Citation: Mohammed Alkinidri, Rab Nawaz, Hani Alahmadi. Analytical and numerical investigation of beam-spring systems with varying stiffness: a comparison of consistent and lumped mass matrices considerations[J]. AIMS Mathematics, 2024, 9(8): 20887-20904. doi: 10.3934/math.20241016
[1] | R. E. D. Bishop, D. C. Johnson. The mechanics of vibration, Cambridge University Press, 1960. |
[2] | W. Zhang, S. Zhang, J. Wei, Y. Huang, Flexural behavior of SFRC-NC composite beams: an experimental and numerical analytical study, Structures, 60 (2024), 105823. https://doi.org/10.1016/j.istruc.2023.105823 doi: 10.1016/j.istruc.2023.105823 |
[3] | P. Zhang, P. Schiavone, H. Qing, Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model, Appl. Math. Mech., 44 (2023), 2071–2092. https://doi.org/10.1007/s10483-023-3059-9 doi: 10.1007/s10483-023-3059-9 |
[4] | A. Khanfer, L. Bougoffa, On the nonlinear system of fourth-order beam equations with integral boundary conditions, AIMS Math., 6 (2021), 11467–11481. https://doi.org/10.3934/math.2021664 doi: 10.3934/math.2021664 |
[5] | M. G$\ddot{u}$rg$\ddot{u}$ze, On the vibrations of restrained beams and rods with heavy masses, J. Sound Vib., 100 (1985), 588–589. https://doi.org/10.1016/S0022-460X(85)80009-2 doi: 10.1016/S0022-460X(85)80009-2 |
[6] | T. Liu, P. Feng, Y. Bai, S. Bai, J. Yang, F. Zhao, Flexural performance of curved-pultruded GFRP arch beams subjected to varying boundary conditions, Eng. Struct., 308 (2024), 117962. https://doi.org/10.1016/j.engstruct.2024.117962 doi: 10.1016/j.engstruct.2024.117962 |
[7] | H. R. $\ddot{O}$z, Calculation of the natural frequencies of a beam-mass system using the finite element method, Math. Comput. Appl., 5 (2000), 67–76. https://doi.org/10.3390/mca5020067 doi: 10.3390/mca5020067 |
[8] | E. $\ddot{O}$zkaya, Linear transverse vibrations of a simply supported beam carrying concentrated masses, Math. Comput. Appl., 6 (2001), 147–152. https://doi.org/10.3390/mca6020147 doi: 10.3390/mca6020147 |
[9] | R. O. Grossi, B. Arenas, A variational approach to the vibration of tapered beams with elastically restrained ends, J. Sound Vib., 195 (1996), 507–511. https://doi.org/10.1006/jsvi.1996.0439 doi: 10.1006/jsvi.1996.0439 |
[10] | R. C. Smith, K. L. Bowers, J. Lund, A fully Sinc-Galerkin method for Euler-Bernoulli beam models, Numer. Methods Partial Differ. Equations, 8 (1992), 171–202. https://doi.org/10.1002/num.1690080207 doi: 10.1002/num.1690080207 |
[11] | O. Moaaz, A. E. Abouelregal, F. Alsharari, Lateral vibration of an axially moving thermoelastic nanobeam subjected to an external transverse excitation, AIMS Math., 8 (2023), 2272–2295. https://doi.org/10.3934/math.2023118 doi: 10.3934/math.2023118 |
[12] | M. Baccouch, The local discontinuous Galerkin method for the fourth-order Euler–Bernoulli partial differential equation in one space dimension. Part I: superconvergence error analysis, J. Sci. Comput., 59 (2014), 795–840. https://doi.org/10.1007/s10915-013-9782-0 doi: 10.1007/s10915-013-9782-0 |
[13] | J. Xie, Z. Zhang, Efficient high-order physical property-preserving difference methods for nonlinear fourth-order wave equation with damping, Comput. Math. Appl., 142 (2023), 64–83. https://doi.org/10.1016/j.camwa.2023.04.012 doi: 10.1016/j.camwa.2023.04.012 |
[14] | D. Shi, L. Wang, X. Liao, New estimates of mixed finite element method for fourth-order wave equation, Math. Methods Appl. Sci., 40 (2023), 4448–4461. https://doi.org/10.1002/mma.4316 doi: 10.1002/mma.4316 |
[15] | Y. Liu, C. S. Gurram, The use of He's variational iteration method for obtaining the free vibration of an Euler-Bernoulli beam, Math. Comput. Modell., 50 (2009), 1545–1552. https://doi.org/10.1016/j.mcm.2009.09.005 doi: 10.1016/j.mcm.2009.09.005 |
