x}), \quad {x}\in (0,0.5],\\ u({x},t)|_{x = 0} = 0, u({x},t)|_{x = 0.5} = 0, \quad {t}\in (0,1]. \end{cases} \end{equation} (3.2)

    Remark: The equation to be proved below indicates the stability with respect to initial values, which also implies the stability of the original equation with respect to boundary values.

    Consider the one-dimensional magnetic diffusion equation with Dirichlet boundary as follows:

    \begin{equation} \begin{cases} \dfrac{\partial }{{\partial t}}B(x,t) = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{\eta (e(B))}}{{{\mu _0}}}\dfrac{\partial }{{\partial x}}B(x,t)} \right),\\ B(0,t) = B(l,t) = 0, t\in (0,T],\\ B(x,0) = \varphi,{x}\in (0,l], \end{cases} \end{equation} (3.3)
    \begin{equation} \begin{cases} \dfrac{\partial }{{\partial t}}\widetilde{B}(x,t) = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{{\eta} (e(\widetilde{B}))}}{{{\mu _0}}}\dfrac{\partial }{{\partial x}}\widetilde{B}(x,t)} \right),\\ \widetilde{B}(0,t) = \widetilde{B}(l,t) = 0, t\in (0,T],\\ \widetilde{B}(x,0) = \widetilde{\varphi},{x}\in (0,l], \end{cases} \end{equation} (3.4)

    where, B and \widetilde{B} are the magnetic field, and e and \widetilde{e} are the internal energy density ( e = e(B), \; \widetilde{e} = e(\widetilde{B}) ).

    The solutions of Eqs (3.3) and (3.4) belong to L^{\infty}(0, T;H_0^1(0, l))\cap L^{2}(0, T;H^2(0, l)) , and the following is an inequality for energy estimation:

    \begin{equation} \sup\limits_{0\leq t \leq T}\|B_x(\cdot, t)\|_2^2 + \displaystyle {\int}_0^{T} \|B_{xx}(\cdot,t)\|_2^2 dt \leq C\|B_x(\cdot,0)\|_2^2. \end{equation} (3.5)

    On the premise of not causing misunderstandings, for the convenience of labeling and calculation, in this section, we still use \eta(e) to represent the step-function resistivity after polishing. Let w(x, t) = B(x, t)-\widetilde{B}(x, t) , and based on the differentiability of the smoothed resistivity \eta(e) , it can be assumed that the derivatives of \eta and e satisfy the following relationship:

    \begin{equation} |\eta_x+\eta_e|\leq c_1, \quad e_B\leq c_2. \end{equation} (3.6)

    Remark: The c_1 in (3.6) depends on the value of \epsilon in (2.3).

    Subtract the first equation in (3.3) from the first equation in (3.4) to obtain

    \begin{align} B_{t}-\widetilde{B}_{t} = \frac{1}{\mu_{0}}[\eta(e(B))_x B_{x}-\eta(e(\widetilde{B}))_x\widetilde{B}_{x}+\eta(e(B))B_{xx}-{\eta(e(\widetilde{B}))}\widetilde{B}_{xx}]. \end{align} (3.7)

    The above equation can be changed to

    \begin{align} \mu_{0}w_t = \eta(e(B))_xw_x+\widetilde{B}_x(\eta({e(B)})_x-\eta(e(\widetilde{B}))_x)+\eta(e(B))w_{xx}+\widetilde{B}_{xx}(\eta(e(B))-\eta(e(\widetilde{B}))). \end{align} (3.8)

    According to the Lagrange mean value theorem, \eta(e(B))-\eta(e(\widetilde{B})) in (3.8) can be resolved as

    \begin{align} &\eta(e(B))-\eta(e(\widetilde{B})) = \eta_e(\zeta)(e(B)-e(\widetilde{B})) = \eta_e(\zeta)e^\prime{(\xi)}(B-\widetilde{B}) = \eta_e(\zeta)e^\prime{(\xi)}w, \end{align} (3.9)

    where, \eta_e(\zeta) represents the first derivative of \eta with respect to e , \zeta is the value between e(B) and e(\widetilde{B}) , e^\prime{(\xi)} represents the first derivative of e with respect to B and \widetilde{B} , and \xi is the value between B and \widetilde{B} .

    Substituting (3.9) into (3.8) yields

    \begin{align} \mu_{0}w_t = &\eta(e(B))_xw_x+\widetilde{B}_x(\eta({e(B)})_x-\eta(e(\widetilde{B}))_x)+\eta(e(B))w_{xx}+\widetilde{B}_{xx}\eta_e(\zeta)e^\prime{(\xi)}w. \end{align} (3.10)

    Multiply w_{xx} on both sides of (3.10) and integrate on x\in(0, l) to obtain

    \begin{align} &\mu_0\displaystyle {\int}_0^{l}w_tw_{xx}dx-\displaystyle {\int}_0^{l}\eta(e(B)) w_{xx}^2dx \\ = &\displaystyle {\int}_0^{l}\eta (e(B))_x w_xw_{xx}dx+\displaystyle {\int}_{0}^{l}\widetilde{B}_x(\eta({e(B)})_x-\eta(e(\widetilde{B}))_x)w_{xx}dx+\displaystyle {\int}_{0}^{l}\widetilde{B}_{xx}\eta_e(\zeta)e^\prime{(\xi)}ww_{xx}dx. \end{align} (3.11)

    The first term at the left end of the above equation can be written by the partial integration method as follows:

    \begin{equation} \displaystyle {\int}_0^l w_tw_{xx}dx = w_{t}w_{x}|_0^{l}-\displaystyle {\int}_{0}^{l}w_{tx}w_{x}dx = -\frac{1}{2}\displaystyle {\int}_{0}^{l}\frac{d}{dt}w^2_{x}dx = -\frac{1}{2}\frac{d}{dt}\|w_{x} \|_2^2. \end{equation} (3.12)

    By combining (1.2) \eta(e)\geq \eta_S > 0 with (3.12), the left end of (3.11) can be simplified as

    \begin{align} \mu_0\displaystyle {\int}_0^{l}w_tw_{xx}dx-\displaystyle {\int}_0^{l}\eta(e(B)) w_{xx}^2dx &\leq-\frac{\mu_0}{2}\frac{d}{dt}\|w_{x} \|_2^2- \eta_S\displaystyle {\int}_0^l w^2_{xx} dx \\ & = -\frac{\mu_0}{2}\frac{d}{dt}\|w_{x} \|_2^2- \eta_S\| w^2_{xx}\|_2^2, \end{align}

    that is,

    \begin{align} \frac{\mu_0}{2}\frac{d}{dt}\|w_{x} \|_2^2+ \eta_{S}\| w^2_{xx}\|_2^2\leq -(\mu_0\displaystyle {\int}_0^{l}w_tw_{xx}dx-\displaystyle {\int}_0^{l}\eta(e(B)) w_{xx}^2dx). \end{align} (3.13)

