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1. Introduction

This article investigates the stability of the nonlinear magnetic diffusion equation and its fully
implicit discrete scheme for the following equation system in [1]:

∂

∂t
B(x, t) =

∂

∂x

(
η(e)
µ0

∂

∂x
B(x, t)

)
,

∂

∂t
(e(x, t) +

1
2µ0

B2 (x, t)) =
∂

∂x

(
η (e) B (x, t)

µ2
0

∂

∂x
B (x, t)

)
,

(1.1)
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where B is the magnetic field, e is the internal energy density (that is, internal energy per volume), µ0 is
the vacuum permeability constant (µ0 = 4π× 10−7N/A2), and η(e) is the resistivity in the material. The
relationship between η(e) and e results in nonlinearity of the diffusion term ∂

∂x ( η(e)
µ0

∂
∂x B(x, t)) in (1.1).

The resistivity η(e) in the equation system (1.1) is a step-function, as shown in Figure 1a:

η(e) = η(x, t) =

{
ηS = 9.7 × 10−5, e ∈ [0, ec],
ηL = 9.7 × 10−3, e ∈ (ec,+∞),

(1.2)

ec = 0.11084958, representing the critical value of internal energy density.

In electromagnetic loading experiments [2], when the magnetic field outside the metal wall is
relatively small (below 10 T), the driving current is also very small, the heating in the metal is weak,
the temperature rise is slow, and the change in metal resistivity is not significant. At this point, the
diffusion of the magnetic field exhibits behavioral characteristics similar to common diffusion
phenomena such as thermal diffusion and concentration diffusion. When the magnetic field outside
the metal wall reaches a strong magnetic field level of 100 T, the diffusion of the magnetic field in the
metal will exhibit a nonlinear magnetic diffusion wave phenomenon. Compared to ordinary magnetic
diffusion in metals, nonlinear magnetic diffusion waves have higher penetration rates and velocities,
which can cause rapid magnetic flux leakage and device load erosion in high-energy-density physical
experiments. Although nonlinear magnetic diffusion waves in metals with strong magnetic fields were
proposed as early as 1970, it was not until after 2000 that phenomena related to nonlinear magnetic
diffusion waves gradually attracted people’s attention with the widespread development of
electromagnetic driven high-energy-density physics experiments. The fundamental reason for the
formation of nonlinear magnetic diffusion waves is that during the process of metal temperature rise
caused by magnetic diffusion, the metal resistivity also changes accordingly [3]. Before the metal
forms a highly conductive plasma, the overall resistivity shows an upward trend. After metal
gasification, as the temperature increases, the degree of metal vapor ionization increases, and the
resistivity gradually decreases. In [4, 5], authors such as B. Xiao assume that the electrical resistivity
of metals undergoes a sudden change of several orders of magnitude after reaching a critical
temperature, while the electrical resistivity before and after the sudden change is independent of
temperature. They consider an approximate theoretical analytical solution for one-dimensional
steep-gradient surface magnetic diffusion waves under the step-function resistivity model. In [1], C.
H. Yan et al. designed an explicit finite volume discretization scheme for one-dimensional magnetic
field diffusion problems based on the step resistivity model. By relaxing the time step, the formulas
for excessive magnetic flux transport and total internal energy transport were truncated when solving
strong magnetic diffusion problems. On the basis of using the truncated magnetic flux transport
capacity and total internal energy transport capacity, the program can allow for larger time steps
without causing oscillation dispersion. In addition, there are also some studies on magnetic diffusion
problems, such as [6–8].
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(a) step-function resistivity.

(b) resistivity of smoothed step-function.

Figure 1. Comparison between step-function and smoothed step-function resistivity.

The stability of solutions is an important issue in the study of differential equations. Stability
generally refers to the behavior of the solution remaining unchanged or tending to a certain equilibrium
state when there is a small disturbance in the initial or boundary conditions of the equation. In [9], Y.
L. Zhou et al. studied a class of parallel nature difference schemes for the initial boundary value
problem of quasi-linear parabolic systems, and proved the unconditional stability of the constructed
parallel nature difference scheme solutions under the discrete W (2,1)

2 norm. In [10], author G. W. Yuan
proved the uniqueness and stability of the obtained difference solution under the general non-uniform
grid difference scheme. In [11, 12], based on the non-uniform grid difference scheme, the authors
constructed and developed an implicit discrete scheme that maintains the conservation of the implicit
scheme while maintaining the required accuracy and unconditional stability for parallel computing
through various methods such as estimation correction, to meet the needs of large-scale numerical
solutions to radiation fluid dynamics problems.

The magnetic diffusion problem studied in this article is also based on the step-function resistivity
model. We first reproduced the results of equation system (1.1) in [1] (under explicit finite volume
discretization scheme):
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(a) Magnetic field under explicit finite volume with
step-function resistivity.

(b) Internal energy density under explicit finite volume
with step-function resistivity.

Figure 2. Magnetic field and internal energy density with step-function resistivity.
Note: The c in the above figure is the time step influence factor. In this paper, the solution under the explicit finite volume

scheme at c = 0.4 is considered as the true solution of the problem.

Next, in the magnetic diffusion equation system (1.1), the smoothed step-function resistivity ηδ(e)
is used, where δ is used to describe the distance from the smooth curve inflection point to ec, as shown
in Figure 1b. The experimental results of the implicit finite volume method are as follows:

(a) Magnetic field under implicit finite volume with
smoothed step-function resistivity, ηδ(e), δ = 0.01.

(b) Internal energy density under implicit finite volume
with smoothed step-function resistivity, ηδ(e), δ = 0.01.

Figure 3. Magnetic field and internal energy density with smoothed step-function resistivity.

The above experiment indicates that by replacing the step-function resistivity η(e) in equation
system (1.1) and using the smoothed step-function resistivity model ηδ(e), the experimental results
in [1] can be well reproduced. Can the modified resistivity maintain the stability of the solution to the
magnetic diffusion equation? What are the advantages of the corrected resistivity compared to the
step-function resistivity? These are the starting points of this study and will be answered one by one
in the following text. Below, we will first theoretically prove that the solution of the one-dimensional
nonlinear magnetic diffusion equation and its fully implicit scheme under the smoothed step-function
resistivity are stable with initial values. Then, the correctness and stability of the magnetic diffusion

AIMS Mathematics Volume 9, Issue 8, 20843–20864.
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model under the smoothed step-function resistivity in the implicit finite volume discrete scheme are
further verified through comparative experiments of explicit and implicit schemes [13].

