
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(8): 20887–20904.
DOI: 10.3934/math.20241016
Received: 07 March 2024
Revised: 22 May 2024
Accepted: 29 May 2024
Published: 28 June 2024

Research article

Analytical and numerical investigation of beam-spring systems with varying
stiffness: a comparison of consistent and lumped mass matrices
considerations

Mohammed Alkinidri1, Rab Nawaz2,3,* and Hani Alahmadi4

1 Department of Mathematics, College of Science and Arts, King Abdulaziz University, Rabigh,
Saudi Arabia

2 Department of Mathematics, Comsats University Islamabad, Pakistan
3 Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology,

Hawally 32093, Kuwait
4 Mathematics Department, College of Science, Jouf University, P. O. Box 2014, Sakaka, Saudi

Arabia

* Correspondence: Email: nawaz.r@gust.edu.kw.

Abstract: This study examined the vibration behavior of a beam with linear spring attachments using
finite element analysis. It aims to determine the natural frequency with both consistent/coupled mass
and lumped mass matrices. The natural frequencies and corresponding mode shapes were correctly
determined which formed the basis of any further noise vibration and severity calculations and impact
or crash analysis. In order to obtain eigenfrequencies subject to the attached spring, the characteristic
equation was obtained by eigenfunctions expansion whose roots were extracted using the root-finding
technique. The finite element method by coupled and lumped mass matrices was then used to determine
complete mode shapes against various eigenfrequencies. The mode shapes were then analyzed subject
to supports with varying stiffness thereby comparing the analytical and numerical results in case of
consistent and lumped masses matrices so as to demonstrate how the present analysis could prove more
valuable in mathematical and engineering contexts. Utilizing a consistent mass matrix significantly
enhanced accuracy compared to a lumped mass matrix, thereby validating the preference for the former,
even with a limited number of beam elements. The results indicated that substantial deflection occurred
at the beam’s endpoints, supporting the dynamic behavior of the spring-beam system.
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Abbreviations

L: Length; E: Young’s modulus; I: a moment of inertia of cross section; A: cross section area;
x: longitudinal axis; ρ: density; s: Displacement; K1, K2: linear stiffness of the springs at right and
left ends, respectively; S (x): normal function; ω: eigenfequencey; c: wave speed; η: eigenvalues;
Ci(i = 1, 2, 3, 4): cnstant coefficient; Q(x): weighted functions; Ni(i = 1, 2, 3, 4): shape functions;
s j: function of space and time component; s̄ j: amplitude of vibration varying with time; kϵ: stiffness
matrix; mϵ: mass matrix; N: number of element

1. Introduction

The beam, a fundamental structural element, is typically characterized by having one dimension
significantly larger than its other dimensions. This elongated geometry allows beams to efficiently
carry loads and distribute them along their length. Euler-Bernoulli beam (EBB) theory stands as one
of the foundational frameworks used to describe the behavior of beams under certain conditions [1].
The development of beam equations has a rich historical context, with contributions from notable
figures such as Vinci and Galilei. During the eighteenth century, significant advancements in beam
theory were made by eminent mathematicians including Euler, Jacob, and Daniel, culminating in the
establishment of comprehensive analytical tools for understanding beam behavior. The application
of beam theory extends across a diverse range of engineering disciplines, reflecting its essential role
in various practical applications. In transportation engineering, beams are integral components of
bridges, roadways, and railway tracks, where they provide structural support and facilitate the safe
passage of vehicles and pedestrians. Structural engineering heavily relies on beam theory to design
and analyze buildings, bridges, and other infrastructure projects, ensuring their stability and resilience
against external forces such as wind and seismic loads. In aerospace engineering, beams play a crucial
role in the design and construction of aircraft, spacecraft, and aerospace structures, where they must
withstand complex loading conditions and extreme environments. Scholarly research in the field of
continuous structural beam systems has yielded valuable insights and methodologies that contribute
to advancements in engineering practice. Works by [2, 3] exemplify the breadth of studies focused
on beam theory, covering topics ranging from structural analysis and design optimization to materials
research and performance evaluation. These studies underscore the interdisciplinary nature of beam
theory and its significance in addressing real-world engineering challenges across multiple sectors.