    Take absolute values on both sides of (3.13) and obtain from (3.11)

    \begin{align} &\frac{\mu_0}{2}\frac{d}{dt}\|w_{x} \|_2^2+ \eta_{S}\| w^2_{xx}\|_2^2\\ \leq &|\mu_0\displaystyle {\int}_0^{l}w_tw_{xx}dx-\displaystyle {\int}_0^{l}\eta(e(B)) w_{xx}^2dx|\\ \leq&\displaystyle {\int}_0^{l}|\eta (e(B))_x w_xw_{xx}|dx+\displaystyle {\int}_{0}^{l}|\widetilde{B}_x(\eta({e(B)})_x-\eta(e(\widetilde{B}))_x)w_{xx}|dx+\displaystyle {\int}_{0}^{l}|\widetilde{B}_{xx}\eta_e(\zeta)e^\prime{(\xi)}ww_{xx}|dx. \end{align} (3.14)

    On the basis of the assumption (3.6), (3.14) can be resolved as

    \begin{align} &\frac{\mu_0}{2}\frac{d}{dt}\|w_{x} \|_2^2+\eta_{S}\|w_{xx} \|_2^2 \\ \leq&c_1\displaystyle {\int}_0^{l}| w_xw_{xx}|dx+ 2c_1\displaystyle {\int}_{0}^{l}|\widetilde{B}_{x}w_{xx}|dx+c_1c_2\displaystyle {\int}_{0}^{l}|\widetilde{B}_{xx}ww_{xx}|dx, \end{align} (3.15)

    and according to the Lemma 2 (Young's inequality), (3.15) can be transformed into

    \begin{align} &\frac{\mu_0}{2}\frac{d}{dt}\|w_{x} \|_2^2+\eta_{S}\|w_{xx} \|_2^2 \\ \leq & c_1\displaystyle {\int}_0^l\left( \varepsilon_1|{w_{xx}}|^2 +\frac{1}{4\varepsilon_1} |{w_x}|^2\right)dx+ 2c_1\displaystyle {\int}_{0}^{l}\left( \varepsilon_2|{w_{xx}}|^2 + \frac{1}{4\varepsilon_2} |\widetilde{B}_x|^2\right)dx \\ +&c_1c_2\displaystyle {\int}_{0}^{l}\left( \varepsilon_3|{w}_{xx}|^2 +\frac{1}{4\varepsilon_3} |{w}|^2|\widetilde{B}_{xx}|^2\right)dx \\ \leq & c_3\|{w_{xx}}\|_2^2+ c_4\|{w_{x}}\|_2^2+c_5\|\widetilde{B}_x\|_2^2dx+c_6\displaystyle {\int}_{0}^{l}|w|^2|\widetilde{B}_{xx}|^2dx, \end{align} (3.16)

    where c_3 = c_1\varepsilon_1+2c_1\varepsilon_2+c_1c_2\varepsilon_3 .

    By the Lemma 6 (embedding inequality)

    \begin{align} c_6\displaystyle {\int}_{0}^{l}|w|^2|\widetilde{B}_{xx}|^2dx\leq c_6 \sup\limits_{0\leq x\leq l}|w|^2\|\widetilde{B}_{xx}\|_2^2 \leq c_{6} \|w\|_\infty^2\|\widetilde{B}_{xx}\|_2^2 \leq c_{7} \|w_x\|_2^2\|\widetilde{B}_{xx}\|_2^2. \end{align} (3.17)

    Remark: The conclusion of (3.17) only holds for one-dimensional cases.

    Substitute (3.17) into (3.16), and from the energy estimation inequality (3.5), obtain

    \begin{align} \frac{\mu_0}{2}\frac{d}{dt}\|w_{x} \|_2^2+\eta_{S}\|w_{xx} \|_2^2\leq & c_3\|{w_{xx}}\|_2^2+ \|{w_{x}}\|_2^2 (c_4+c_7\|\widetilde{B}_{xx}\|_2^2)+c_5\|\widetilde{B}_x\|_2^2 \\ \leq& c_3\|{w_{xx}}\|_2^2+ c_8\|{w_{x}}\|_2^2 (1+\|\widetilde{B}_{xx}\|_2^2)+c_5\sup\limits_{0\leq t \leq T}\|\widetilde{B}_x\|_2^2 \\ \leq & c_3\|{w_{xx}}\|_2^2+ c_8\|{w_{x}}\|_2^2 (1+\|\widetilde{B}_{xx}\|_2^2)+c_9, \end{align} (3.18)

    where c_9 = c_5C\|B_x(\cdot, 0)\|_2^2 .

    According to (3.18)

    \begin{align} \eta_{S}\|w_{xx} \|_2^2\leq c_3\|{w_{xx}}\|_2^2+ c_8\|{w_{x}}\|_2^2 (1+\|\widetilde{B}_{xx}\|_2^2)+c_9, \end{align} (3.19)

    so

    \begin{equation} \begin{aligned} c_{3}\|w_{xx} \|_2^2\leq \frac{c_{3}c_8}{\eta_S-c_{3}} \|{w_x}\|_2^2(1+\|\widetilde{B}_{xx}\|_2^2)+\frac{c_{3}c_9}{\eta_S-c_{3}}. \end{aligned} \end{equation} (3.20)

    Remark: c_3 = c_1\varepsilon_1+2c_1\varepsilon_2+c_1c_2\varepsilon_3 can ensure that \eta_S-c_{3} > 0 .

    Substitute (3.20) into the right-hand end of (3.18), and organize it to obtain

    \begin{equation} \begin{aligned} \frac{d}{dt}\|w_{x} \|_2^2+ \frac{2\eta_{S}}{\mu_0}\|w_{xx} \|_2^2 \leq c_{10} \|{w_x}\|_2^2(1+\|\widetilde{B}_{xx}\|_2^2)+c_{11}. \end{aligned} \end{equation} (3.21)

    In (3.21), on the one hand

    \begin{equation} \begin{aligned} \frac{d}{dt}\|w_{x} \|_2^2 \leq c_{10} \|{w_x}\|_2^2(1+\|\widetilde{B}_{xx}\|_2^2)+c_{11}. \end{aligned} \end{equation} (3.22)

    In (3.22), take f^\prime(t) = \dfrac{d}{dt}\|w_{x} \|_2^2 , f(t) = \|w_{x} \|_2^2 , g(t) = c_{10}(1+\|\widetilde{B}_{xx}\|_2^2) , h(t) = c_{11} , by using the Lemma 3 (continuous Gronwall' inequality), it can be concluded that

    \begin{equation} \begin{aligned} \|w_{x}(\cdot,t) \|_2^2 \leq e^{c_{10} {\int}_{0}^T(1+\|\widetilde{B}_{xx}\|_2^2)dt} \|w_{x}(\cdot,0) \|_2^2 = c_{12} \|\varphi_x-\widetilde{\varphi}_x \|_2^2+c_{13}. \end{aligned} \end{equation} (3.23)

    On the other hand, as can be seen from (3.21).

    \begin{equation} \begin{aligned} \frac{2\eta_{S}}{\mu_0}\|w_{xx}(\cdot,t) \|_2^2 \leq c_{10} \|{w_x}\|_2^2(1+\|\widetilde{B}_{xx}\|_2^2)+c_{11}. \end{aligned} \end{equation} (3.24)