2. Mathematical preliminaries

A measurable function u[0,T ]→ X that satisfies the following conditions:

(1) ‖u‖Lp(0,T ;X) :=
(∫ T

0
‖u(t)‖pdt

)1/p

< ∞, 1 ≤ p < ∞,

(2) ‖u‖L∞(0,T ;X) := esssup0<t≤T ‖u(t)‖ < ∞,

forms the Lp(0,T ; X) space.
The polishing function J(x) satisfies

J (x) =

 ce
1

x2−1 , |x| < 1,
0, |x| ≥ 1,

c =
1∫ 1

−1
e

1
x2−1 dt

, (2.1)

and the conclusions are as follows.

Lemma 1 ( [14]). For any ε > 0, when taking Jε(x) = 1
ε
J
(

x
ε

)
, J (x) and Jε(x) satisfy the following

properties:
(1) J (x) ∈ C∞ (R), and when |x| ≥ 1, k ∈ N, J(k) (x) = 0;
(2)

∫
R

J (x) dx =
∫
R

Jε (x) dx = 1.

Then, the step-function resistivity (1.2) can be smoothed to the following continuous differentiable
function:

ηδ(e) = ηδ(x, t) =

ηε(e), e ∈ [ec − ε, ec + ε],
η(e), else,

(2.2)

where,

ηε (e) = ηε(x, t) =

∫
I
η (y) Jε (x − y) dy, I = [ec − ε, ec + ε]. (2.3)

According to [14], it is easy to know that the resistivity (2.3) after the effect of the polishing function
(2.1) satisfies the following properties:

ηε ∈ C∞ (R) , and η′ε(x) =

∫
R

η (y) J′ε (x − y) dy, x, y ∈ I. (2.4)

Thereby, ηδ(e) in (2.2) is continuously differentiable across all real number fields. Further, ηδ(e)
converges to η(e): η(e) is integrable on Iε = [ec − ε, ec + ε]. By the Lemma 1, for each x ∈ Iε =

[ec − ε, ec + ε], there is
∫
R

Jε (x − y) dy = 1, and for any ε > 0, it is easily available that

|ηδ (x) − η (x)|

=

∣∣∣∣∣∫
R
η (y) Jε (x − y) dy −

∫
R
η (x) Jε (x − y) dy

∣∣∣∣∣
AIMS Mathematics Volume 9, Issue 8, 20843–20864.
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≤

∫
R
|η (y) − η (x)| Jε (x − y) dy

≤C
∫ ec+ε

ec−ε

|η (y) − η (x)| dy

=C
∫ ec

ec−ε

|ηS − η (x)| dy +

∫ ec+ε

ec

|ηL − η (x)| dy

≤2C(ηL − ηS )ε, (2.5)

where C = max|Jε(x − y)|, and ηS , ηL are the minimum and maximum values of η(e). Thus, it can be
concluded that limε→0ηδ(x) = η(x).
Remark: This provides us with a theoretical basis for a stability proof by replacing the step-function
resistivity η(e) in equation system (1.1) with the smoothed resistivity ηδ(e) (continuous, differentiable).

Lemma 2. (Young’s inequality) If p > 1, q > 1, such that 1
p + 1

q = 1, then ∀a, b ≥ 0, the following
inequality holds:

a · b ≤
ap

p
+

bq

q
,

and specifically, when a =
√
εu, b = v

2
√
ε
, Young’s inequality can be expressed as

u · v ≤ εu2 +
1
4ε

v2. (2.6)

Lemma 3. (Continuous Gronwall’ inequality) Let g(t) and h(t) be non negative integrable functions,
and satisfy f ′(t) ≤ f (t)g(t) + h(t). The following inequality holds:

f (t) ≤ e
∫ t

0 g(s)ds( f (0) +

∫ t

0
h(s)ds).

Lemma 4. (Discrete Gronwall’ inequality) [15] Let { f n}, {gn}, and {hn} be sequences of non-negative
functions satisfying, f n+1− f n

∆t ≤ f n+1gn+1 + hn+1, for ∀α > 1, such that

∆t max
1≤n≤N

gn ≤
α − 1
α

,

where ∆t > 0. Then, the following inequality holds:

f n ≤ Ce3τmax1≤n≤N gn
( f 0 +

n∑
k=0

hk∆t), (2.7)

where C and τ are constants that depend on the initial conditions.

Lemma 5. (Abel’s identity) Let {an} and {bn} be sequences of real or complex functions. If Qn =
∑n

i=1 bi,
the following identity holds:

S =

n∑
i=1

aibi = Qnan −

n−1∑
i=1

Qi(ai+1 − ai). (2.8)
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Lemma 6. (Embedding inequality)

‖w(·, s)‖2∞ . ε‖wx(·, s)‖22 +
1
ε
‖w(·, s)‖22, (2.9)

derived from the Poincaré inequality, w(·, t) ∈ H1
0(0, l). Then, the inequality ‖w(·, t)‖2 . ‖wx(·, t)‖2

holds. Substituting this inequality into (2.9) yields ‖w(·, t)‖2∞ . ‖wx(·, t)‖22.

Lemma 7. (Discrete embedding inequality) (space direction)

||wk
h||

2
∞ . ε‖δw

k
h‖

2
2 +

1
ε
‖wk

h‖
2
2, (2.10)

and similar to Lemma 6, it is easy to derive ‖wk
h(·, t)‖2∞ . ‖δw

k
h(·, t)‖22.

Remark: The conclusions of Lemmas 6 and 7 hold only in one dimension.

Lemma 8. (Discrete embedding inequality) (time direction)

||wk
h||

2
2 ≤

k∑
m=1

(ε‖∆τwm
h ‖

2
2 +

1
2ε
‖wm

h ‖
2) + ‖w0

h‖
2
2. (2.11)

3. Stability proof of one-dimensional magnetic diffusion equation

3.1. Homogeneous boundary conditions

This section proves that the equation is stable with initial values. Now, we will transform the non-
zero boundary value problem into a non-zero initial value problem.

∂

∂t
B(x, t) =

∂

∂x

(
ηε(e)
µ0

∂

∂x
B(x, t)

)
,

B(0, t) = 0.2, B(0.5, t) = 0, t ∈ (0, 1],
B(x, 0) = 0, x ∈ (0, 0.5].

