Citation: Gao Chang, Chunsheng Feng, Jianmeng He, Shi Shu. Stability analysis of a class of nonlinear magnetic diffusion equations and its fully implicit scheme[J]. AIMS Mathematics, 2024, 9(8): 20843-20864. doi: 10.3934/math.20241014
[1] | C. Yan, B. Xiao, G. Wang, Y. Lu, P. Li, A finite volume scheme based on magnetic flux and electromagnetic energy flow for solving magnetic field diffusion problems, Chin. J. Comput. Phys., 39 (2021): 379–385. http://doi.org/10.19596/j.cnki.1001-246x.8430 |
[2] | C. Sun, Research on High Energy Density Physical Problems under Electromagnetic Loading (1), High Energ. Dens. Phys., 2 (2007): 82–92. |
[3] | T. Burgess, Electrical resistivity model of metals, 4th International Conference on Megagauss Magnetic-Field Generation and Related Topics, 1986. |
[4] | B. Xiao, G. Wang, An exact solution for the magnetic diffusion problem with a step-function resistivity model, Eur. Phys. J. Plus, 139 (2024), 305. http://doi.org/10.1140/epjp/s13360-024-05086-2 doi: 10.1140/epjp/s13360-024-05086-2 |
[5] | B. Xiao, Z. Gu, M. Kan, G. Wang, J. Zhao, Sharp-front wave of strong magnetic field diffusion in solid metal, Phys. Plasmas, 23 (2016), 082104. http://doi.org/10.1063/1.4960303 doi: 10.1063/1.4960303 |
[6] | C. Yan, B. Xiao, G. Wang, M. Kan, S. Duan, P. Li, et al., The second type of sharp-front wave mechanism of strong magnetic field diffusion in solid metal, AIP Adv., 9 (2019), 125008. http://doi.org/10.1063/1.5124436 doi: 10.1063/1.5124436 |
[7] | J. Hristov, Magnetic field diffusion in ferromagnetic materials: Fractional calculus approaches, IJOCTA, 11 (2021), 1–15. http://doi.org/10.11121/ijocta.01.2021.001100 doi: 10.11121/ijocta.01.2021.001100 |
[8] | O. Schnitzer, Fast penetration of megagauss fields into metallic conductors, Phys. Plasmas, 21 (2014), 082306. http://doi.org/10.1063/1.4892398 doi: 10.1063/1.4892398 |
[9] | Y. Zhou, L. Shen, G. Yuan, A Difference Method for Unconditional Stability and Convergence of Quasilinear Parabolic Systems with Parallelism Nature, Sci. China (Ser. A), 33 (2003), 310–324. http://doi.org/10.3969/j.issn.1674-7216.2003.04.003 doi: 10.3969/j.issn.1674-7216.2003.04.003 |
[10] | G. Yuan, Uniqueness and stability of difference solution with nonuniform meshes for nonlinear parabolic systems, Math. Numer. Sin., 22 (2000), 139–150. |
[11] | G. Yuan, X. Hang, Conservative Parallel Schemes for Diffusion Equations, Chin. J. Comput. Phys., 27 (2010), 475–491. |
[12] | G. Yuan, X. Hang, Adaptive combination algorithm of Picard and upwind-Newton (PUN) iteration for solving nonlinear diffusion equations, Sci. China (Ser. A), 2024, 1–16. https://www.sciengine.com/SSM/doi/10.1360/SSM-2023-0324 |
[13] | M. Bessemoulin-Chatard, F. Filbet, A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations, SIAM J. Sci. Comput., 34 (2012), B559–B583. http://doi.org/10.1137/110853807 doi: 10.1137/110853807 |
[14] | R. A. Adams, J. F. Fournier, Sobolev Spaces, New York: Academic Press, 2003. |
[15] | Y. Chou, Applications of discrete functional analysis to the finite difference method, International Academic Publishers Pergamon Press, 1991. |