    Integrate the two sides of Eq (3.24) in the time direction on [0, T] and obtain from (3.23)

    \begin{equation} \begin{aligned} \frac{2\eta_{S}}{\mu_0} \displaystyle {\int}_{0}^T\|w_{xx}(\cdot,t) \|_2^2 ds \leq \displaystyle {\int}_{0}^T c_{10}\|{w_x}\|^2_2(1+\|\widetilde{B}_{xx}\|_2^2)ds + \displaystyle {\int}_{0}^T c_{11}dt\leq c_{14} \|\varphi_x-\widetilde{\varphi}_x \|_2^2+c_{11}T. \end{aligned} \end{equation} (3.25)

    From (3.23) and (3.25), it can be concluded that

    \begin{align} \|w_x(x,t) \|_2^2+a\displaystyle {\int}_{0}^t\|w_{xx}(x,t) \|_2^2 ds \leq &C \|\varphi_x-\widetilde{\varphi}_x \|_2^2+c. \end{align} (3.26)

    Thus, the stability of the magnetic diffusion equation is proven.

    The following proves the stability of the fully implicit scheme corresponding to Eq (3.3) or (3.4):

    \begin{equation} \begin{cases} \mu_{0}\Delta_\tau B_{j}^{n+1} = \eta(e(B_{j}^{n+1}))\delta^{2}B_{j}^{n+1}+\delta\eta(e(B_{j}^{n+1}))\delta B_{j}^{n+1},\\ B_{0}^{n} = B_{J}^{n} = 0,\\ B_{j}^{0} = \varphi(x_{j}), \end{cases} \end{equation} (3.27)

    taking

    \begin{equation} \begin{cases} \mu_{0}\Delta_\tau {\widetilde{B}}_{j}^{n+1} = \eta({e}( {\widetilde{B}}_{j}^{n+1}))\delta^{2} {\widetilde{B}}_{j}^{n+1}+\delta\eta({e}( {\widetilde{B}}_{j}^{n+1}))\delta {\widetilde{B}}_{j}^{n+1},\\ {\widetilde{B}}_{0}^{n} = {\widetilde{B}}_{J}^{n} = 0,\\ {\widetilde{B}}_{j}^{0} = \widetilde{\varphi}(x_{j}). \end{cases} \end{equation} (3.28)

    The energy estimation in the discrete scheme is

    \begin{equation} \sup\limits_{0\leq n \leq N}\|\delta B_j^{n+1}\|_2^2 + \sum\limits_{n = 0}^{N} \|\delta^2 B_j^{n+1}\|_2^2 dt \leq C\|\delta B_j^0\|_2^2. \end{equation} (3.29)

    Let w_j^{n+1} = B_j^{n+1}- {\widetilde{B}}_j^{n+1} , and subtract the first equation in (3.27) from the first equation in (3.28) to obtain:

    \begin{equation} \begin{aligned} &\mu_{0}\Delta_{\tau}\left(B_{j}^{n+1}-{\widetilde{B}}_{j}^{n+1}\right) = \left(\eta(e(B_{j}^{n+1}))\delta^{2}B_{j}^{n+1}-\eta({e}( {\widetilde{B}}_{j}^{n+1}))\delta^{2} {\widetilde{B}}_{j}^{n+1}\right)\nonumber\\ +&\delta\eta(e(B_{j}^{n+1}))\delta B_{j}^{n+1}-\delta\eta({e}( {\widetilde{B}}_{j}^{n+1}))\delta {\widetilde{B}}_{j}^{n+1}.\nonumber\\ \end{aligned} \end{equation}

    After applying the Lagrange mean value theorem to the above equation, the following is obtained:

    \begin{equation} \begin{aligned} &\mu_{0}\Delta_{\tau}w_j^{n+1}-\left(\eta(e(B_{j}^{n+1}))\delta^{2}w_{j}^{n+1}+\delta^{2}{\widetilde{B}_{j}^{n+1}}\delta \eta(\zeta_{j}^{n+1}) \delta e(\xi_{j}^{n+1}) w_{j}^{n+1}\right)\\ = &\delta\eta(e(B_{j}^{n+1}))\delta w_{j}^{n+1} +\delta {\widetilde{B}_{j}^{n+1}}(\delta\eta(e(B_{j}^{n+1}))-\delta\eta({e}({\widetilde{B}_{j}^{n+1}}))), \end{aligned} \end{equation} (3.30)

    where \delta\eta(\zeta_{j}^{n+1}) represents the first derivative of \eta with respect to e , \zeta_{j}^{n+1} is the value between e(B_{j}^{n+1}) and e(\widetilde{B}_{j}^{n+1}) , \delta e{(\xi_{j}^{n+1})} represents the first derivative of e with respect to B_{j}^{n+1} or \widetilde{B}_{j}^{n+1} , and \xi_{j}^{n+1} is the value between B_{j}^{n+1} and \widetilde{B}_{j}^{n+1} .

    Multiply \delta^{2}w_j^{n+1} on both sides of (3.30), and sum j = 1, 2, \ldots, J-1 to obtain

    \begin{equation} \begin{aligned} &\mu_{0}\sum\limits_{j = 1}^{J-1}\delta^{2}w_j^{n+1}\Delta_{\tau}w_j^{n+1}-\sum\limits_{j = 1}^{J-1}\eta(e(B_{j}^{n+1}))(\delta^{2}w_j^{n+1})^2\\ = &\sum\limits_{j = 1}^{J-1}\delta^{2}{\widetilde{B}_{j}^{n+1}}\delta \eta(\zeta_{j}^{n+1}) \delta e(\xi_{j}^{n+1}) w_{j}^{n+1}\delta^2w_j^{n+1}+\sum\limits_{j = 1}^{J-1}\delta\eta(e(B_{j}^{n+1}))\delta w_{j}^{n+1}\delta^2w_j^{n+1}\\ +&\sum\limits_{j = 1}^{J-1}\delta {\widetilde{B}_{j}^{n+1}}(\delta\eta(e(B_{j}^{n+1}))-\delta\eta({e}({\widetilde{B}_{j}^{n+1}})))\delta^2w_j^{n+1}. \end{aligned} \end{equation} (3.31)

    We can consider the first term in equation (3.31)

    \sum\limits_{j = 1}^{J-1}\delta^2w_j^{n+1}\Delta_\tau w_j^{n+1}.