(3.1)

Let B(x, t) = u(x, t) + v(x, t), and v(x, t) satisfies the boundary conditions in (3.1), that is,

v(x, t)|x=0 = 0.2, v(x, t)|x=0.5 = 0.

Construct auxiliary functions v(x, t) = 0.2 −
2
5

x, x ∈ [0, 0.5], based on boundary conditions. Then,
the equation satisfying the definite solution condition in (3.1) with respect to u(x, t) is

∂

∂t
u(x, t) =

∂

∂x

(
ηε(e)
µ0

∂

∂x
u(x, t)

)
,

u(x, 0) = −(0.2 −
2
5

x), x ∈ (0, 0.5],

u(x, t)|x=0 = 0, u(x, t)|x=0.5 = 0, t ∈ (0, 1].

(3.2)

Remark: The equation to be proved below indicates the stability with respect to initial values, which
also implies the stability of the original equation with respect to boundary values.
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3.2. The proof of stability

Consider the one-dimensional magnetic diffusion equation with Dirichlet boundary as follows:
∂

∂t
B(x, t) =

∂

∂x

(
η(e(B))
µ0

∂

∂x
B(x, t)

)
,

B(0, t) = B(l, t) = 0, t ∈ (0,T ],
B(x, 0) = ϕ, x ∈ (0, l],

(3.3)


∂

∂t
B̃(x, t) =

∂

∂x

η(e(B̃))
µ0

∂

∂x
B̃(x, t)

 ,
B̃(0, t) = B̃(l, t) = 0, t ∈ (0,T ],
B̃(x, 0) = ϕ̃, x ∈ (0, l],

(3.4)

where, B and B̃ are the magnetic field, and e and ẽ are the internal energy density (e = e(B), ẽ = e(B̃)).
The solutions of Eqs (3.3) and (3.4) belong to L∞(0,T ; H1

0(0, l)) ∩ L2(0,T ; H2(0, l)), and the
following is an inequality for energy estimation:

sup
0≤t≤T

‖Bx(·, t)‖22 +

∫ T

0
‖Bxx(·, t)‖22dt ≤ C‖Bx(·, 0)‖22. (3.5)

On the premise of not causing misunderstandings, for the convenience of labeling and calculation,
in this section, we still use η(e) to represent the step-function resistivity after polishing. Let w(x, t) =

B(x, t) − B̃(x, t), and based on the differentiability of the smoothed resistivity η(e), it can be assumed
that the derivatives of η and e satisfy the following relationship:

|ηx + ηe| ≤ c1, eB ≤ c2. (3.6)

Remark: The c1 in (3.6) depends on the value of ε in (2.3).
Subtract the first equation in (3.3) from the first equation in (3.4) to obtain

Bt − B̃t =
1
µ0

[η(e(B))xBx − η(e(B̃))xB̃x + η(e(B))Bxx − η(e(B̃))B̃xx]. (3.7)

The above equation can be changed to

µ0wt = η(e(B))xwx + B̃x(η(e(B))x − η(e(B̃))x) + η(e(B))wxx + B̃xx(η(e(B)) − η(e(B̃))). (3.8)

According to the Lagrange mean value theorem, η(e(B)) − η(e(B̃)) in (3.8) can be resolved as

η(e(B)) − η(e(B̃)) = ηe(ζ)(e(B) − e(B̃)) = ηe(ζ)e′(ξ)(B − B̃) = ηe(ζ)e′(ξ)w, (3.9)

where, ηe(ζ) represents the first derivative of η with respect to e, ζ is the value between e(B) and e(B̃),
e′(ξ) represents the first derivative of e with respect to B and B̃, and ξ is the value between B and B̃.

Substituting (3.9) into (3.8) yields

µ0wt =η(e(B))xwx + B̃x(η(e(B))x − η(e(B̃))x) + η(e(B))wxx + B̃xxηe(ζ)e′(ξ)w. (3.10)
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Multiply wxx on both sides of (3.10) and integrate on x ∈ (0, l) to obtain

µ0

∫ l

0
wtwxxdx −

∫ l

0
η(e(B))w2

xxdx

=

∫ l

0
η(e(B))xwxwxxdx +

∫ l

0
B̃x(η(e(B))x − η(e(B̃))x)wxxdx +

∫ l

0
B̃xxηe(ζ)e′(ξ)wwxxdx. (3.11)

The first term at the left end of the above equation can be written by the partial integration method
as follows: ∫ l

0
wtwxxdx = wtwx|

l
0 −

∫ l

0
wtxwxdx = −

1
2

∫ l

0

d
dt

w2
xdx = −

1
2

d
dt
‖wx‖

2
2. (3.12)

By combining (1.2) η(e) ≥ ηS > 0 with (3.12), the left end of (3.11) can be simplified as

µ0

∫ l

0
wtwxxdx −

∫ l

0
η(e(B))w2

xxdx ≤ −
µ0

2
d
dt
‖wx‖

2
2 − ηS

∫ l

0
w2

xxdx

= −
µ0

2
d
dt
‖wx‖

2
2 − ηS ‖w2

xx‖
2
2,

that is,

µ0

2
d
dt
‖wx‖

2
2 + ηS ‖w2

xx‖
2
2 ≤ −(µ0

∫ l

0
wtwxxdx −

∫ l

0
η(e(B))w2

xxdx). (3.13)

Take absolute values on both sides of (3.13) and obtain from (3.11)

µ0

2
d
dt
‖wx‖

2
2 + ηS ‖w2

xx‖
2
2

≤|µ0

∫ l

0
wtwxxdx −

∫ l

0
η(e(B))w2

xxdx|

≤

∫ l

0
|η(e(B))xwxwxx|dx +

∫ l

0
|B̃x(η(e(B))x − η(e(B̃))x)wxx|dx +

∫ l

0
|B̃xxηe(ζ)e′(ξ)wwxx|dx. (3.14)

On the basis of the assumption (3.6), (3.14) can be resolved as

µ0

2
d
dt
‖wx‖

2
2 + ηS ‖wxx‖

2
2

≤c1

∫ l

0
|wxwxx|dx + 2c1

∫ l

0
|B̃xwxx|dx + c1c2

∫ l

0
|B̃xxwwxx|dx, (3.15)

and according to the Lemma 2 (Young’s inequality), (3.15) can be transformed into