Numerous researchers have delved into the intricate dynamics of transverse vibrations exhibited by
beam-spring systems, conducting both exact and approximate analyses to ascertain the natural
frequencies governing their behavior. These investigations have explored the nuanced interplay
between beam vibrations and various factors, including the characteristics of the elastic foundation
supporting the beam. The effects of springs, rotary inertia, and mass distribution have been subjects of
intensive scrutiny across a spectrum of studies, underscoring the multidimensional nature of
beam-spring dynamics. The significance of springs in modulating beam vibrations has been a focal
point of investigation, with studies such as [4, 5] shedding light on their role in altering the structural
response. Additionally, the influence of rotary inertia, mass distribution, and other dynamic
parameters has been rigorously examined in works [6], among others. These investigations have
contributed valuable insights into the intricate dynamics of beam-spring systems and their
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implications for diverse engineering applications. Öz [7] and Özkaya [8] determined beam
frequencies, incorporating mass and using both analytic and finite element methods. Grossi and
Arenas [9] employed Rayleigh-Ritz and optimized Rayleigh-Schmidt methods to investigate
frequency variations with changes in height and width. Smith et al. [10] introduced the fully
Sinc-Galerkin method in space and time to solve beams with cantilever and fixed boundary
conditions. Moaaz et al. [11] formulated mathematical expressions for transverse resonance in simply
supported, axially compressed thermoelastic nanobeams, employing nonlocal elasticity theory and the
dual-phase-lag heat transfer model to explore the impact of length scale and axial velocity on system
responses. Baccouch [12] applied the Galerkin method to solve the Euler-Bernoulli beam equation,
while Xie and Zhang [13] investigated difference methods for nonlinear equations with damping.
Additionally, Shi et al. [14] explored the mixed finite element method for solving such equations.

The variational iteration technique was used by Liu and Gurran [15] to find the natural frequencies
and mode shapes of the beam under different boundary conditions. Galerkin finite element method
(FEM), Rayleigh-Ritz, and exact solutions were compared by Hamdan and Latif [16], and the exhibited
FEM was preferable because of good accuracy. Jafari et al. [17] derived the equation of motion of beam
by applying Hamilton’s principle and obtained the eigenfrequencies and mode shapes for cantilever
beam connected with linear spring at the tip by using the FEM.

Unlike boundary element method, finite difference method, and finite volume method, which are
widely used in acoustic and fluid mechanics (see for example, [18,19]), the study of FEM is considered
as the standard approach in presenting solutions to structural problems, see for instance, [20, 21].
Many industries use FEM software such as ABAQUS (based on Abundant Beads Addition Calculation
Utility System tool), NASA structure analysis, and analysis system for the commercial purpose. It has
been widely discussed on static problems where numerous codes existed while having less validation
and verification for standard problems with respect to dynamics of determining the eigenfrequencies.
In the study of beam dynamics using FEM, consistent mass (CM) and lumped mass (LM) matrices
are critical in accurately representing the system’s behavior. The choice between these two matrices
has an impact on the accuracy and computing efficiency of the analysis. The consistent mass matrix
accurately preserves the system’s mass distribution by taking into account the mass contributions of
all finite constituents. This matrix is constructed directly from the discretized governing equations,
yielding more accurate results, particularly for bigger models with variable element sizes. However,
its bigger size necessitates more computing effort and storage. The lumped mass matrix, on the other
hand, combines the mass contributions into nodal points, making the computing process easier. While
this matrix decreases computational effort and storage needs, it may produce less accurate results,
especially in systems with large mass variations or irregular geometries. Hence, the primary aim of this
study is to present a comprehensive analysis of the vibration behavior of beam-spring systems using
FEM with a focus on the comparative performance of CM and LM matrices. Our work bridges the gap
between mathematical analysis and engineering applications by addressing two primary objectives:

(1) Determining the preferred matrix type (CM or LM) for such analyses from a mathematical
perspective;

(2) Examining the deflection behavior while adjusting the stiffness of the supports at each end of
the beam from an engineering perspective.