    Let

    \begin{equation} \begin{aligned} &a_{j} = \frac{w_{j}^{n+1}-w_{j-1}^{n+1}}{h},\\ &Q_{j} = \frac{w_{j}^{n+1}-w_{j}^{n}}{\Delta t},\\ &b_{j} = \frac{w_{j}^{n+1}-w_{j}^{n}}{\Delta t}-\frac{w_{j-1}^{n+1}-w_{j-1}^{n}}{\Delta t}. \end{aligned} \end{equation} (3.32)

    Using Lemma 5 (Abel's identity), it can be obtained that

    \begin{align} \sum\limits_{j = 1}^{J-1}\delta^2w_j^{n+1}\Delta_\tau w_j^{n+1} = &\sum\limits_{j = 1}^{J-1}\frac{w_{j}^{n+1}-w_{j}^{n}}{\Delta t}\frac{(a_{j+1}-a_j)}{h}\\ = &\frac{1}{h}\sum\limits_{j = 1}^{J-1}Q_j(a_{j+1}-a_j)\\ = &\frac{1}{h}(a_JQ_{J}-\sum\limits_{j = 1}^{J}a_jb_j) \\ = &-\frac{1}{h}\sum\limits_{j = 1}^{J}\left(\frac{w_{j}^{n+1}-w_{j-1}^{n+1}}{h}\right)\left(\frac{w_{j}^{n+1}-w_{j}^{n}}{\Delta t}-\frac{w_{j-1}^{n+1}-w_{j-1}^{n}}{\Delta t}\right)\\ = &-\frac{1}{\Delta t}\sum\limits_{i = j}^{J}\left(\frac{w_{j}^{n+1}-w_{j-1}^{n+1}}{h}\right)\left(\frac{w_{j}^{n+1}-w_{j-1}^{n+1}}{h}-\frac{w_{j}^{n}-w_{j-1}^{n}}{h}\right). \end{align} (3.33)

    According to the inequality

    \begin{equation} \begin{aligned} &u(u-v) = \frac{1}{2}\Big(u^2-u^2+(u-v)^2\Big)\geq\frac12\Bigl(u^2-v^2\Bigr). \end{aligned} \end{equation} (3.34)

    Let u = \frac{w_{j}^{n+1}-w_{j-1}^{n+1}}{h} , v = \frac{w_{j}^{n}-w_{j-1}^{n}}{h} , and from (3.34), (3.33) can be changed to

    \begin{align} &\frac{1}{\Delta t}\sum\limits_{j = 1}^{J}\left(\frac{w_{j}^{n+1}-w_{j-1}^{n+1}}{h}\right)\left(\frac{w_{j}^{n+1}-w_{j-1}^{n+1}}{h}-\frac{w_{j}^{n}-w_{j-1}^{n}}{h}\right) \\ \geq &\frac{1}{2}\frac{1}{\Delta t}\sum\limits_{j = 1}^{J}\left [(\frac{w_{j}^{n+1}-w_{j-1}^{n+1}}{h})^{2} -(\frac{w_{j}^{n}-w_{j-1}^{n}}{h})^{2} \right ] \\ = &\frac{1}{2\Delta t}(||\delta w_{h}^{n+1}||_{2}^{2}-||\delta w_{h}^{n}||_{2}^{2}), \end{align} (3.35)

    that is

    \begin{align} \mu_{0}\sum\limits_{j = 1}^{J-1}\delta^{2}w_j^{n+1}\Delta_{\tau}w_j^{n+1} \leq -\frac{\mu_{0}}{2\Delta t}(||\delta w_{h}^{n+1}||_{2}^{2}-||\delta w_{h}^{n}||_{2}^{2}). \end{align} (3.36)

    From \eta > \eta_S and substituting (3.36) into (3.31), it can be concluded that

    \begin{align} &\frac{\mu_0}{2\Delta t}\left(\left\|\delta w_h^{n+1}\right\|_2^2-\left\|\delta w_h^n\right\|_2^2\right)+\eta_S\left\|\delta^2w_h^{n+1}\right\|_2^2 \\ = &\sum\limits_{j = 1}^{J-1}|\delta^{2}{\widetilde{B}_{j}^{n+1}}\delta \eta(\zeta_{j}^{n+1}) \delta e(\xi_{j}^{n+1}) w_{j}^{n+1}\delta^2w_j^{n+1}|+\sum\limits_{j = 1}^{J-1}|\delta\eta(e(B_{j}^{n+1}))\delta w_{j}^{n+1}\delta^2w_j^{n+1}|\\ +&\sum\limits_{j = 1}^{J-1}|\delta {\widetilde{B}_{j}^{n+1}}(\delta\eta(e(B_{j}^{n+1}))-\delta\eta({e}({\widetilde{B}_{j}^{n+1}})))\delta^2w_j^{n+1}|. \end{align} (3.37)

    By the assumption (3.6)

    \begin{align} &\frac{\mu_0}{2\Delta t}\left(\left\|\delta w_h^{n+1}\right\|_2^2-\left\|\delta w_h^n\right\|_2^2\right)+\eta_S\left\|\delta^2w_h^{n+1}\right\|_2^2 \\ \leq&c_1c_2\sum\limits_{j = 1}^{J-1}|\delta^{2}{\widetilde{B}_{j}^{n+1}} w_j^{n+1}\delta^2w_j^{n+1}|+c_1\sum\limits_{j = 1}^{J-1}|\delta w_{j}^{n+1}\delta^2w_j^{n+1}|+2c_1\sum\limits_{j = 1}^{J-1}|\delta {\widetilde{B}_{j}^{n+1}}\delta^2w_j^{n+1}|. \end{align} (3.38)

    Applying Lemma 2 (Young's inequality) to Eq (3.38) yields

    \begin{align} &\frac{\mu_0}{2\Delta t}\left(\left\|\delta w_h^{n+1}\right\|_2^2-\left\|\delta w_h^n\right\|_2^2\right)+\eta_S\left\|\delta^2w_h^{n+1}\right\|_2^2 \\\ \leq&c_1c_2\left({\varepsilon_1 }\|\delta^2w_h^{n+1}\|_2^2+\frac{1}{4\varepsilon_1}{\|\delta^2\widetilde{B}_h^{n+1}\|_2^2\sup\limits_{0\leq h\leq J-1}|w_h^{n+1}|_2^2}\right)+c_1\left({ \varepsilon_2 }\|\delta^2w_h^{n+1}\|_2^2 +\frac{1}{4\varepsilon_2}\|\delta w_h^{n+1}\|_2^2\right)\\ +&2c_1\left(\varepsilon_3\|\delta^2w_h^{n+1}\|_2^2+\frac{1}{4\varepsilon_3}\|\delta \widetilde{B}_h^{n+1}\|_2^2\right). \end{align} (3.39)

    From the energy estimation inequality (3.29) and Lemma 7 (discrete embedding inequality, space direction), (3.39) can be expressed as

    \begin{align} &\frac{1}{\Delta t}\left(\left\|\delta w_h^{n+1}\right\|_2^2-\left\|\delta w_h^n\right\|_2^2\right)+\frac{2 \eta_S}{\mu_0}\left\|\delta^2w_h^{n+1}\right\|_2^2 \\ \leq & c_4\|\delta^2w_h^{n+1}\|_2^2+c_5 \|w_h^{n+1}(\cdot,t)\|_\infty^2\|\delta^2\widetilde{B}_h^{n+1}\|_2^2+c_6\|\delta w_h^{n+1}\|_2^2+c_7\sup\limits_{0\leq n\leq N}\|\delta B\widetilde{}_h^{n+1}\|_2^2 \\ \leq & c_4\|\delta^2w_h^{n+1}\|_2^2+c_5 \|w_h^{n+1}(\cdot,t)\|_\infty^2\|\delta^2\widetilde{B}_h^{n+1}\|_2^2 +c_6\|\delta w_h^{n+1}\|_2^2+c_7\sup\limits_{0\leq n\leq N}\|\delta \widetilde{B}_h^{n+1}\|_2^2. \end{align} (3.40)