µ0

2
d
dt
‖wx‖

2
2 + ηS ‖wxx‖

2
2

≤c1

∫ l

0

(
ε1|wxx|

2 +
1

4ε1
|wx|

2
)

dx + 2c1

∫ l

0

(
ε2|wxx|

2 +
1

4ε2
|B̃x|

2
)

dx

+c1c2

∫ l

0

(
ε3|wxx|

2 +
1

4ε3
|w|2|B̃xx|

2
)

dx

AIMS Mathematics Volume 9, Issue 8, 20843–20864.
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≤c3‖wxx‖
2
2 + c4‖wx‖

2
2 + c5‖B̃x‖

2
2dx + c6

∫ l

0
|w|2|B̃xx|

2dx, (3.16)

where c3 = c1ε1 + 2c1ε2 + c1c2ε3.
By the Lemma 6 (embedding inequality)

c6

∫ l

0
|w|2|B̃xx|

2dx ≤ c6 sup
0≤x≤l
|w|2‖B̃xx‖

2
2 ≤ c6‖w‖2∞‖B̃xx‖

2
2 ≤ c7‖wx‖

2
2‖B̃xx‖

2
2. (3.17)

Remark: The conclusion of (3.17) only holds for one-dimensional cases.
Substitute (3.17) into (3.16), and from the energy estimation inequality (3.5), obtain

µ0

2
d
dt
‖wx‖

2
2 + ηS ‖wxx‖

2
2 ≤c3‖wxx‖

2
2 + ‖wx‖

2
2(c4 + c7‖B̃xx‖

2
2) + c5‖B̃x‖

2
2

≤c3‖wxx‖
2
2 + c8‖wx‖

2
2(1 + ‖B̃xx‖

2
2) + c5 sup

0≤t≤T
‖B̃x‖

2
2

≤c3‖wxx‖
2
2 + c8‖wx‖

2
2(1 + ‖B̃xx‖

2
2) + c9, (3.18)

where c9 = c5C‖Bx(·, 0)‖22.
According to (3.18)

ηS ‖wxx‖
2
2 ≤ c3‖wxx‖

2
2 + c8‖wx‖

2
2(1 + ‖B̃xx‖

2
2) + c9, (3.19)

so
c3‖wxx‖

2
2 ≤

c3c8

ηS − c3
‖wx‖

2
2(1 + ‖B̃xx‖

2
2) +

c3c9

ηS − c3
. (3.20)

Remark: c3 = c1ε1 + 2c1ε2 + c1c2ε3 can ensure that ηS − c3 > 0.
Substitute (3.20) into the right-hand end of (3.18), and organize it to obtain

d
dt
‖wx‖

2
2 +

2ηS

µ0
‖wxx‖

2
2 ≤ c10‖wx‖

2
2(1 + ‖B̃xx‖

2
2) + c11. (3.21)

In (3.21), on the one hand

d
dt
‖wx‖

2
2 ≤ c10‖wx‖

2
2(1 + ‖B̃xx‖

2
2) + c11. (3.22)

In (3.22), take f ′(t) =
d
dt
‖wx‖

2
2, f (t) = ‖wx‖

2
2, g(t) = c10(1 + ‖B̃xx‖

2
2), h(t) = c11, by using the

Lemma 3 (continuous Gronwall’ inequality), it can be concluded that

‖wx(·, t)‖22 ≤ ec10
∫ T

0 (1+‖B̃xx‖
2
2)dt‖wx(·, 0)‖22 = c12‖ϕx − ϕ̃x‖

2
2 + c13. (3.23)

On the other hand, as can be seen from (3.21).

2ηS

µ0
‖wxx(·, t)‖22 ≤ c10‖wx‖

2
2(1 + ‖B̃xx‖

2
2) + c11. (3.24)

Integrate the two sides of Eq (3.24) in the time direction on [0,T ] and obtain from (3.23)

2ηS

µ0

∫ T

0
‖wxx(·, t)‖22ds ≤

∫ T

0
c10‖wx‖

2
2(1 + ‖B̃xx‖

2
2)ds +

∫ T

0
c11dt ≤ c14‖ϕx − ϕ̃x‖

2
2 + c11T. (3.25)
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From (3.23) and (3.25), it can be concluded that

‖wx(x, t)‖22 + a
∫ t

0
‖wxx(x, t)‖22ds ≤C‖ϕx − ϕ̃x‖

2
2 + c. (3.26)

Thus, the stability of the magnetic diffusion equation is proven.

3.3. Stability of fully implicit scheme for magnetic diffusion equation

The following proves the stability of the fully implicit scheme corresponding to Eq (3.3) or (3.4):
µ0∆τBn+1

j = η(e(Bn+1
j ))δ2Bn+1

j + δη(e(Bn+1
j ))δBn+1

j ,

Bn
0 = Bn

J = 0,
B0

j = ϕ(x j),

(3.27)

taking 
µ0∆τB̃n+1

j = η(e(B̃n+1
j ))δ2B̃n+1

j + δη(e(B̃n+1
j ))δB̃n+1

j ,

B̃n
0 = B̃n

J = 0,
B̃0

j = ϕ̃(x j).

(3.28)

The energy estimation in the discrete scheme is

sup
0≤n≤N

‖δBn+1
j ‖

2
2 +

N∑
n=0

‖δ2Bn+1
j ‖

2
2dt ≤ C‖δB0

j‖
2
2. (3.29)

Let wn+1
j = Bn+1

j − B̃n+1
j , and subtract the first equation in (3.27) from the first equation in (3.28) to

obtain:
µ0∆τ

(
Bn+1

j − B̃n+1
j

)
=

(
η(e(Bn+1

j ))δ2Bn+1
j − η(e(B̃n+1

j ))δ2B̃n+1
j

)
+δη(e(Bn+1

j ))δBn+1
j − δη(e(B̃n+1

j ))δB̃n+1
j .