The novelty of our study lies in its detailed comparison of CM and LM matrices and providing
insights into their respective accuracies in calculating eigenfrequencies and mode shapes, which has
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not been extensively covered in existing literature. By varying the stiffness of the beam supports, we
analyze the dynamic behavior of the system, offering practical insights valuable for both theoretical
and applied contexts. Additionally, we provide a numerical results section to include a deeper analysis
of the outcomes prior to yielding a detailed introduction to the FEM procedure, including the
assembly of global stiffness and mass matrices and the incorporation of boundary conditions.
Therefore, the underlying study is crucial for both mathematical analysis and practical engineering
applications, making our study a valuable contribution to the field of applied mathematics.

This article is categorized as follows: the governing problem is formulated in Section 2. The
analytical and numerical results are presented in Section 3. Results and discussions are given in
Section 4 and the validation has been performed in Section 5 while the study is summarized in
Section 6.

2. Governing problem

Consider the beam configuration attached to linear springs at both ends having length, as can be
viewed through Figure 1. The material of the beam is made of stainless steel. The Young’s modulus
is 210 GPa and material density is 7850 Kg/m3. The length, width, and thickness of the beam are taken
as 1 m, 0.02 m, and 0.003 m, respectively.

Figure 1. Beam-spring configuration.

The equation of motion for the transverse deflection function in case of free beam’s vibration is
given by [22]

EI
∂4s(x, t)
∂x4 + ρA

∂2s(x, t)
∂t2 = 0. (2.1)

Equation (2.1) together with the standard linear spring conditions of beam defined in [23] will be
considered for the correct determination of eigenfrequencies and mode shapes. The objective is to
provide a more optimal and accurate solution approach by considering the lumped and consistent mass
matrices while providing the finite element solution in proceeding sections. The flexural boundary
conditions at x = 0 and x = L, representing the stiffness of the springs in the positive direction from
left to right, are provided below:

EI
∂2s(0, t)
∂x2 = 0, (2.2a)
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EI
∂3s(0, t)
∂x3 = −K1s(0, t), (2.2b)

EI
∂2s(L, t)
∂x2 = 0, (2.2c)

EI
∂3s(L, t)
∂x3 = K2s(L, t). (2.2d)

Equation (2.1) along with boundary conditions (2.2a–d) is solved by separation of variables to acquire
the characteristics and mode shape equations where the roots of the characteristic equation are extracted
through Mathematica-based code. These roots are termed as eigenfrequencies and will be useful in
determining the eigenmodes in the subsequent section.

3. Determination of eigenfrequency and mode shape

As we seek to determine the natural frequency and mode shape of the vibrating beam as given by
previously defined boundary conditions, we use an analytical and numerical approach to obtain the
desired results. It is appropriate to note that a numerical approach is used to consider CM and LM
matrices, which provides a justification for solving more complex problems with a similar scheme.

3.1. Analytical results

We apply separation of variables to the governing problem given in Section 2 by letting

s(x, t) = S (x)T (t). (3.1)

Therefore, Eq (2.1) can be written as [24]

c2 1
S (x)

∂4S (x)
∂x4 = −

1
T (t)
∂2T (t)
∂t2 = ω2, (3.2)

where

c =

√
EI
ρA
,

and Eq (3.2) is further split as

d4S (x)
dx4 − η4S (x) = 0 (3.3)

and

d2T (t)
dt2 + ω2T (t) = 0, (3.4)

where η is given by

η =

√
ω

c
. (3.5)
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Equation (3.3) yields the following equation

S (x) = C1 sin(ηx) +C2 cos(ηx) +C3 sinh(ηx) +C4 cosh(ηx). (3.6)

Using Eq (3.6) in Eq (2.2a–d), we obtain

−EIC2η
2 + EIC4η

2 = 0, (3.7)
−EIη3C1 +C2K1 + EIη3C3 +C4K1 = 0, (3.8)

−C1η
2EI sin(ηL) −C2η

2EI cos(ηL) +C3η
2EI sinh(ηL) +C4η

2EI cosh(ηL) = 0 (3.9)

and

C1[−EIη3 cos(ηL) − K2 sin(ηL)] +C2[EIη3 sin(ηL) − K2 cos(ηL)]
+C3[EI cosh(ηL) − K2 sinh(ηL)] +C4[EIη3 sinh(ηL) − K2 cosh(ηL)] = 0. (3.10)

By using Eq (3.7) in Eq (3.6), we obtain

S (x) = C1

[
C2

C1
(cosh(ηx) + cos(ηx)) + sin(ηx) +

C3

C1
sinh(ηx)

]
. (3.11)

The results obtained by using boundary conditions (2.2a–d) are given by Eqs (3.7)–(3.10)
representing a system of four equations with four unknowns C1–C4. In order to have a nontrivial
solution, the determinant of the coefficient matrix must be zero, which leads to a frequency equation
given as

−2η2EI[−η3EI cosh(η)(EIη3 cos(ηL) + sin(ηL)(K1 + K2))
+(EIη3(K1 + K2) cos(ηL) + 2 sin(ηL)K1K2) sinh(ηL) + E2I2η6] = 0. (3.12)

After finding the values of C3
C1

and C2
C1

from Eqs (3.8) and (3.10), respectively, and putting into Eq (3.11),
the nth mode shape equation is determined. This equation is used to plot the mode shapes/eigenmodes
subject to corresponding eigenfrequencies. The eigenfrequencies are computed by using Eq (3.5), after
determining the eigenvalues (η) from Eq (3.12).

The analytic solution for the beam attached to linear springs is achieved more conveniently.
However, in case of more complex and challenging problems with added effects and flexural boundary
conditions, and structural and material discontinuities [25], it becomes difficult to obtain analytical
solutions. Therefore, we propose the finite element scheme with the consideration of LM and CM
matrices to obtain numerical solutions for such problems in subsequent section. Albeit the scheme to
be adopted herein will provide a reference model for the comparative analysis. In case of substantial
problems related to beams, FEM provides a fast and easy method to address these problems.

3.2. Numerical results

This section aims to provide the workings of FEM by CM and LM matrices to calculate the
eigenmodes and eigenfrequencies.
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3.2.1. FEM

The first step in FEM is to discretize the beam into a finite number of elements. There are two
end nodes, each with two degrees of freedom, for each beam element. As demonstrated in Figure 2,
these degrees of freedom include both translational displacements (Vi, where i=1,2) and rotational
displacements (θ j, where j=1,2).

Figure 2. Beam element.

The node’s movement across the axis of the beam is indicated by the translational degrees of
freedom, and its rotation about the corresponding axes is indicated by the rotational degrees of
freedom. As the beam under examination is uniform, it is assumed that all elements, utilized to mesh
the total beam, are indistinguishable. The subsequent step is to acquire the weak form of the
differential equation. For this purpose, the weight functions are multiplied with the residual value of
an approximate solution and are then integrated over the domain yielding zero value. While using the
process of discretization and weak formation in Eq (2.1), it is found that∫ L

0
Q(x)

(
EI

d4s
dx4 + ρA

d2s
dt2

)
dx = Q(x)EI

d3s
dx3

∣∣∣∣L
0
− EI

d2s
dx2

dQ
dx

∣∣∣∣L
0

+

∫ L

0
EI

d2s
dx2

d2Q
dx2 dx +

∫ L

0
Q(x)

(
ρA

d2s
dt2

)
dx

= 0.

(3.13)

It is noted that the highest order of derivative in Eq (3.13) is three; therefore, an approximate
function of thrice differentiable is selected. A cubic interpolation polynomial fulfills this
requirement [26] normally. Applying the Galerkin FEM, a weight function is equated with the
approximate function

Qi = Ni,

where these cubic interpolation functions are called cubic spline functions, given as

N1 = 1 − 3
( x
L

)2
+ 2

( x
L

)3
,

N2 = x
( x
L
− 1

)2
,

N3 =

( x
L

)2
(
3 −

2x
L

)
,

N4 =
x2

L

( x
L
− 1

)
.

(3.14)
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While putting these shape functions, given by Figure 3, into Eq (3.13) and assuming

s =
4∑

j=1

s jN j,

we get ∫ L

0
Q(x)

(
EI

d4s
dx4 + ρA

d2s
dt2

)
dx = EIs jNiN j,xxx]L

0 − EIs jN j,xxNi,x]L
0

+

∫ L

0
EINi,xxN j,xxs jdx + ρA

∫ L

0
s j,ttNiN jdx

= 0.

(3.15)
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Figure 3. Shape function for EBB.

Equation (3.15) can be written as

[kϵ]s j + [mϵ]s j,tt = 0, (3.16)

where s j can be written as
s j =

{
s̄ j

}
eiωt. (3.17)

Putting Eq (3.17) in Eq (3.16), we obtain

[kϵ] − ω2[mϵ] = 0, (3.18)

where [kϵ] and [mϵ] are given as

[kϵ] =
EI
L3


12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2


, (3.19)
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[mϵ] =
ρAL
420


156 22L 54 −13L

22L 4L2 L3L −3L2

54 13L 156 −22L

−13L −3L2 −22L 4L2


, (3.20)

and the LM matrix [21] would be

ρAL
2


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


. (3.21)

Here, we clarify the computational procedures using MATLAB codes based on FEM with LM and
CM matrices to calculate the eigenfrequencies and mode shapes of the beam subject to linear springs.
Below is a detailed description of our approach:

(I) Development of global matrices
(1) The MATLAB code generates the global stiffness, and LM and CM matrices for the highest

number of elements.
(2) Boundary conditions are incorporated after forming the global stiffness and mass matrices.

(II) Incorporating boundary conditions
(1) The stiffness of the linear spring attached to the left end is added to the first entry of the first row

of the global stiffness matrix.
(2) Similarly, the stiffness of the spring at the right end is added to the second to last entry of the

final row of the global stiffness matrix.

(III) Calculation of eigenvalues and eigenfrequencies
(1) Eigenvalues are calculated from the global stiffness and mass matrices according to Eq (3.18).
(2) Eigenfrequencies are then obtained by taking the square root of these eigenvalues.

This procedure follows the methods outlined in several studies, such as references [27–31].

4. Results and discussion

This section aims to discuss the eigenmodes/mode shapes of the structural dynamics of the beam,
which actually describes the deformation that the beam component would exhibit if it vibrates at the
eigenfrequency. The deformation usually takes place through an excitation, which leads to the overall
vibration of a component of the beam that includes the individual shapes of vibration. Therefore,
eigenfrequencies and mode shapes indicate how the beam structure behaves under certain boundary
conditions. It is noteworthy that the eigenmode characteristic is suitable for the qualitative evaluation
of the dynamics of the beam component. The tabular and graphical analysis are presented to discuss
beam dynamics at length.
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Table 1 lists the comparison of eigenfrequencies determined by analytic method (AM), FEM by
CM and LM matrices, receptively, with

K1,K2 = 10000 N/m.

The accuracy of eigenfrequencies are increased by increasing the number of elements of the beam.
The percentage errors (with N=5) for the CM matrix are 0.01032973, 0.14547164, 0.59715900,
and 1.34119028, respectively.

While 0.10280563, 1.26825474, 2.71380904, and 8.37102285 are percentage errors for the LM
matrix, this indicates that the CM matrix gives better accuracy for nonclassical boundary conditions as
compared to the LM matrix even for the lower number of elements. Table 1 clearly demonstrates that
CM gives excellent agreement at

N = 50,

but does not get the same accuracy for LM even by using

N = 100.

Table 1. Comparison of eigenfrequencies of first four modes for K1 = K2 = 10000 N/m.

Modes AM FEM by CM FEM by LM Percentage error
For CM For LM

N = 5
1st 6.90724849 6.90796199 6.91434953 0.01032973 0.10280563
2nd 26.09674381 26.13470717 26.42771700 0.14547164 1.26825473
3rd 52.84510702 53.16067633 54.27922231 0.59715900 2.71380904
4th 81.45836541 82.55087709 74.63946703 1.34119028 8.37102285

N = 10
1st 6.90724849 6.90729342 6.90918512 0.00065048 0.02803765
2nd 26.09674381 26.09915748 26.18963094 0.00924893 0.35593375
3rd 52.84510702 52.86511702 53.29345172 0.03786538 0.84841289
4th 81.45836541 81.53039633 80.56105229 0.08842667 1.10156043

N = 50
1st 6.90724849 6.90724856 6.90732785 0.000000101 0.00114894
2nd 26.09674382 26.09674771 26.10054215 0.00001487 0.01455480
3rd 52.84510702 52.84513933 52.86350476 0.00006114 0.03481446
4th 81.45836541 81.45848351 81.43321124 0.00014498 0.03087979

N = 100
1st 6.90724849 6.90724851 6.90726831 0.00000029 0.00028694
2nd 26.09674382 26.09674412 26.09769399 0.00000115 0.00028694
3rd 52.84510702 52.84510912 52.84970909 0.00000397 0.00870860
4th 81.45836541 81.45837285 81.45215478 0.00000913 0.00762930

It is noteworthy that
N = 10

yields excellent accuracy; however,
N = 50
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and

N = 100

are intended merely to demonstrate that increasing the number of elements improves accuracy.
Table 2 is a comparison of natural frequencies calculated by analytical and numerical methods,

respectively, by decreasing the spring stiffness of the right end. The table shows that natural frequencies
and stiffness of the right end spring are in a direct relationship, where natural frequencies decrease with
decreasing spring stiffness. In addition, the numerical results are in close agreement with the analytical
results when comparing the numerical solution for the CM matrices instead of the LM matrices. Rather,
FEM by the consideration of CM matrices gives excellent accuracy not only for lower modes but also
for higher modes.

Table 3 indicates the comparison of eigenfrequencies by increasing the stiffness of the left end.
From tables, it is observed easily by increasing the value of K1 that eigenfrequencies are also increased.
A study has demonstrated that the CM matrices can give accurate eigenfrequencies for higher modes
as well as lower ones, but LM cannot give the best accuracy for lower modes as well as for higher
modes.

Table 4 mentions the comparison of numerical and analytical results by increasing the spring
stiffness of both ends and shows a similar behavior for natural frequencies and solution accuracy as in
case of Tables 1–3.

Table 2. Comparison of eigenfrequencies of first four modes for K1 = 10000 N/m, K2 =

1000 N/m.

Modes AM FEM by CM FEM by LM Percentage error
For CM For LM

N = 5
1st 6.35701924 6.35757819 6.38367463 0.00879264 0.41930642
2nd 18.88435515 18.89870611 18.60125288 0.07599391 1.49913654
3rd 37.23312923 37.33388399 34.14209661 0.27060513 8.30183410
4th 66.98883703 67.54369195 61.04497484 0.82827967 8.87291440

N = 10
1st 6.35701924 6.35705430 6.36418013 0.00055151 0.11264540
2nd 18.88435515 18.88526930 18.82742317 0.00484077 0.30147696
3rd 37.23312923 37.23999014 36.48814214 0.01842689 2.00087155
4th 66.98883703 66.92997846 65.34527890 0.08786325 2.45348061

N = 50
1st 6.35701924 6.35701929 6.35730648 0.00000078 0.00451846
2nd 18.88435515 18.88435660 37.20428112 0.00000767 0.01115087
3rd 37.23312923 37.23314046 37.20428112 0.00003016 0.07747968
4th 66.98883703 66.98890259 66.92288123 0.00009786 0.09845789

N = 100
1st 6.35701924 6.35701923 6.35709101 0.00000015 0.00112898
2nd 18.88435515 18.88435528 18.88383000 0.00000068 0.00278087
3rd 37.23312923 37.23312992 37.22592579 0.00000185 0.01934685
4th 66.98883703 66.98884110 66.97235365 0.00000607 0.02460615
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Table 3. Comparison of eigenfrequencies of first four modes for K1 = 1000000, K2 =

10000 N/m.

Modes AM FEM by CM FEM by LM Percentage error
For CM For LM

N = 5
1st 6.96985529 6.97058784 6.97318699 0.01051026 0.04780157
2nd 27.03932973 27.08117845 27.20251475 0.15476981 0.60350986
3rd 57.08313134 57.47001406 57.52811675 0.67775315 0.77953924
4th 92.56612927 94.07004264 80.41180184 1.62469078 13.13042635

N = 10
1st 6.96985529 6.96990142 6.97085023 0.00066185 0.01427757
2nd 27.03932973 27.04200859 27.09268028 0.00990727 0.19730722
3rd 57.08313134 57.10818680 57.34259598 0.04389293 0.45453827
4th 92.56612927 92.67041635 90.82713601 0.11238909 1.87864964

N = 50
1st 6.96985529 6.96985536 6.96989697 0.00000100 0.00059800
2nd 27.03932973 27.03933403 27.04157469 0.00001590 0.00830257
3rd 57.08313134 57.08317194 57.09446492 0.00007112 0.01985452
4th 92.56612927 92.56630243 92.51496052 0.00018707 0.05527805

N = 100
1st 6.96985529 6.96985538 6.96986568 0.00000129 0.00014907
2nd 27.03932973 27.03932996 27.03989174 0.00000085 0.00207849
3rd 57.08313134 57.08313385 57.08597067 0.00000440 0.00497403
4th 92.56612927 92.56614015 92.55346771 0.00001175 0.01367839

Table 4. Comparison of eigenfrequencies of first four modes for K1 = K2 = 50000 N/m.

Modes AM FEM by CM FEM by LM Percentage error
For CM For LM

N = 5
1st 7.00984547 7.01058818 7.01069925 0.01059524 0.01217972
2nd 27.72533453 27.77009228 27.75837598 0.01614326 0.11917421
3rd 61.16521834 61.63086692 61.09088070 0.76129635 0.12153580
4th 105.4525306 107.82633768 101.05828707 2.25106688 4.16703475

N = 10
1st 7.00984547 7.00989023 7.01218744 0.00063853 0.03340972
2nd 27.72533453 27.72813738 27.74771968 0.01010934 0.08273897
3rd 61.16521834 61.19584117 61.39079599 0.05006575 0.08073897
4th 105.4525306 105.60832597 106.45143402 0.14773974 0.94725408

N = 50
1st 7.00984547 7.00984337 7.00986020 0.00002995 0.00021013
2nd 27.72533453 27.72529534 27.72631753 0.00014135 0.00354549
3rd 61.16521834 61.16521665 61.17571474 0.00002763 0.01716073
4th 105.4525306 105.45258028 105.49998929 0.00004703 0.04500470

N = 100
1st 7.00984547 7.00984334 7.00984750 0.00003038 0.00002895
2nd 27.72533453 27.72529099 27.72554833 0.00015704 0.00077113
3rd 61.16521834 61.16516979 61.16781319 0.00007937 0.00424236
4th 105.4525306 105.45234022 105.46427897 0.00018055 0.03111408
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Figures 4–7 represent the first four natural modes for varying the spring stiffness of the underlying
beam configuration.

Figure 4. Mode shapes of (mode 1): 1st eigenmode; (mode 2): 2nd eigenmode; (mode 3): 3rd

eigenmode; (mode 4): 4th eigenmode; for K1=K2 = 10000 N/m.

Figure 5. Mode shapes of (mode 1): 1st eigenmode; (mode 2): 2nd eigenmode; (mode 3): 3rd

eigenmode; (mode 4): 4th eigenmode; for K1 = 10000 N/m,K2 = 1000 N/m.
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Figure 6. Mode shapes of (mode 1): 1st eigenmode; (mode 2): 2nd eigenmode; (mode 3): 3rd

eigenmode; (mode 4): 4th eigenmode; for K1 = 1000000 N/m, K2 = 10000 N/m.

Figure 7. Mode shapes of (mode 1): 1st eigenmode; (mode 2): 2nd eigenmode; (mode 3): 3rd

eigenmode; (mode 4): 4th eigenmode; for K1 = K2 = 50000N/m.

It is evident that the number of node points increases with each successive mode. The occurrence of
node points indicates negligible deflection at certain locations of the beam. For higher natural modes,
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deflection becomes zero at multiple locations on the beam. Furthermore, the mode shapes clearly
provide alternative symmetric and antisymmetric modes in case of even and odd modes, respectively.
It is worth noting that the greatest amount of deflection occurs at the end of the beam because the
spring beam system generally shows an initial deflection to obtain the equilibrium position. However,
the spring no longer deflects after having static equilibrium.

5. Validation of results

The intent of this section is to demonstrate the validity of the results mentioned above. The
underlying results for a few specific cases that have already been documented in the literature are
rendered for this purpose. The simply supported EBB eigenfrequencies have been determined to be
precisely comparable to those reported by Leissa [23] when

K1 = K2 = 1012

has been taken into account, as shown in Table 5. Furthermore, letting the stiffness parameters be

K1 = K2 = 0

verifies the findings of the free free EBB [23].

Table 5. Comparison of eigenfrequencies of first four modes for N=10.

Modes [23] FEM by CM FEM by LM
K1 = K2 = 1012

1st 9.8696 9.8696 9.8695
2nd 39.478 39.4782 39.4737
3rd 88.876 88.8769 88.7669
4th 57.914 157.7529 157.5231

K1 = K2 = 0
1st 0.0000 0,0000 0.0000
2nd 0.000 0.0002 0.0041
3rd 22.273 22.3740 21.7055
4th 61.373 61.6881 58.6391

6. Conclusions

In this article, the modal analysis of the Euler-Bernoulli beam subject to attached linear springs has
been made. Eigenfrequencies and mode shapes were evaluated by comparing the analytic method and
FEM using CM and LM matrices by varying the stiffness of the springs. It has been noted that more
numbers of beam elements resulted in better accuracy of eigenfrequencies whereas consideration of
the CM matrix showed excellent accuracy as compared to the LM matrix for N=5 or N=100. This has
justified the preference of considering the CM matrix over the LM matrix even for a small number of
beam elements for the greater advantage and better accuracy of the solution. Also, it has been observed
that a large amount of deflection occurred at the end points of the beam which justified the dynamics
of the spring beam system.
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While dealing with more complex and practical problems of beam dynamics, obtaining analytical
solutions often becomes challenging and sometimes impossible. It has been noticed that the use of
FEM with the consideration of the LM matrix is rather convenient in addressing more challenging and
practical problems related to beam dynamics. The underlying study concluded with the aim to
provide an effective way to treat such problems numerically in a more efficient way. Furthermore, it is
important to note that the suggested method can be easily extended to specific two-dimensional
structures such as plates and shells with common boundary conditions, albeit with numerical
concerns. However, it is critical to recognize that adding plates and shell-like structures may create
complexities that are beyond the capability of typical numerical methods. In such circumstances,
mode-matching algorithms have emerged as viable options for addressing complex structures; see, for
reference, [32, 33]. While mode-matching methods may neglect some effects, such as break-out, they
provide useful insights into vibrating processes and serve as benchmark answers for fully numerical
systems. Traditionally, numerical and analytical methods are used to describe finite-length plate or
shell-like structures. Numerical methods, such as the finite element method or the boundary element
method, allow for the analysis of structures of various shapes and sizes. However, as the excitation
frequency and structure dimensions increase, so does the number of degrees of freedom, making these
approaches unsuitable even for relatively small structures. As a result, in situations where typical
numerical approaches are limited, mode-matching solutions provide a desirable and precisely
computed option for handling the complexity inherent in modeling finite-length plate or shell-like
structures.

Author contributions

M. Alkinidri: conceptualization, methodology, writing (review and editing), investigation,
analysis, visualization, validation, resources; R. Nawaz: conceptualization, methodology, writing
(original draft), investigation, analysis, visualization, validation, supervision; H. Alahmadi:
methodology, writing (review and editing), investigation, analysis, visualization, validation, resources.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors express their gratitude to Dr. Gulnaz Kanwal for her valuable suggestions, particularly
regarding the computational aspects of the study, which significantly improved the quality of the article.

Conflict of interest

The authors declare no conflicts of interest.

References

1. R. E. D. Bishop, D. C. Johnson. The mechanics of vibration, Cambridge University Press, 1960.

AIMS Mathematics Volume 9, Issue 8, 20887–20904.



20903

2. W. Zhang, S. Zhang, J. Wei, Y. Huang, Flexural behavior of SFRC-NC composite
beams: an experimental and numerical analytical study, Structures, 60 (2024), 105823.
https://doi.org/10.1016/j.istruc.2023.105823

3. P. Zhang, P. Schiavone, H. Qing, Dynamic stability analysis of porous functionally graded beams
under hygro-thermal loading using nonlocal strain gradient integral model, Appl. Math. Mech., 44
(2023), 2071–2092. https://doi.org/10.1007/s10483-023-3059-9

4. A. Khanfer, L. Bougoffa, On the nonlinear system of fourth-order beam equations with integral
boundary conditions, AIMS Math., 6 (2021), 11467–11481. https://doi.org/10.3934/math.2021664
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