    Let a = \frac{2 \eta_S}{\mu_0} , and according to (3.40)

    \begin{align} a\left\|\delta^2w_h^{n+1}\right\|_2^2\leq c_4\|\delta^2w_h^{n+1}\|_2^2+c_5 \|w_h^{n+1}(\cdot,t)\|_\infty^2\|\delta^2\widetilde{B}_h^{n+1}\|_2^2 +c_6\|\delta w_h^{n+1}\|_2^2+c_7\sup\limits_{0\leq n\leq N}\|\delta \widetilde{B}_h^{n+1}\|_2^2, \end{align} (3.41)

    so

    \begin{align} c_4\left\|\delta^2w_h^{n+1}\right\|_2^2\leq \frac{c_4c_5}{a-c_4}\|w_h^{n+1}(\cdot,t)\|_\infty^2\|\delta^2 \widetilde{B}_h^{n+1}\|_2^2+\frac{c_4c_6}{a-c_4}\|\delta w_h^{n+1}\|_2^2+\frac{c_4c_7}{a-c_4}\sup\limits_{0\leq n\leq N}\|\delta \widetilde{B}_h^{n+1}\|_2^2. \end{align} (3.42)

    Substituting (3.42) into the right-hand side of (3.40) yields

    \begin{align} \frac{1}{\Delta t}\left(\left\|\delta w_h^{n+1}\right\|_2^2-\left\|\delta w_h^n\right\|_2^2\right)+a\left\|\delta^2w_h^{n+1}\right\|_2^2\leq c_9\|\delta w_h^{n+1}\|_2^2 + c_{10}\|w_h^{n+1}(\cdot,t)\|_\infty^2\|\delta^2\widetilde{B}_h^{n+1}\|_2^2+c_8. \end{align} (3.43)

    Summing the two sides of (3.43) with respect to n , from inequality (3.29), it can be concluded that:

    \begin{align} &\left\|\delta w_h^{n+1}\right\|_2^2+a\sum\limits_{k = 0}^{n}\left\|\delta^2w_h^{k+1}\right\|_2^2\Delta t\\\ \leq& c_{11} \sup\limits_{1\leq k\leq {n}}\|w_h^{k+1}\|_\infty^2 \sum\limits_{k = 0}^{n}\|\delta^2\widetilde{B}_h^{n+1}\|_2^2\Delta t +c_9\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2 \Delta t+\|\delta w_h^{0}\|_2^2 +c_8\\ \leq& c_{12} \sup\limits_{1\leq k\leq {n}}\|w_h^{k+1}\|_\infty^2 +c_9\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2 \Delta t+\|\delta w_h^{0}\|_2^2 + c_8. \end{align} (3.44)

    According to Lemma 7, the right-hand side of the (3.44) inequality can be written as

    \begin{align} &\left\|\delta w_h^{n+1}\right\|_2^2+a\sum\limits_{k = 0}^{n}\left\|\delta^2w_h^{n+1}\right\|_2^2\Delta t\\\ \leq& c_{12}\sup\limits_{1\leq k\leq {n}}(\varepsilon\|\delta w_h^{k+1}\|_2^2+\frac{1}{\varepsilon}\|w_h^{k+1}\|_2^2) +c_9\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2 \Delta t+\|\delta w_h^{0}\|_2^2 +c_8. \end{align} (3.45)

    From (3.45),

    \begin{align} \sup\limits_{1\leq k\leq {n}}\left\|\delta w_h^{k+1}\right\|_2^2 \leq c_{12}\sup\limits_{1\leq k\leq {n}}(\varepsilon\|\delta w_h^{k+1}\|_2^2+\frac{1}{\varepsilon}\|w_h^{k+1}\|_2^2) +c_9\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2 \Delta t+\|\delta w_h^{0}\|_2^2 +c_8, \end{align} (3.46)

    and then,

    \begin{align} & c_{12}\varepsilon\sup\limits_{1\leq k\leq {n}}\left\|\delta w_h^{n+1}\right\|_2^2\\ \leq &\sup\limits_{1\leq k\leq {n}}\frac{(c_{12})^2}{1-c_{12}\varepsilon}\|w_h^{k+1}\|_2^2 +\frac{c_9c_{12}\varepsilon}{1-c_{12}\varepsilon}\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2\Delta t+\frac{c_{12}\varepsilon}{1-c_{12}\varepsilon}\|\delta w_h^{0}\|_2^2+\frac{c_8c_{12}\varepsilon}{1-c_{12}\varepsilon}. \end{align} (3.47)

    Substituting (3.47) into the right-hand of (3.45) yields

    \begin{align} &\left\|\delta w_h^{n+1}\right\|_2^2+a\sum\limits_{k = 0}^{n}\left\|\delta^2w_h^{n+1}\right\|_2^2\Delta t\leq c_{13} \sup\limits_{1\leq k\leq {n}}\|w_h^{k+1}\|_2^2+c_{14}\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2\Delta t+c_{15}\|\delta w_h^{0}\|_2^2 + c_{16}. \end{align} (3.48)

    On the basis of Lemma 8 (discrete embedding inequality, time direction), \|w_h^{k+1}\|_2^2 on the right hand of (3.48) can be expressed as

    \begin{equation} \begin{aligned} \|w_{h}^{k+1}\|_{2}^{2}\leq\sum\limits_{m = 0}^{k+1}(\varepsilon\|\Delta_\tau w_{h}^{m}\|_2^2+\frac{1}{2\varepsilon}\|w_{h}^{m}\|^2)+\|w_{h}^{0}\|_2^{2}. \end{aligned} \end{equation} (3.49)

    Using the bootstrapping and fully utilizing the properties of the format itself, it can be concluded from (3.30) that

    \begin{equation} \begin{aligned}\nonumber \Delta_{\tau}w_j^{n+1} = &\frac{1}{\mu_0} \left(\eta(e(B_{j}^{n+1}))\delta^{2}w_{j}^{n+1}+\delta^{2}{\widetilde{B}_{j}^{n+1}}\delta \eta(\zeta_{j}^{n+1}) \delta e(\xi_{j}^{n+1}) w_{j}^{n+1}\right)\\ +&\frac{1}{\mu_0}\left(\delta\eta(e(B_{j}^{n+1}))\delta w_{j}^{n+1} +\delta {\widetilde{B}_{j}^{n+1}}(\delta\eta(e(B_{j}^{n+1}))-\delta\eta({e}({\widetilde{B}_{j}^{n+1}})))\right). \end{aligned} \end{equation}