After applying the Lagrange mean value theorem to the above equation, the following is obtained:

µ0∆τwn+1
j −

(
η(e(Bn+1

j ))δ2wn+1
j + δ2B̃n+1

j δη(ζn+1
j )δe(ξn+1

j )wn+1
j

)
=δη(e(Bn+1

j ))δwn+1
j + δB̃n+1

j (δη(e(Bn+1
j )) − δη(e(B̃n+1

j ))),
(3.30)

where δη(ζn+1
j ) represents the first derivative of η with respect to e, ζn+1

j is the value between e(Bn+1
j )

and e(B̃n+1
j ), δe(ξn+1

j ) represents the first derivative of e with respect to Bn+1
j or B̃n+1

j , and ξn+1
j is the

value between Bn+1
j and B̃n+1

j .
Multiply δ2wn+1

j on both sides of (3.30) , and sum j = 1, 2, . . . , J − 1 to obtain

µ0

J−1∑
j=1

δ2wn+1
j ∆τwn+1

j −

J−1∑
j=1

η(e(Bn+1
j ))(δ2wn+1

j )2

=

J−1∑
j=1

δ2B̃n+1
j δη(ζn+1

j )δe(ξn+1
j )wn+1

j δ2wn+1
j +

J−1∑
j=1

δη(e(Bn+1
j ))δwn+1

j δ2wn+1
j

+

J−1∑
j=1

δB̃n+1
j (δη(e(Bn+1

j )) − δη(e(B̃n+1
j )))δ2wn+1

j .

(3.31)
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We can consider the first term in equation (3.31)

J−1∑
j=1

δ2wn+1
j ∆τwn+1

j .

Let

a j =
wn+1

j − wn+1
j−1

h
,

Q j =
wn+1

j − wn
j

∆t
,

b j =
wn+1

j − wn
j

∆t
−

wn+1
j−1 − wn

j−1

∆t
.

(3.32)

Using Lemma 5 (Abel’s identity), it can be obtained that

J−1∑
j=1

δ2wn+1
j ∆τwn+1

j =

J−1∑
j=1

wn+1
j − wn

j

∆t
(a j+1 − a j)

h

=
1
h

J−1∑
j=1

Q j(a j+1 − a j)

=
1
h

(aJQJ −

J∑
j=1

a jb j)

= −
1
h

J∑
j=1

wn+1
j − wn+1

j−1

h

 wn+1
j − wn

j

∆t
−

wn+1
j−1 − wn

j−1

∆t


= −

1
∆t

J∑
i= j

wn+1
j − wn+1

j−1

h

 wn+1
j − wn+1

j−1

h
−

wn
j − wn

j−1

h

 . (3.33)

According to the inequality

u(u − v) =
1
2

(
u2 − u2 + (u − v)2

)
≥

1
2

(
u2 − v2

)
. (3.34)

Let u =
wn+1

j −wn+1
j−1

h ,v =
wn

j−wn
j−1

h , and from (3.34), (3.33) can be changed to

1
∆t

J∑
j=1

wn+1
j − wn+1

j−1

h

 wn+1
j − wn+1

j−1

h
−

wn
j − wn

j−1

h


≥

1
2

1
∆t

J∑
j=1

(wn+1
j − wn+1

j−1

h
)2 − (

wn
j − wn

j−1

h
)2


=

1
2∆t

(||δwn+1
h ||

2
2 − ||δw

n
h||

2
2), (3.35)
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that is

µ0

J−1∑
j=1

δ2wn+1
j ∆τwn+1

j ≤ −
µ0

2∆t
(||δwn+1

h ||
2
2 − ||δw

n
h||

2
2). (3.36)

From η > ηS and substituting (3.36) into (3.31), it can be concluded that

µ0

2∆t

(∥∥∥δwn+1
h

∥∥∥2

2
−

∥∥∥δwn
h

∥∥∥2

2

)
+ ηS

∥∥∥δ2wn+1
h

∥∥∥2

2

=

J−1∑
j=1

|δ2B̃n+1
j δη(ζn+1

j )δe(ξn+1
j )wn+1

j δ2wn+1
j | +

J−1∑
j=1

|δη(e(Bn+1
j ))δwn+1

j δ2wn+1
j |

+

J−1∑
j=1

|δB̃n+1
j (δη(e(Bn+1

j )) − δη(e(B̃n+1
j )))δ2wn+1

j |. (3.37)

By the assumption (3.6)

µ0

2∆t

(∥∥∥δwn+1
h

∥∥∥2

2
−

∥∥∥δwn
h

∥∥∥2

2

)
+ ηS

∥∥∥δ2wn+1
h

∥∥∥2

2

≤c1c2

J−1∑
j=1

|δ2B̃n+1
j wn+1

j δ2wn+1
j | + c1

J−1∑
j=1

|δwn+1
j δ2wn+1

j | + 2c1

J−1∑
j=1

|δB̃n+1
j δ2wn+1

j |. (3.38)

Applying Lemma 2 (Young’s inequality) to Eq (3.38) yields

µ0

2∆t

(∥∥∥δwn+1
h

∥∥∥2

2
−

∥∥∥δwn
h

∥∥∥2

2

)
+ ηS

∥∥∥δ2wn+1
h

∥∥∥2

2

≤c1c2

(
ε1‖δ

2wn+1
h ‖

2
2 +

1
4ε1
‖δ2B̃n+1

h ‖
2
2 sup

0≤h≤J−1
|wn+1

h |
2
2

)
+ c1

(
ε2‖δ

2wn+1
h ‖

2
2 +

1
4ε2
‖δwn+1

h ‖
2
2

)
+2c1

(
ε3‖δ

2wn+1
h ‖

2
2 +

1
4ε3
‖δB̃n+1

h ‖
2
2

)
. (3.39)

From the energy estimation inequality (3.29) and Lemma 7 (discrete embedding inequality, space
direction), (3.39) can be expressed as

1
∆t

(∥∥∥δwn+1
h

∥∥∥2

2
−

∥∥∥δwn
h

∥∥∥2

2

)
+

2ηS

µ0

∥∥∥δ2wn+1
h

∥∥∥2

2

≤c4‖δ
2wn+1

h ‖
2
2 + c5‖wn+1

h (·, t)‖2∞‖δ
2B̃n+1

h ‖
2
2 + c6‖δwn+1

h ‖
2
2 + c7 sup

0≤n≤N
‖δB̃n+1

h ‖
2
2

≤c4‖δ
2wn+1

h ‖
2
2 + c5‖wn+1

h (·, t)‖2∞‖δ
2B̃n+1

h ‖
2
2 + c6‖δwn+1

h ‖
2
2 + c7 sup

0≤n≤N
‖δB̃n+1

h ‖
2
2. (3.40)