[16] | M. N. Hamdan, L. A. Latif, On the numerical convergence of discretization methods for the free vibrations of beams with attached inertia elements, J. Sound Vib., 169 (1994), 527–545. https://doi.org/10.1006/jsvi.1994.1032 doi: 10.1006/jsvi.1994.1032 |
[17] | M. Jafari, H. Djojodihardjo, K. A. Ahmad, Vibration analysis of a cantilevered beam with spring loading at the tip as a generic elastic structure, Appl. Mech. Mater., 629 (2014), 407–413. https://doi.org/10.4028/www.scientific.net/AMM.629.407 doi: 10.4028/www.scientific.net/AMM.629.407 |
[18] | G. Kanwal, R. Nawaz, N. Ahmed, Analyzing the effect of rotary inertia and elastic constraints on a beam supported by a wrinkle elastic foundation: a numerical investigation, Buildings, 13 (2023), 1457. https://doi.org/10.3390/buildings13061457 doi: 10.3390/buildings13061457 |
[19] | P. K. Banerjee, R. Butterfield, Boundary element method in engineering science, McGraw-Hill Education, 1981. |
[20] | O. C. Zeinkeinwicz, Finite element method, Butterworth Heineman, 2005. |
[21] | M. Petyt, Introduction to finite element vibration analysis, 2 Eds., Cambridge Univrsiy Press, 2015. https://doi.org/10.1017/CBO9780511761195 |
[22] | L. Euler, De motu vibratorio laminarum elasticarum, ubi plures novae vibrationum species hactenus non pertractatae evolvuntur, Novi Commentarii Academiae Scientiarum Petropolitanae, 1773. |
[23] | A. W. Leissa, M. S. Qatu, Vibrations of continuous systems, McGraw-Hill Education, 2011. |
[24] | S. M. Han, H. Benaroya, T. Wei, Dynamics of transversely vibrating beams using four engineering theories, J. Sound Vib., 225 (1999), 935–988. https://doi.org/10.1006/jsvi.1999.2257 doi: 10.1006/jsvi.1999.2257 |
[25] | T. Nawaz, M. Afzal, R. Nawaz, The scattering analysis of trifurcated waveguide involving structural discontinuities, Adv. Mech. Eng., 11 (2019), 282. https://doi.org/10.1177/1687814019829282 doi: 10.1177/1687814019829282 |
[26] | A. J. Ferreira, N. Fantuzzi, MATLAB codes for finite element analysis, Springer, 2009. https://doi.org/10.1007/978-3-030-47952-7 |
[27] | E. Kreyszig, Advanced engineering mathematics, John Wiley & Sons, Inc., 2009. |
[28] | A. Bosten, V. Denoël, A. Cosimo, J. Linn, O. Brüls, A beam contact benchmark with analytic solution, ZAMM J. Appl. Math. Mech., 103 (2023), e202200151. https://doi.org/10.1002/zamm.202200151 doi: 10.1002/zamm.202200151 |
[29] | M. Bobková, L. Pospíšil, Numerical solution of bending of the beam with given friction, Mathematics, 9 (2021), 898. https://doi.org/10.3390/math9080898 doi: 10.3390/math9080898 |
[30] | L. He, A. J. Valocchi, C. A. Duarte, A transient global-local generalized FEM for parabolic and hyperbolic PDEs with multi-space/time scales, J. Comput. Phys., 488 (2023), 112179. https://doi.org/10.1016/j.jcp.2023.112179 doi: 10.1016/j.jcp.2023.112179 |
[31] | L. He, A. J. Valocchi, C. A. Duarte, An adaptive global-local generalized FEM for multiscale advection-diffusion problems, Comput. Methods Appl. Mech. Eng., 418 (2024), 116548. https://doi.org/10.1016/j.cma.2023.116548 doi: 10.1016/j.cma.2023.116548 |
[32] | A. Yaseen, R. Nawaz, Acoustic radiation through a flexible shell in a bifurcated circular waveguide, Math. Meth. Appl. Sci., 46 (2023), 6262–6278. https://doi.org/10.1002/mma.8902 doi: 10.1002/mma.8902 |
[33] | M. Alkinidri, S. Hussain, R. Nawaz, Analysis of noise attenuation through soft vibrating barriers: an analytical investigation, AIMS Math., 8 (2023), 18066–18087. https://doi.org/10.3934/math.2023918 doi: 10.3934/math.2023918 |