    Substitute the above equation into (3.49), use the energy estimation inequality (3.29) and the assumption condition (3.6), and repeat the above steps to obtain

    \begin{align} \|w_{h}^{k}\|_{2}^{2}\leq&\sum\limits_{m = 0}^{k}\varepsilon(c_{15}\|\delta^2w_h^{m}\|_2^2+c_{16}\|\delta w_h^{m}\|_2^2+ c_{17}\| w_h^{m}\|_2^2 )+\frac{1}{2\varepsilon}\sum\limits_{m = 0}^{k}\|w_{h}^{m}\|_2^2+\|w_{h}^{0}\|_2^{2}, \end{align} (3.50)

    that is,

    \begin{align} \|w_{h}^{k}\|_{2}^{2}\leq c_{18}\sum\limits_{m = 0}^{k}\|\delta^2w_h^{m}\|_2^2+c_{19}\sum\limits_{m = 0}^{k}\|\delta w_h^{m}\|_2^2+c_{20}\sum\limits_{m = 0}^{k}\| w_h^{m}\|_2^2+\|w_{h}^{0}\|_2^{2}. \end{align} (3.51)

    For the \|w_h^{m}\|_2^2 in the above equation, the embedding theorem is applied to obtain: \| w_h^{m}\|_2^2\leq\| w_h^{m}\|_\infty^2 \leq \|\delta w_h^{m}\|_2^2 . Thus(3.51) can be simplified as

    \begin{align} \|w_{h}^{k}\|_{2}^{2}\leq c_{18}\sum\limits_{m = 0}^{k}\|\delta^2w_h^{m}\|_2^2+c_{21}\sum\limits_{m = 0}^{k}\|\delta w_h^{m}\|_2^2+\|w_{h}^{0}\|_2^{2}. \end{align} (3.52)

    Substituting (3.52) into (3.48) yields

    \begin{align} &\left\|\delta w_h^{n+1}\right\|_2^2+a\sum\limits_{k = 0}^{n}\left\|\delta^2w_h^{k+1}\right\|_2^2\Delta t \\ \leq & c_{13}\sup\limits_{1\leq k\leq {n+1}}(c_{18}\sum\limits_{m = 0}^{k}\|\delta^2w_h^{m}\|_2^2+c_{21}\sum\limits_{m = 0}^{k}\|\delta w_h^{m}\|_2^2+\|w_{h}^{0}\|_2^{2})+ c_{14}\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2\Delta t+c_{15}\|\delta w_h^{0}\|_2^2+c_{16}. \end{align} (3.53)

    Similarly, by

    \begin{align} &a\sum\limits_{k = 0}^{n}\left\|\delta^2w_h^{k+1}\right\|_2^2\Delta t \\ \leq & c_{13}\sup\limits_{1\leq k\leq {n+1}}(c_{18}\sum\limits_{m = 0}^{k}\|\delta^2w_h^{m}\|_2^2+c_{21}\sum\limits_{m = 0}^{k}\|\delta w_h^{m}\|_2^2+\|w_{h}^{0}\|_2^{2})+ c_{14}\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2\Delta t+c_{15}\|\delta w_h^{0}\|_2^2, \end{align} (3.54)

    it can be inferred that

    \begin{align} &a\sup\limits_{1\leq k\leq {n+1}}\sum\limits_{k = 0}^{n}\left\|\delta^2w_h^{k+1}\right\|_2^2\Delta t \\ \leq & c_{13}\sup\limits_{1\leq k\leq {n+1}}(c_{18}\sum\limits_{m = 0}^{k}\|\delta^2w_h^{m}\|_2^2+c_{21}\sum\limits_{m = 0}^{k}\|\delta w_h^{m}\|_2^2+\|w_{h}^{0}\|_2^{2})+ c_{14}\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2\Delta t+c_{15}\|\delta w_h^{0}\|_2^2. \end{align} (3.55)

    Thereby it can be deduced that

    \begin{align} c_{13}c_{18}\sup\limits_{1\leq k\leq {n+1}}\sum\limits_{m = 0}^{k}\|\delta^2w_h^{m}\|_2^2 \leq c_{22}\sum\limits_{m = 0}^{k}(\|\delta w_h^{m}\|_2^2+\|w_{h}^{0}\|_2^{2})+ c_{23}\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2\Delta t+c_{24}\|\delta w_h^{0}\|_2^2. \end{align} (3.56)

    Substituting (3.56) into the right end of (3.53) yields

    \begin{align} &\left\|\delta w_h^{n+1}\right\|_2^2+a\sum\limits_{k = 0}^{n}\left\|\delta^2w_h^{k}\right\|_2^2\Delta t\leq c_{25}\sum\limits_{k = 0}^{n}\|\delta w_h^{k}\|_2^2\Delta t+c_{26}(\|w_{h}^{0}\|_2^{2}+\|\delta w_h^{0}\|_2^2). \end{align} (3.57)

    By Lemma 2.7 (discrete Gronwall inequality), we have

    \begin{align} \frac{f^{n}-f^{n-1}}{\Delta t} = \frac{\sum\nolimits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2\Delta t-\sum\nolimits_{k = 0}^{n-1}\|\delta w_h^{k+1}\|_2^2\Delta t}{\Delta t} = \|\delta w_h^{n+1}\|_2^{2}, \end{align} (3.58)

    and from (3.57),

    \begin{align} &\left\|\delta w_h^{n+1}\right\|_2^2\leq c_{25}\sum\limits_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2\Delta t+c_{26}(\|w_{h}^{0}\|_2^{2}+\|\delta w_h^{0}\|_2^2). \end{align} (3.59)

    Then, take f^n = \sum_{k = 0}^{n}\|\delta w_h^{k+1}\|_2^2\Delta t , g^{n+1} = c_{25} , h^{n+1} = c_{26}(\|w_{h}^{0}\|_2^{2}+\|\delta w_h^{0}\|_2^2) , and we can obtain

    \begin{align} &\sum\limits_{k = 0}^{n}\left\|\delta w_h^{k+1} \right\|_2^2\Delta t\leq c_{27}(\|w_{h}^{0}\|_2^{2}+\|\delta w_h^{0}\|_2^2). \end{align} (3.60)

    Substituting (3.60) into (3.57) yields

    \begin{align} &\left\|\delta w_h^{n+1}\right\|_2^2+a\sum\limits_{k = 0}^{n}\left\|\delta^2w_h^{k+1}\right\|_2^2\Delta t\leq C(\|w_{h}^{0}\|_2^{2}+\|\delta w_h^{0}\|_2^2). \end{align} (3.61)

    Thus the stability of the discrete scheme is demonstrated.

    Next, we will verify the correctness of the implicit finite volume discretization scheme for the magnetic diffusion equation with constant resistivity, and consider the following magnetic diffusion equation:

    \begin{align} \frac{\partial}{\partial t}B(x,t)-\frac{\partial}{\partial x}(\frac{\eta(e)}{\mu_{0}}\frac{\partial}{\partial x}B(x,t)) = 2t + \frac{2cos(x)\eta(e)}{\mu_0}. \end{align} (4.1)

    The solution interval is (x, t)\in[0, 0.5]\times[0, 1] . Take \mu_0 = 4\pi . The number of mesh segments is, respectively N = 40, 80,160 , and the number of nodes is, respectively, N_1 = 41, 81,161 . The resistivity \eta = 9.7\times10-3 . The length of the line segment L = 0.5 , the average length of the grid dx = L/N , T = 1 , and the time step dt = dx\ast dx . It is easy to know that the true solution to this problem is B(x, t) = 2cos(x)+t^2 . The error used in the experiment is L_2 , that is, Error_{L_2} = \sqrt{\frac{\Sigma_{n = 1}^{N_1}(B-B_{exact})^2}{N_1}} .