Let a =
2ηS
µ0

, and according to (3.40)

a
∥∥∥δ2wn+1

h

∥∥∥2

2
≤ c4‖δ

2wn+1
h ‖

2
2 + c5‖wn+1

h (·, t)‖2∞‖δ
2B̃n+1

h ‖
2
2 + c6‖δwn+1

h ‖
2
2 + c7 sup

0≤n≤N
‖δB̃n+1

h ‖
2
2, (3.41)

so

c4

∥∥∥δ2wn+1
h

∥∥∥2

2
≤

c4c5

a − c4
‖wn+1

h (·, t)‖2∞‖δ
2B̃n+1

h ‖
2
2 +

c4c6

a − c4
‖δwn+1

h ‖
2
2 +

c4c7

a − c4
sup

0≤n≤N
‖δB̃n+1

h ‖
2
2. (3.42)
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Substituting (3.42) into the right-hand side of (3.40) yields

1
∆t

(∥∥∥δwn+1
h

∥∥∥2

2
−

∥∥∥δwn
h

∥∥∥2

2

)
+ a

∥∥∥δ2wn+1
h

∥∥∥2

2
≤ c9‖δwn+1

h ‖
2
2 + c10‖wn+1

h (·, t)‖2∞‖δ
2B̃n+1

h ‖
2
2 + c8. (3.43)

Summing the two sides of (3.43) with respect to n, from inequality (3.29), it can be concluded that:

∥∥∥δwn+1
h

∥∥∥2

2
+ a

n∑
k=0

∥∥∥δ2wk+1
h

∥∥∥2

2
∆t

≤c11 sup
1≤k≤n

‖wk+1
h ‖

2
∞

n∑
k=0

‖δ2B̃n+1
h ‖

2
2∆t + c9

n∑
k=0

‖δwk+1
h ‖

2
2∆t + ‖δw0

h‖
2
2 + c8

≤c12 sup
1≤k≤n

‖wk+1
h ‖

2
∞ + c9

n∑
k=0

‖δwk+1
h ‖

2
2∆t + ‖δw0

h‖
2
2 + c8. (3.44)

According to Lemma 7, the right-hand side of the (3.44) inequality can be written as

∥∥∥δwn+1
h

∥∥∥2

2
+ a

n∑
k=0

∥∥∥δ2wn+1
h

∥∥∥2

2
∆t

≤c12 sup
1≤k≤n

(ε‖δwk+1
h ‖

2
2 +

1
ε
‖wk+1

h ‖
2
2) + c9

n∑
k=0

‖δwk+1
h ‖

2
2∆t + ‖δw0

h‖
2
2 + c8. (3.45)

From (3.45),

sup
1≤k≤n

∥∥∥δwk+1
h

∥∥∥2

2
≤ c12 sup

1≤k≤n
(ε‖δwk+1

h ‖
2
2 +

1
ε
‖wk+1

h ‖
2
2) + c9

n∑
k=0

‖δwk+1
h ‖

2
2∆t + ‖δw0

h‖
2
2 + c8, (3.46)

and then,

c12ε sup
1≤k≤n

∥∥∥δwn+1
h

∥∥∥2

2

≤ sup
1≤k≤n

(c12)2

1 − c12ε
‖wk+1

h ‖
2
2 +

c9c12ε

1 − c12ε

n∑
k=0

‖δwk+1
h ‖

2
2∆t +

c12ε

1 − c12ε
‖δw0

h‖
2
2 +

c8c12ε

1 − c12ε
. (3.47)

Substituting (3.47) into the right-hand of (3.45) yields

∥∥∥δwn+1
h

∥∥∥2

2
+ a

n∑
k=0

∥∥∥δ2wn+1
h

∥∥∥2

2
∆t ≤ c13 sup

1≤k≤n
‖wk+1

h ‖
2
2 + c14

n∑
k=0

‖δwk+1
h ‖

2
2∆t + c15‖δw0

h‖
2
2 + c16. (3.48)

On the basis of Lemma 8 (discrete embedding inequality, time direction), ‖wk+1
h ‖

2
2 on the right hand

of (3.48) can be expressed as

‖wk+1
h ‖

2
2 ≤

k+1∑
m=0

(ε‖∆τwm
h ‖

2
2 +

1
2ε
‖wm

h ‖
2) + ‖w0

h‖
2
2. (3.49)
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Using the bootstrapping and fully utilizing the properties of the format itself, it can be concluded
from (3.30) that

∆τwn+1
j =

1
µ0

(
η(e(Bn+1

j ))δ2wn+1
j + δ2B̃n+1

j δη(ζn+1
j )δe(ξn+1

j )wn+1
j

)
+

1
µ0

(
δη(e(Bn+1

j ))δwn+1
j + δB̃n+1

j (δη(e(Bn+1
j )) − δη(e(B̃n+1

j )))
)
.

Substitute the above equation into (3.49), use the energy estimation inequality (3.29) and the
assumption condition (3.6), and repeat the above steps to obtain

‖wk
h‖

2
2 ≤

k∑
m=0

ε(c15‖δ
2wm

h ‖
2
2 + c16‖δwm

h ‖
2
2 + c17‖wm

h ‖
2
2) +

1
2ε

k∑
m=0

‖wm
h ‖

2
2 + ‖w0

h‖
2
2, (3.50)

that is,

‖wk
h‖

2
2 ≤ c18

k∑
m=0

‖δ2wm
h ‖

2
2 + c19

k∑
m=0

‖δwm
h ‖

2
2 + c20

k∑
m=0

‖wm
h ‖

2
2 + ‖w0

h‖
2
2. (3.51)

For the ‖wm
h ‖

2
2 in the above equation, the embedding theorem is applied to obtain: ‖wm

h ‖
2
2 ≤ ‖w

m
h ‖

2
∞ ≤

‖δwm
h ‖

2
2. Thus(3.51) can be simplified as

‖wk
h‖

2
2 ≤ c18

k∑
m=0

‖δ2wm
h ‖

2
2 + c21

k∑
m=0

‖δwm
h ‖

2
2 + ‖w0

h‖
2
2. (3.52)

Substituting (3.52) into (3.48) yields∥∥∥δwn+1
h

∥∥∥2

2
+ a

n∑
k=0

∥∥∥δ2wk+1
h

∥∥∥2

2
∆t

≤c13 sup
1≤k≤n+1

(c18

k∑
m=0

‖δ2wm
h ‖

2
2 + c21

k∑
m=0

‖δwm
h ‖

2
2 + ‖w0

h‖
2
2) + c14

n∑
k=0

‖δwk+1
h ‖

2
2∆t + c15‖δw0

h‖
2
2 + c16. (3.53)

Similarly, by

a
n∑

k=0

∥∥∥δ2wk+1
h

∥∥∥2

2
∆t

≤c13 sup
1≤k≤n+1

(c18

k∑
m=0

‖δ2wm
h ‖

2
2 + c21

k∑
m=0

‖δwm
h ‖

2
2 + ‖w0

h‖
2
2) + c14

n∑
k=0

‖δwk+1
h ‖

2
2∆t + c15‖δw0

h‖
2
2, (3.54)

it can be inferred that

a sup
1≤k≤n+1

n∑
k=0

∥∥∥δ2wk+1
h

∥∥∥2

2
∆t

≤c13 sup
1≤k≤n+1

(c18

k∑
m=0

‖δ2wm
h ‖

2
2 + c21

k∑
m=0

‖δwm
h ‖

2
2 + ‖w0

h‖
2
2) + c14

n∑
k=0

‖δwk+1
h ‖

2
2∆t + c15‖δw0

h‖
2
2. (3.55)
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Thereby it can be deduced that

c13c18 sup
1≤k≤n+1

k∑
m=0

‖δ2wm
h ‖

2
2 ≤ c22

k∑
m=0

(‖δwm
h ‖

2
2 + ‖w0

h‖
2
2) + c23

n∑
k=0

‖δwk+1
h ‖

2
2∆t + c24‖δw0

h‖
2
2. (3.56)

Substituting (3.56) into the right end of (3.53) yields

∥∥∥δwn+1
h

∥∥∥2

2
+ a

n∑
k=0

∥∥∥δ2wk
h

∥∥∥2

2
∆t ≤ c25

n∑
k=0

‖δwk
h‖

2
2∆t + c26(‖w0

h‖
2
2 + ‖δw0

h‖
2
2). (3.57)

By Lemma 2.7 (discrete Gronwall inequality), we have

f n − f n−1

∆t
=

∑n
k=0 ‖δw

k+1
h ‖

2
2∆t −

∑n−1
k=0 ‖δw

k+1
h ‖

2
2∆t

∆t
= ‖δwn+1

h ‖
2
2, (3.58)

and from (3.57),

∥∥∥δwn+1
h

∥∥∥2

2
≤ c25

n∑
k=0

‖δwk+1
h ‖

2
2∆t + c26(‖w0

h‖
2
2 + ‖δw0

h‖
2
2). (3.59)

Then, take f n =
∑n

k=0 ‖δw
k+1
h ‖

2
2∆t, gn+1 = c25,hn+1 = c26(‖w0

h‖
2
2 + ‖δw0

h‖
2
2), and we can obtain

n∑
k=0

∥∥∥δwk+1
h

∥∥∥2

2
∆t ≤ c27(‖w0

h‖
2
2 + ‖δw0

h‖
2
2). (3.60)

Substituting (3.60) into (3.57) yields

∥∥∥δwn+1
h

∥∥∥2

2
+ a

n∑
k=0

∥∥∥δ2wk+1
h

∥∥∥2

2
∆t ≤ C(‖w0

h‖
2
2 + ‖δw0

h‖
2
2). (3.61)

Thus the stability of the discrete scheme is demonstrated.

4. Numerical verification

4.1. Verification of correctness of discrete scheme

Next, we will verify the correctness of the implicit finite volume discretization scheme for the
magnetic diffusion equation with constant resistivity, and consider the following magnetic diffusion
equation:

∂

∂t
B(x, t) −

∂

∂x
(
η(e)
µ0

∂

∂x
B(x, t)) = 2t +

2cos(x)η(e)
µ0

. (4.1)

The solution interval is (x, t) ∈ [0, 0.5] × [0, 1]. Take µ0 = 4π. The number of mesh segments is,
respectively N = 40, 80, 160, and the number of nodes is, respectively, N1 = 41, 81, 161. The resistivity
η = 9.7 × 10 − 3. The length of the line segment L = 0.5, the average length of the grid dx = L/N,
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T = 1, and the time step dt = dx ∗ dx. It is easy to know that the true solution to this problem is

B(x, t) = 2cos(x) + t2. The error used in the experiment is L2, that is, ErrorL2 =

√
Σ

N1
n=1(B−Bexact)2

N1
.

Table 1. Error order test (space).

dt N ErrorL2 Error ratio
40 1.44E-04 –

dx ∗ dx 80 3.64E-05 3.97
160 9.12E-06 3.99

(a) N=40. (b) N=80. (c) N=160.

Figure 4. Comparison of different space steps.

Table 2. Error Order test (time).

N dt ErrorL2 Error ratio
40 0.01 9.20E-03 –
40 0.005 4.60E-03 2.00
40 0.0025 2.30E-03 2.00

(a) dt=0.01. (b) dt=0.005. (c) dt=0.0025.

Figure 5. Comparison of different time steps.

Conclusions: From the above comparative experiments, it can be seen that when the grid size
increases by 2 times with a fixed time scale, the error ratio between the experimental results and the
true solution is close to 4. When the grid size is fixed, and the time scale increases by 2 times, the
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error ratio between the experimental results and the true solution is equal to 2, which conforms to
the expected experimental errors of o(h2) and o(t), thus verifying the correctness of the implicit finite
volume discretization scheme in this experiment.

4.2. Stability experiments with different resistivities

In this experiment, the true solution is denoted as B, and the perturbation solution is denoted as Bε.
B100 represents the true solution at time step dt = 0.01, and B100

ε represents the perturbation solution at
time step dt = 0.01. The error ratio still uses L2.

Experiment (1): Step-function resistivity

η(e) = η(x, t) =

{
ηS = 9.7 × 10−5, e ∈ [0, ec],
ηL = 9.7 × 10−3, e ∈ (ec,+∞).

Table 3. Error ratio of magnetic field under step resistivity.

dt=0.01 dt=0.001 dt=0.0001
ε ‖B100 − B100

ε ‖ ratio ‖B1000 − B1000
ε ‖ ratio ‖B10000 − B10000

ε ‖ ratio
0.1 0.1779 – 0.2364 – 0.2409 –
0.01 0.0191 9.31 0.0309 7.65 0.0328 7.34
0.001 8.00E-04 23.87 0.0049 6.31 0.0032 10.25
0.0001 8.02E-05 9.98 0.0015 3.27 1.77E-04 18.10

Table 4. Error ratio of internal energy density under step resistivity.

dt=0.01 dt=0.001 dt=0.0001
ε ‖e100 − e100

ε ‖ ratio ‖e1000 − e1000
ε ‖ ratio ‖e10000 − e10000

ε ‖ ratio
0.1 1.96E-02 – 0.0224 – 0.0231 –
0.01 6.60E-03 2.97 0.0039 5.74 0.0033 7.00
0.001 2.10E-03 3.14 8.56E-04 4.55 6.36E-04 5.19
0.0001 7.78E-06 269.95 2.69E-04 3.18 5.33E-05 11.93

Conclusions: Under the same time step dt, when there is a small disturbance in the initial value, the
error ratio changes significantly, indicating that the solution of the magnetic diffusion equation under
step-function resistivity cannot be stable based on the initial value.
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Experiment (2): Constant resistivity η(e) = 9.7e − 3.

Table 5. Error ratio of magnetic field under constant resistivity η(e) = 9.7e − 3.

dt=0.01 dt=0.001 dt=0.0001
ε ‖B100 − B100

ε ‖ ratio ‖B1000 − B1000
ε ‖ ratio ‖B10000 − B10000

ε ‖ ratio
0.1 0.0895 – 0.0895 – 0.0895 –
0.01 0.009 9.94 0.009 9.94 0.009 9.94
0.001 8.95E-04 10.05 8.95E-04 10.05 8.95E-04 10.05
0.0001 8.95E-05 10.00 8.95E-05 10.00 8.95E-05 10.00

Table 6. Error ratio of internal energy density under constant resistivity.

dt=0.01 dt=0.001 dt=0.0001
ε ‖e100 − e100

ε ‖ ratio ‖e1000 − e1000
ε ‖ ratio ‖e10000 − e10000

ε ‖ ratio
0.1 0.0186 – 0.0191 – 0.0197 –
0.01 0.00185 10.05 0.002 9.55 0.002 9.85
0.001 1.82E-04 10.16 1.9703E-04 10.15 2.0298E-04 9.85
0.0001 1.82E-05 10.00 1.9708E-05 10.00 2.0303E-05 10.00

Experiment (3): Linear resistivity η(e) = 9.7e − 3.

η(e) =
ηL − ηS

2ec
e + ηS , e ∈ [0, 2ec],

where, ec = 0.11084958.

Table 7. Error ratio of magnetic field under linear resistivity η(e) = 9.7e − 3.

dt=0.01 dt=0.001 dt=0.0001
ε ‖B100 − B100

ε ‖ ratio ‖B1000 − B1000
ε ‖ ratio ‖B10000 − B10000

ε ‖ ratio
0.1 4.37E-04 – 9.80E-05 – 8.08E-05 –
0.01 4.05E-05 10.78 8.68E-06 11.29 7.30E-06 11.06
0.001 4.02E-06 10.09 8.57E-07 10.13 7.22E-07 10.12
0.0001 4.01E-07 10.01 8.56E-08 10.01 7.26E-08 9.94

Table 8. Error ratio of internal energy density under linear resistivity.

dt=0.01 dt=0.001 dt=0.0001
ε ‖e100 − e100

ε ‖ ratio ‖e1000 − e1000
ε ‖ ratio ‖e10000 − e10000

ε ‖ ratio
0.1 0.1821 – 0.4073 – 0.4729 –
0.01 0.0202 9.01 0.0443 9.19 0.0514 9.20
0.001 0.002 10.10 0.0045 9.84 0.0052 9.88
0.0001 2.04E-04 9.79 4.47E-04 10.07 5.18E-04 10.03
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Experiment (4): The step-function resistivity after polishing.

Table 9. Error ratio of magnetic field under the step-function resistivity after polishing.

dt=0.01 dt=0.001 dt=0.0001
ε ‖B100 − B100

ε ‖ ratio ‖B1000 − B1000
ε ‖ ratio ‖B10000 − B10000

ε ‖ ratio
0.1 9.89E-02 – 9.93E-02 – 9.94E-02 –
0.01 9.90E-03 9.99 9.90E-03 10.03 9.98E-03 9.96
0.001 9.89E-04 10.01 9.98E-04 9.92 9.94E-04 10.04
0.0001 9.87E-05 10.02 9.88E-05 10.11 9.87E-05 10.07

Table 10. Error ratio of internal energy density under the step-function resistivity after
polishing.

dt=0.01 dt=0.001 dt=0.0001
ε ‖e100 − e100

ε ‖ ratio ‖e1000 − e1000
ε ‖ ratio ‖e10000 − e10000

ε ‖ ratio
0.1 0.0012 – 0.01891 – 0.0189 –
0.01 1.19E-04 10.08 0.0019 9.95 0.00198 9.55
0.001 1.19E-05 9.98 1.8903E-04 10.05 1.9998E-04 9.90
0.0001 1.19E-06 10.03 1.8708E-05 10.10 1.9803E-05 10.10

Conclusion: From experiments (2), (3), and (4), it can be seen that under the same time step dt,
when there is a small disturbance in the initial value, the error ratio does not change much. Especially,
the solution of the magnetic diffusion equation under the smoothed step-function resistivity model
has good stability. This is also the advantage of smoothed step-function resistivity ηδ(e) compared to
step-function resistivity η(e).

4.3. Comparison experiment of explicit and implicit schemes under step-function resistivity

In the comparison experiment between explicit and implicit schemes, we take dt =
cµ0∗(dx)2

ηL
,

where, µ0 = 4π, dx = L/N, ηL = 100 × 9.7 × 10 − 3. Therefore, c is the factor that affects dt, and the
larger c is, the larger the time step dt.

Conclusions: From the comparison experiment in the figure above, it is evident that when we use the
curve at c = 0.4 as the true solution graph, as the value of c increases (that is, as the time step increases),
the explicit solution gradually diverges from the true solution. In contrast, the implicit solutions remain
nearly identical to the true solution, with differences only noticeable upon close inspection. This
observation further demonstrates the strong stability and weak time step constraints of the fully implicit
method. These characteristics particularly underscore the superiority of the fully implicit method,
especially when dealing with models exhibiting strong nonlinearity.
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(a) Comparison of magnetic field. (b) Comparison of internal energy density.

Figure 6. Comparison of magnetic field and internal energy density.
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