    Table 1.  Error order test (space).
    dt N Error_{L^2} Error ratio
    40 1.44E-04
    dx*dx 80 3.64E-05 3.97
    160 9.12E-06 3.99

     | Show Table
    DownLoad: CSV
    Figure 4.  Comparison of different space steps.
    Table 2.  Error Order test (time).
    N dt Error_{L^2} Error ratio
    40 0.01 9.20E-03
    40 0.005 4.60E-03 2.00
    40 0.0025 2.30E-03 2.00

     | Show Table
    DownLoad: CSV
    Figure 5.  Comparison of different time steps.

    Conclusions: From the above comparative experiments, it can be seen that when the grid size increases by 2 times with a fixed time scale, the error ratio between the experimental results and the true solution is close to 4. When the grid size is fixed, and the time scale increases by 2 times, the error ratio between the experimental results and the true solution is equal to 2, which conforms to the expected experimental errors of o(h^2) and o(t) , thus verifying the correctness of the implicit finite volume discretization scheme in this experiment.

    In this experiment, the true solution is denoted as B , and the perturbation solution is denoted as B_\varepsilon . B^{100} represents the true solution at time step dt = 0.01 , and B_\varepsilon^{100} represents the perturbation solution at time step dt = 0.01 . The error ratio still uses L_2 .

    Experiment (1): Step-function resistivity

    \begin{align} \left.\eta(e) = \eta(x,t) = \left\{\begin{array}{ll}\eta_S = 9.7\times10^{-5},&e\in[0,e_c],\\\eta_L = 9.7\times10^{-3},&e\in(e_c,+\infty).\end{array}\right.\right. \end{align}
    Table 3.  Error ratio of magnetic field under step resistivity.
    dt=0.01 dt=0.001 dt=0.0001
    \varepsilon \|B^{100}-B_{\varepsilon}^{100}\| ratio \|B^{1000}-B_{\varepsilon}^{1000}\| ratio \|B^{10000}-B_{\varepsilon}^{10000}\| ratio
    0.1 0.1779 0.2364 0.2409
    0.01 0.0191 9.31 0.0309 7.65 0.0328 7.34
    0.001 8.00E-04 23.87 0.0049 6.31 0.0032 10.25
    0.0001 8.02E-05 9.98 0.0015 3.27 1.77E-04 18.10

     | Show Table
    DownLoad: CSV
    Table 4.  Error ratio of internal energy density under step resistivity.
    dt=0.01 dt=0.001 dt=0.0001
    \varepsilon \|e^{100}-e_{\varepsilon}^{100}\| ratio \|e^{1000}-e_{\varepsilon}^{1000}\| ratio \|e^{10000}-e_{\varepsilon}^{10000}\| ratio
    0.1 1.96E-02 0.0224 0.0231
    0.01 6.60E-03 2.97 0.0039 5.74 0.0033 7.00
    0.001 2.10E-03 3.14 8.56E-04 4.55 6.36E-04 5.19
    0.0001 7.78E-06 269.95 2.69E-04 3.18 5.33E-05 11.93

     | Show Table
    DownLoad: CSV

    Conclusions: Under the same time step dt , when there is a small disturbance in the initial value, the error ratio changes significantly, indicating that the solution of the magnetic diffusion equation under step-function resistivity cannot be stable based on the initial value.

    Experiment (2): Constant resistivity \eta(e) = 9.7e-3 .

    Table 5.  Error ratio of magnetic field under constant resistivity \eta(e) = 9.7e-3 .
    dt=0.01 dt=0.001 dt=0.0001
    \varepsilon \|B^{100}-B_{\varepsilon}^{100}\| ratio \|B^{1000}-B_{\varepsilon}^{1000}\| ratio \|B^{10000}-B_{\varepsilon}^{10000}\| ratio
    0.1 0.0895 0.0895 0.0895
    0.01 0.009 9.94 0.009 9.94 0.009 9.94
    0.001 8.95E-04 10.05 8.95E-04 10.05 8.95E-04 10.05
    0.0001 8.95E-05 10.00 8.95E-05 10.00 8.95E-05 10.00

     | Show Table
    DownLoad: CSV
    Table 6.  Error ratio of internal energy density under constant resistivity.
    dt=0.01 dt=0.001 dt=0.0001
    \varepsilon \|e^{100}-e_{\varepsilon}^{100}\| ratio \|e^{1000}-e_{\varepsilon}^{1000}\| ratio \|e^{10000}-e_{\varepsilon}^{10000}\| ratio
    0.1 0.0186 0.0191 0.0197
    0.01 0.00185 10.05 0.002 9.55 0.002 9.85
    0.001 1.82E-04 10.16 1.9703E-04 10.15 2.0298E-04 9.85
    0.0001 1.82E-05 10.00 1.9708E-05 10.00 2.0303E-05 10.00

     | Show Table
    DownLoad: CSV

    Experiment (3): Linear resistivity \eta(e) = 9.7e-3 .

    \eta(e) = \frac{\eta_L-\eta_S}{2e_c}e+\eta_S,e\in[0,2e_c],

    where, e_c = 0.11084958 .

    Table 7.  Error ratio of magnetic field under linear resistivity \eta(e) = 9.7e-3 .
    dt=0.01 dt=0.001 dt=0.0001
    \varepsilon \|B^{100}-B_{\varepsilon}^{100}\| ratio \|B^{1000}-B_{\varepsilon}^{1000}\| ratio \|B^{10000}-B_{\varepsilon}^{10000}\| ratio
    0.1 4.37E-04 9.80E-05 8.08E-05
    0.01 4.05E-05 10.78 8.68E-06 11.29 7.30E-06 11.06
    0.001 4.02E-06 10.09 8.57E-07 10.13 7.22E-07 10.12
    0.0001 4.01E-07 10.01 8.56E-08 10.01 7.26E-08 9.94

     | Show Table
    DownLoad: CSV
    Table 8.  Error ratio of internal energy density under linear resistivity.
    dt=0.01 dt=0.001 dt=0.0001
    \varepsilon \|e^{100}-e_{\varepsilon}^{100}\| ratio \|e^{1000}-e_{\varepsilon}^{1000}\| ratio \|e^{10000}-e_{\varepsilon}^{10000}\| ratio
    0.1 0.1821 0.4073 0.4729
    0.01 0.0202 9.01 0.0443 9.19 0.0514 9.20
    0.001 0.002 10.10 0.0045 9.84 0.0052 9.88
    0.0001 2.04E-04 9.79 4.47E-04 10.07 5.18E-04 10.03

     | Show Table
    DownLoad: CSV

    Experiment (4): The step-function resistivity after polishing.

    Table 9.  Error ratio of magnetic field under the step-function resistivity after polishing.
    dt=0.01 dt=0.001 dt=0.0001
    \varepsilon \|B^{100}-B_{\varepsilon}^{100}\| ratio \|B^{1000}-B_{\varepsilon}^{1000}\| ratio \|B^{10000}-B_{\varepsilon}^{10000}\| ratio
    0.1 9.89E-02 9.93E-02 9.94E-02
    0.01 9.90E-03 9.99 9.90E-03 10.03 9.98E-03 9.96
    0.001 9.89E-04 10.01 9.98E-04 9.92 9.94E-04 10.04
    0.0001 9.87E-05 10.02 9.88E-05 10.11 9.87E-05 10.07

     | Show Table
    DownLoad: CSV
    Table 10.  Error ratio of internal energy density under the step-function resistivity after polishing.
    dt=0.01 dt=0.001 dt=0.0001
    \varepsilon \|e^{100}-e_{\varepsilon}^{100}\| ratio \|e^{1000}-e_{\varepsilon}^{1000}\| ratio \|e^{10000}-e_{\varepsilon}^{10000}\| ratio
    0.1 0.0012 0.01891 0.0189
    0.01 1.19E-04 10.08 0.0019 9.95 0.00198 9.55
    0.001 1.19E-05 9.98 1.8903E-04 10.05 1.9998E-04 9.90
    0.0001 1.19E-06 10.03 1.8708E-05 10.10 1.9803E-05 10.10

     | Show Table
    DownLoad: CSV

    Conclusion: From experiments (2), (3), and (4), it can be seen that under the same time step dt , when there is a small disturbance in the initial value, the error ratio does not change much. Especially, the solution of the magnetic diffusion equation under the smoothed step-function resistivity model has good stability. This is also the advantage of smoothed step-function resistivity \eta_\delta(e) compared to step-function resistivity \eta(e) .

    In the comparison experiment between explicit and implicit schemes, we take dt = \frac{c\mu_0*(dx)^2}{\eta_L} , where, \mu_0 = 4\pi , dx = L/N , \eta_L = 100\times9.7\times 10-3 . Therefore, c is the factor that affects dt , and the larger c is, the larger the time step dt .

    Conclusions: From the comparison experiment in the figure above, it is evident that when we use the curve at c = 0.4 as the true solution graph, as the value of c increases (that is, as the time step increases), the explicit solution gradually diverges from the true solution. In contrast, the implicit solutions remain nearly identical to the true solution, with differences only noticeable upon close inspection. This observation further demonstrates the strong stability and weak time step constraints of the fully implicit method. These characteristics particularly underscore the superiority of the fully implicit method, especially when dealing with models exhibiting strong nonlinearity.

    Figure 6.  Comparison of magnetic field and internal energy density.

    Gao Chang: Conceptualization, Writing–original draft, Data curation, Software, Investigation; Chunsheng Feng: Conceptualization, Software, Writing–review and editing, Methodology; Jianmeng He: Conceptualization, Writing–review and editing, Validation, Investigation; Shi Shu: Conceptualization, Supervision, Formal analysis, Methodology, Writing–review and editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare that they have not used artificial intelligence (AI) tools in the creation of this article.

    The authors would like to express their gratitude to Professor Guangwei Yuan and Associate researcher Bo Xiao for their valuable contributions and support during the course of this research. This work was partially supported by the National Science Foundation of China (Grant No. 12371373), the National Key Research and Development Program of China (Grant No. 2023YFB3001604), the Hunan innovative province construction special project (Grant No. 2022XK2301), and the Postgraduate Scientific Research Innovation Project of Hunan Province.

    The authors declare that they have no conflicts of interest.



    [1] C. Yan, B. Xiao, G. Wang, Y. Lu, P. Li, A finite volume scheme based on magnetic flux and electromagnetic energy flow for solving magnetic field diffusion problems, Chin. J. Comput. Phys., 39 (2021): 379–385. http://doi.org/10.19596/j.cnki.1001-246x.8430
    [2] C. Sun, Research on High Energy Density Physical Problems under Electromagnetic Loading (1), High Energ. Dens. Phys., 2 (2007): 82–92.
    [3] T. Burgess, Electrical resistivity model of metals, 4th International Conference on Megagauss Magnetic-Field Generation and Related Topics, 1986.
    [4] B. Xiao, G. Wang, An exact solution for the magnetic diffusion problem with a step-function resistivity model, Eur. Phys. J. Plus, 139 (2024), 305. http://doi.org/10.1140/epjp/s13360-024-05086-2 doi: 10.1140/epjp/s13360-024-05086-2
    [5] B. Xiao, Z. Gu, M. Kan, G. Wang, J. Zhao, Sharp-front wave of strong magnetic field diffusion in solid metal, Phys. Plasmas, 23 (2016), 082104. http://doi.org/10.1063/1.4960303 doi: 10.1063/1.4960303
    [6] C. Yan, B. Xiao, G. Wang, M. Kan, S. Duan, P. Li, et al., The second type of sharp-front wave mechanism of strong magnetic field diffusion in solid metal, AIP Adv., 9 (2019), 125008. http://doi.org/10.1063/1.5124436 doi: 10.1063/1.5124436
    [7] J. Hristov, Magnetic field diffusion in ferromagnetic materials: Fractional calculus approaches, IJOCTA, 11 (2021), 1–15. http://doi.org/10.11121/ijocta.01.2021.001100 doi: 10.11121/ijocta.01.2021.001100
    [8] O. Schnitzer, Fast penetration of megagauss fields into metallic conductors, Phys. Plasmas, 21 (2014), 082306. http://doi.org/10.1063/1.4892398 doi: 10.1063/1.4892398
    [9] Y. Zhou, L. Shen, G. Yuan, A Difference Method for Unconditional Stability and Convergence of Quasilinear Parabolic Systems with Parallelism Nature, Sci. China (Ser. A), 33 (2003), 310–324. http://doi.org/10.3969/j.issn.1674-7216.2003.04.003 doi: 10.3969/j.issn.1674-7216.2003.04.003
    [10] G. Yuan, Uniqueness and stability of difference solution with nonuniform meshes for nonlinear parabolic systems, Math. Numer. Sin., 22 (2000), 139–150.
    [11] G. Yuan, X. Hang, Conservative Parallel Schemes for Diffusion Equations, Chin. J. Comput. Phys., 27 (2010), 475–491.
    [12] G. Yuan, X. Hang, Adaptive combination algorithm of Picard and upwind-Newton (PUN) iteration for solving nonlinear diffusion equations, Sci. China (Ser. A), 2024, 1–16. https://www.sciengine.com/SSM/doi/10.1360/SSM-2023-0324
    [13] M. Bessemoulin-Chatard, F. Filbet, A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations, SIAM J. Sci. Comput., 34 (2012), B559–B583. http://doi.org/10.1137/110853807 doi: 10.1137/110853807
    [14] R. A. Adams, J. F. Fournier, Sobolev Spaces, New York: Academic Press, 2003.
    [15] Y. Chou, Applications of discrete functional analysis to the finite difference method, International Academic Publishers Pergamon Press, 1991.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(933) PDF downloads(42) Cited by(0)

Figures and Tables

Figures(6)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog