Citation: Wenjuan Liu, Zhouyu Li. Global weighted regularity for the 3D axisymmetric non-resistive MHD system[J]. AIMS Mathematics, 2024, 9(8): 20905-20918. doi: 10.3934/math.20241017
[1] | Jae-Myoung Kim . Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space. AIMS Mathematics, 2021, 6(3): 2440-2453. doi: 10.3934/math.2021148 |
[2] | Muhammad Naqeeb, Amjad Hussain, Ahmad Mohammed Alghamdi . Blow-up criteria for different fluid models in anisotropic Lorentz spaces. AIMS Mathematics, 2023, 8(2): 4700-4713. doi: 10.3934/math.2023232 |
[3] | A. M. Alghamdi, S. Gala, M. A. Ragusa . A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations. AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565 |
[4] | Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16 |
[5] | Yanping Zhou, Xuemei Deng, Qunyi Bie, Lingping Kang . Energy conservation for the compressible ideal Hall-MHD equations. AIMS Mathematics, 2022, 7(9): 17150-17165. doi: 10.3934/math.2022944 |
[6] | Muhammad Asif Zahoor Raja, Kottakkaran Sooppy Nisar, Muhammad Shoaib, Ajed Akbar, Hakeem Ullah, Saeed Islam . A predictive neuro-computing approach for micro-polar nanofluid flow along rotating disk in the presence of magnetic field and partial slip. AIMS Mathematics, 2023, 8(5): 12062-12092. doi: 10.3934/math.2023608 |
[7] | Jianlong Wu . Regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term. AIMS Mathematics, 2024, 9(6): 16250-16259. doi: 10.3934/math.2024786 |
[8] | Ahmad Mohammad Alghamdi, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion to the 3D micropolar fluid equations. AIMS Mathematics, 2020, 5(1): 359-375. doi: 10.3934/math.2020024 |
[9] | Ruihong Ji, Ling Tian . Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain. AIMS Mathematics, 2021, 6(11): 11837-11849. doi: 10.3934/math.2021687 |
[10] | Tao Zhang, Jie Liu . Anisotropic Moser-Trudinger type inequality in Lorentz space. AIMS Mathematics, 2024, 9(4): 9808-9821. doi: 10.3934/math.2024480 |
Generally speaking, the three-dimensional incompressible non-resistive MHD system in Euclidean coordinates reads
{∂tu+u⋅∇u+∇P−Δu=b⋅∇b,(t,x)∈R+×R3,∂tb+u⋅∇b=b⋅∇u,divu=divb=0,(u,b)|t=0=(u0,b0), | (1.1) |
where the unknowns u=(u1,u2,u3), b=(b1,b2,b3), and P represent the velocity of the fluid, the magnetic field, and the scalar pressure function, respectively. Physically, (1.1) governs the dynamics of the velocity and magnetic fields in electrically conducting fluids, such as plasmas, liquid metals, and salt water. It is frequently applied in astrophysics, geophysics, cosmology, and so forth. One may check the references [7,11,25] for more applications and numerical studies.
Be aware that system (1.1) reduces to the classical Navier-Stokes equations when b is identically zero. The global regularity of the 3D Navier-Stokes equations with large initial data remains open and it is generally viewed as one of the most challenging open problems in fluid mechanics. As a result, various efforts are made to study the solutions by using axisymmetric methods.
In this paper, we assume that the solution (u,b) of system (1.1) has the following axisymmetric form:
{u(t,x)=ur(t,r,z)er+uθ(t,r,z)eθ+uz(t,r,z)ez,b(t,x)=br(t,r,z)er+bθ(t,r,z)eθ+bz(t,r,z)ez. |
Here,
r=√x21+x22,er=(x1r,x2r,0),eθ=(−x2r,x1r,0),ez=(0,0,1). |
In the above, uθ is usually called the swirl component. We say u is without swirl if uθ=0.
In recent years, a great deal of mathematical effort has been dedicated to the study of the 3D axisymmetric Navier-Stokes equations. For the case of uθ=0, Abidi [1] and Ladyzhenskaya [15] independently proved the existence, uniqueness, and regularities of generalized solutions. The first author of this paper in [19] obtained the global well-posedness of the inhomogeneous axisymmetric Navier-Stokes equations. For the case of uθ≠0, the authors need to impose some smallness conditions on the initial data. For more references, we recommend [4,28] and references therein.
Many fruitful studies on the well-posedness problem of the MHD system (1.1) have been achieved in recent years, see [5,8,9,13] and references therein. Now we recall some results on the axisymmetric MHD equations. Lei [17] considered a family of special axisymmetric initial data with uθ0=br0=bz0=0 and showed the global well-posedness of system (1.1) without any smallness assumptions. Further improvement was made by Ai and Li [2], who weakened the initial regularity. When the angular velocity is not trivial, Liu [21] obtained the global well-posedness of system (1.1) provided that ‖ruθ0‖L∞ and ‖bθ0r‖L32 are small enough. Later on, Zhang and Rao [27] improved this result by removing the smallness of ‖bθ0r‖L32.
Researchers are interested in the classical problem of finding regularity criteria of the axisymmetric MHD system. In [23], Li and Liu established the following regularity criteria for the 3D axisymmetric non-resistive MHD system in Lorentz spaces
‖uθrs‖Lq(0,T∗;Lp,∞(R3))<∞,3p+2q≤1+s,31+s<p≤∞. |
Later, by using some inequalities in anisotropic Lorentz spaces and the generalized Hardy-Sobolev inequality, this result was extended to anisotropic Lorentz spaces in [16]. More precisely, he proved that if the initial data (u0,b0)∈H2(R3), br0=bz0=0, and the horizontal swirl component of velocity satisfies
uθrs∈Lq(0,T;Lp1,∞x1(R)Lp2,∞x2(R)Lp3,∞x3(R))with2q+1p1+1p2+1p3=1+s,−12<s≤0,31+s<pi≤∞,21+s≤q<∞, | (1.2) |
or uθrs∈L∞(0,T;Lp1,∞x1(R)Lp2,∞x2(R)Lp3,∞x3(R)) with 1p1+1p2+1p3=1+s and the norm of ‖uθrs‖L∞(0,T;Lp1,∞x1(R)Lp2,∞x2(R)Lp3,∞x3(R)) is sufficiently small, then the solution (u,b) can be smoothly extended beyond T. For more regularity criteria on the axisymmetric MHD system, see [12,18,20] and references therein.
We can rewrite system (1.1) as
{∂tur+(ur∂r+uz∂z)ur−(uθ)2r+∂rP=(Δ−1r2)ur+(br∂r+bz∂z)br−(bθ)2r,∂tuθ+(ur∂r+uz∂z)uθ+uruθr=(Δ−1r2)uθ+(br∂r+bz∂z)bθ+brbθr,∂tuz+(ur∂r+uz∂z)uz+∂zP=Δuz+(br∂r+bz∂z)bz,∂tbr+(ur∂r+uz∂z)br=(br∂r+bz∂z)ur,∂tbθ+(ur∂r+uz∂z)bθ+uθbrr=(br∂r+bz∂z)uθ+urbθr,∂tbz+(ur∂r+uz∂z)bz=(br∂r+bz∂z)uz,∂rur+urr+∂zuz=0,∂rbr+brr+∂zbz=0, | (1.3) |
where the operator Δdef=∂2∂r2+1r∂∂r+∂2∂z2.
In this paper, we consider the following initial data:
u0=ur0er+uθ0eθ+uz0ez,b0=bθ0eθ. |
Thus, by using the uniqueness of local solutions to system (1.1), we conclude that br=bz=0 for all later times. Then, system (1.3) is equivalent to
{∂tur+(ur∂r+uz∂z)ur−(uθ)2r+∂rP=(Δ−1r2)ur−(bθ)2r,∂tuθ+(ur∂r+uz∂z)uθ+uruθr=(Δ−1r2)uθ,∂tuz+(ur∂r+uz∂z)uz+∂zP=Δuz,∂tbθ+(ur∂r+uz∂z)bθ=urbθr,∂rur+urr+∂zuz=0. | (1.4) |
We can also write the vorticity field w in cylindrical coordinates
w=∇×u=wr(t,r,z)er+wθ(t,r,z)eθ+wz(t,r,z)ez, |
where
wr=−∂zuθ,wθ=∂zur−∂ruz,wz=∂r(ruθ)r. |
According to system (1.4), the quantity (wr,wθ,wz) verifies
{∂twr+(ur∂r+uz∂z)wr=(Δ−1r2)wr+(wr∂r+wz∂z)ur,∂twθ+(ur∂r+uz∂z)wθ=(Δ−1r2)wθ+urrwθ+1r∂z(uθ)2−1r∂z(bθ)2,∂twz+(ur∂r+uz∂z)wz=Δuz+(wr∂r+wz∂z)uz. | (1.5) |
We notice that condition (1.2) is concerned with the case −12<s≤0. Thus, a natural and interesting problem is whether or not the range of indicator s in condition (1.2) can be extended. The goal of this paper is to give a positive answer. Inspired by [16,26], we obtain the regularity criteria of system (1.4) in anisotropic Lorentz spaces with 0≤s<∞. Let us state our main result.
Theorem 1.1. Let (u,b) be an axially symmetric solution to the MHD system (1.1) associated with the initial data (u0,b0)∈Hm(R3), m≥3, and br0=bz0=0. If the horizontal swirl component of velocity satisfies
uθrs∈Lq(0,T;Lp1,∞x1(R)Lp2,∞x2(R)Lp3,∞x3(R))with2q+1p1+1p2+1p3=1+s,0≤s<∞,31+s<pi≤∞,21+s≤q<∞, | (1.6) |
or
‖uθrs‖L∞(0,T;Lp1,∞x1(R)Lp2,∞x2(R)Lp3,∞x3(R))<ϵ with1p1+1p2+1p3=1+s, | (1.7) |
where ϵ=ϵ(s,ru0θ)<<1, then (u, b) can be smoothly extended beyond T.
Remark 1.1. In [26], the authors established several new anisotropic Hardy-Sobolev inequalities in mixed Lebesgue spaces and mixed Lorentz spaces. They also derived regularity criteria of the 3D axisymmetric Navier-Stokes system. We extend the related regularity criteria to the MHD system. In addition, compared to the results in [23], thanks to the new anisotropic Hardy-Sobolev inequality, we generalize the result to the anisotropic Lorentz space.
Remark 1.2. We extend the results in [16] to the case of 0≤s<∞.
The remaining of this paper is organized as follows: In Section 2, we provide the definition of anisotropic Lorentz spaces and gather some elementary inequalities. The proof of Theorem 1.1 is given in Section 3.
Notations. We shall always denote ∫R3⋅dx=2π∫∞0∫R⋅rdrdz and the letter C as a generic constant which may vary from line to line. The Fourier transform ˆf of a Schwartz function f on Rn is defined as ˆf(ξ)=(2π)−n2∫Rne−ix⋅ξf(x) dx. Furthermore, for s≥0, we define Λsf by ^Λsf(ξ)=(∑ni=1|ξi|2)s2ˆf(ξ), where the notation Λ stands for the square root of the negative Laplacian (−Δ)12. Similarly, we denote ^Λsxif(ξ)=|ξi|sˆf(ξ) and ^Λsx1,x2,⋯xkf(ξ)=(∑ki=1|ξi|2)s2ˆf(ξ).
First, we recall the definition of Lorentz spaces, see [24] for details. Given 1≤p<∞,1≤q≤∞, a measurable function f then belongs to the Lorentz spaces Lp,q(R3) if ‖f‖Lp,q(R3)<∞, where
‖f‖Lp,q(R3):={(∫∞0tq−1|x∈R3:|f(x)>t|qpdt)1q,if q<∞,supt>0t|{x∈R3:|f(x)|>t}|1p,if q=∞. |
The anisotropic Lorentz space L→p,→q(R3) was first introduced in [3,10,14], and its norm is determined by
‖f‖L→p,→q(R3):=‖f‖Lp1,q11Lp2,q22Lp3,q33(R3)=‖‖‖f‖Lp1,q1x1(R)‖Lp2,q2x2(R)‖Lp3,q3x3(R). |
For the convenience of the reader, we present some technical lemmas which will be useful later.
Lemma 2.1 (Hölder's inequality [10,14]). Let f∈L→r1,→s1(R3) and g∈L→r2,→s2(R3). Then, there exists a constant C>0 such that
‖fg‖L→r,→s(R3)≤C‖f‖L→r1,→s1(R3)‖g‖L→r2,→s2(R3), |
where 1→r=1→r1+1→r2, 1→s=1→s1+1→s2, 0<→r1,→r2,→s1,→s2≤∞.
Lemma 2.2 (Sobolev inequality [10,14]). Assume that 1≤→l≤∞. It then holds that
‖f‖L→p,→l(R3)≤C‖Λsf‖L→r,→l(R3), |
with 1<ri<pi<∞ and
3∑i=1(1ri−1pi)=s. |
The subsequent lemmas are crucial in substantiating our findings.
Lemma 2.3 ([26]). Suppose that Rn=Rk1×Rk2⋯Rki×Rn−∑ij=1kj and n≥∑ij=1kj. Let r1=√x21+⋯x2k1, r2=√x2k1+1+⋯x2k1+k2, …, ri=√x2∑i−1j=1kj+1+⋯x2∑ij=1kj, 0<p,q≤∞, 1<(→pj)l≤∞, 1≤(→qj)l≤∞ and 0<αj<kj(→pj)l, 1≤j≤i, 1≤l≤kj. Then, for all f∈C∞0(Rn), we have that it holds that
‖f(x1,x2,⋯xn)∏ij=1|rj|αj‖L→p1,→q1(Rk1)⋯L→pi,→qi(Rki)Lp,q(Rn−∑ij=1kj)≤C‖Λ∑ij=1αjx1,⋯x∑ij=1kjf‖L→p1,→q1(Rk1)⋯L→pi,→qi(Rki)Lp,q(Rn−∑ij=1kj). |
Lemma 2.4 (Gagliardo-Nirenberg inequality [6]). Let 0≤σ<s<∞ and 1≤q,r≤∞. Then we have
‖Λσu‖Lp(R3)≤C‖u‖θLq(R3)‖Λsu‖1−θLr(R3), |
where 3p−σ=θ3q+(1−θ)(3r−s) and 0≤θ≤1−σs(θ≠0 if s−σ≥3r).
Lemma 2.5 ([22]). Assume that u is a smooth axisymmetric vector field and w=∇×u. Then it holds that
urr=Δ−1∂z(wθr)−2∂rrΔ−2∂z(wθr). |
In addition, for 1<p<∞, it is valid that
‖∇urr‖Lp(Rn)≤C‖wθr‖Lp(Rn), |
and
‖∇2urr‖Lp(Rn)≤C‖∂zwθr‖Lp(Rn). |
This section is devoted to the proof of Theorem 1.1. To begin, motivated by Li and Liu [23], the following lemma can be obtained.
Lemma 3.1 (Continuation criterion [23]). Assume that (u0,b0)∈Hm(R3) with m≥3 and br0=bz0=0. Let (u,b) be an axially symmetric local solution of system (1.1). If
supt∈[0,T)‖wθr(⋅,t)‖L2(R3)<+∞, |
then the solution (u,b) can be smoothly extended beyond T.
Now, we introduce the following new variables:
Γ:=ruθ,Π:=bθr. |
By taking advantage of system (1.4), we obtain
{∂tΓ+(ur∂r+uz∂z)Γ=(Δ−2r∂r)Γ,∂tΠ+(ur∂r+uz∂z)Π=0. | (3.1) |
The following proposition states fundamental estimates of system (1.1) which do not need the axisymmetric assumption.
Proposition 3.1. Let (u,b) be a smooth solution of system (1.1) with (u0,b0)∈Hm(m≥3). Then, we have for any t∈R+,
‖u(t)‖2L2+‖b(t)‖2L2+∫t0‖∇u(τ)‖2L2dτ≤‖u0‖2L2+‖b0‖2L2, | (3.2) |
‖Π(t)‖Lp≤‖Π0‖Lp,∀p∈[2,+∞], | (3.3) |
and
‖Γ(t)‖Lp≤‖Γ0‖Lp,∀p∈[2,+∞]. | (3.4) |
Proof. Taking the inner product of (1.1)1 and (1.1)2 with u and b, respectively, integrating by parts, and summing the results together, we get
12ddt(‖u‖2L2+‖b‖2L2)+‖∇u‖2L2≤0. |
Applying Gronwall's inequality leads to the desired result (3.2). The estimates for Γ and Π are classical for the heat equation when p<∞, and follow from the maximum principle when p=∞. We omit the details here, see [22].
Now we are in a position to derive the estimates of (Ω,J). We deduce from system (1.5) that the pair (Ω,J)def=(wθr,wrr) satisfies
{∂tΩ+(ur∂r+uz∂z)Ω=(Δ+2r∂r)Ω−∂zΠ2−2uθrJ,∂tJ+(ur∂r+uz∂z)J=(Δ+2r∂r)J+(wr∂r+wz∂z)urr. | (3.5) |
Proposition 3.2. Under the assumptions of Theorem 1.1, the following estimate of (Ω,J) holds:
sup0≤t≤T(‖Ω(t)‖2L2+‖J(t)‖2L2)+∫T0(‖∇Ω(t)‖2L2+‖∇J(t)‖2L2) dt<∞. |
Proof. Multiplying (3.5)1 and (3.5)2 by Ω and J, respectively, integrating over R3, and using the divergence-free condition, we observe
12ddt(‖Ω(t)‖2L2+‖J(t)‖2L2)+‖∇Ω(t)‖2L2+‖∇J(t)‖2L2=∫(wr∂r+wz∂z)urrJ dx−∫∂zΠ2Ω dx−2∫uθrJΩ dx=−2π∫+∞−∞∫∞0∂zuθ∂rurrJ rdrdz+2π∫+∞−∞∫∞0∂r(ruθ)r∂zurrJ rdrdz−∫∂zΠ2Ω dx−2∫uθrJΩ dx=∫uθ∂rurr∂zJ dx−∫uθ∂zurr∂rJ dx−∫∂zΠ2Ω dx−2∫uθrJΩ dx≤∫|uθ||∇urr||∇J| dx−∫∂zΠ2Ω dx−2∫uθrJΩ dx:=I1+I2+I3. | (3.6) |
For I2, integration by parts, Young's inequality, and (3.3) yield
|I2|=|∫Π2∂zΩ dx|≤C‖Π‖L∞‖Π‖L2‖∂zΩ‖L2≤C‖Π0‖2L∞‖Π0‖2L2+14‖∇Ω‖2L2. |
For any 31+s<pi≤∞, by using Lemmas 2.1 and 2.2, and (3.4) we achieve
|I1|=∫|ruθ|ss+1|uθrs|11+s|∇urr||∇J| dx≤‖uθrs‖11+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖ruθ‖ss+1L∞x1L∞x2L∞x3(R3)‖∇urr‖L2p1(1+s)p1(1+s)−2,2x1L2p2(1+s)p2(1+s)−2,2x2L2p3(1+s)p3(1+s)−2,2x3(R3)‖∇J‖L2≤18‖∇J‖2L2+C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Γ0‖2ss+1L∞x1L∞x2L∞x3(R3)‖∇urr‖2L2p1(1+s)p1(1+s)−2,2x1L2p2(1+s)p2(1+s)−2,2x2L2p3(1+s)p3(1+s)−2,2x3(R3)≤18‖∇J‖2L2+C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Λ∑3i=11pi(1+s)∇urr‖2L2. |
(i) under the assumption that (1.6) holds.
We get from Lemmas 2.4 and 2.5, and Young's inequality that
|I1|≤18‖∇J‖2L2+C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖∇urr‖2−∑3i=12pi(1+s)L2‖Λ∇urr‖∑3i=12pi(1+s)L2≤18‖∇J‖2L2+C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Ω‖2−∑3i=12pi(1+s)L2‖∇Ω‖∑3i=12pi(1+s)L2≤18(‖∇J‖2L2+‖∇Ω‖2L2)+C‖uθrs‖21+s−∑3i=11piLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Ω‖2L2. |
The term I3 can be bounded by
|I3|≤∫|uθ|r|Ω|2 dx+∫|uθ|r|J|2 dx:=I31+I32. | (3.7) |
We shall estimate I31 and I32 in the following two cases:
Case 1. 0≤s<1
Lemma 2.1 yields that
|I31|=|∫|uθ|rs|Ω|2r1−s dx|≤C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Ω2r1−s‖Lp1p1−1,1x1Lp2p2−1,1x2Lp3p3−1,1x3(R3)≤C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Ωr1−s2‖2L2p1p1−1,2x1L2p2p2−1,2x2L2p3p3−1,2x3(R3). |
Due to 0<1−s2<p1−1p1,p2−1p2, we invoke Lemma 2.3 with k1=2, k2=1, i=1 to get
‖Ωr1−s2‖L2p1p1−1,2x1L2p2p2−1,2x2L2p3p3−1,2x3(R3)≤C‖Λ1−s2x1,x2Ω‖L2p1p1−1,2x1L2p2p2−1,2x2L2p3p3−1,2x3(R3). |
Noting that 0≤∑3i=112pi+1−s2<1 when 31+s<pi, Lemmas 2.2 and 2.4 allow us to conclude that
‖Λ1−s2x1,x2Ω‖L2p1p1−1,2x1L2p2p2−1,2x2L2p3p3−1,2x3(R3)≤C‖Λ∑3i=112pi+1−s2Ω‖L2≤C‖Ω‖1+s−∑3i=11pi2L2‖∇Ω‖1−s+∑3i=11pi2L2, |
which implies
|I31|≤C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Ω‖1+s−∑3i=11piL2‖∇Ω‖1−s+∑3i=11piL2. | (3.8) |
Similarly, we have
|I32|≤C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖J‖1+s−∑3i=11piL2‖∇J‖1−s+∑3i=11piL2. | (3.9) |
From (3.8), (3.9), and Young's inequality, we obtain
|I3|≤C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Ω‖1+s−∑3i=11piL2‖∇Ω‖1−s+∑3i=11piL2+‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖J‖1+s−∑3i=11piL2‖∇J‖1−s+∑3i=11piL2≤C‖uθrs‖21+s−∑3i=11piLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖Ω‖2L2+‖J‖2L2)+18(‖∇Ω‖2L2+‖∇J‖2L2). |
Substituting the above estimates into (3.6), we know that, for 0≤s<1,
ddt(‖Ω(t)‖2L2+‖J(t)‖2L2)+‖∇Ω(t)‖2L2+‖∇J(t)‖2L2≤C‖uθrs‖21+s−∑3i=11piLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖Ω‖2L2+‖J‖2L2). | (3.10) |
Case 2. s≥1
By applying Lemmas 2.1, 2.2, 2.4, and (3.4) we get
|I31|=∫|uθrs|21+s|ruθ|s−1s+1|Ω|2 dx≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖ruθ‖s−1s+1L∞x1L∞x2L∞x3(R3)‖Ω2‖Lp1(1+s)p1(1+s)−2,1x1Lp2(1+s)p2(1+s)−2,1x2Lp3(1+s)p3(1+s)−2,1x3(R3)≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Γ0‖s−1s+1L∞x1L∞x2L∞x3(R3)‖Ω‖2L2p1(1+s)p1(1+s)−2,2x1L2p2(1+s)p2(1+s)−2,2x2L2p3(1+s)p3(1+s)−2,2x3(R3)≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Ω‖2−∑3i=12pi(1+s)L2‖∇Ω‖∑3i=12pi(1+s)L2. |
Along the same line as the proof of I31, we infer that
|I32|≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖J‖2−∑3i=12pi(1+s)L2‖∇J‖∑3i=12pi(1+s)L2. |
Collecting all estimates above, we conclude from Young's inequality that
|I3|≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Ω‖2−∑3i=12pi(1+s)L2‖∇Ω‖∑3i=12pi(1+s)L2+‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖J‖2−∑3i=12pi(1+s)L2‖∇J‖∑3i=12pi(1+s)L2≤C‖uθrs‖21+s−∑3i=11piLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖Ω‖2L2+‖J‖2L2)+18(‖∇Ω‖2L2+‖∇J‖2L2). |
Putting all the estimates above into (3.6) yields for s≥1,
ddt(‖Ω(t)‖2L2+‖J(t)‖2L2)+‖∇Ω(t)‖2L2+‖∇J(t)‖2L2≤C‖uθrs‖21+s−∑3i=11piLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖Ω‖2L2+‖J‖2L2). | (3.11) |
We obtain from (3.10) and (3.11) that, for 0≤s<∞,
ddt(‖Ω(t)‖2L2+‖J(t)‖2L2)+‖∇Ω(t)‖2L2+‖∇J(t)‖2L2≤C‖uθrs‖21+s−∑3i=11piLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖Ω‖2L2+‖J‖2L2), | (3.12) |
which along with Gronwall's inequality leads to the desired result.
(ii) under the assumption that (1.7) holds.
By virtue of Lemma 2.5 and Young's inequality, we obtain
|I1|≤18‖∇J‖2L2+C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Λ∇urr‖2L2≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖∇Ω‖2L2+18‖∇J‖2L2. |
For I3, similar to that in (3.7), Young's inequality yields that
|I3|≤∫|uθ|r|Ω|2 dx+∫|uθ|r|J|2 dx:=I′31+I′32. |
We will estimate I′31 and I′32 in the following two cases:
Case 1′. 0≤s<1
Using Lemma 2.1, one finds
|I′31|≤C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Ω2r1−s‖Lp1p1−1,1x1Lp2p2−1,1x2Lp3p3−1,1x3(R3)≤C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖Ωr1−s2‖2L2p1p1−1,2x1L2p2p2−1,2x2L2p3p3−1,2x3(R3). |
Since 0<1−s2<p1−1p1,p2−1p2, we can apply Lemma 2.3 with k1=2, k2=1, i=1 to get
‖Ωr1−s2‖L2p1p1−1,2x1L2p2p2−1,2x2L2p3p3−1,2x3(R3)≤C‖Λ1−s2x1,x2Ω‖L2p1p1−1,2x1L2p2p2−1,2x2L2p3p3−1,2x3(R3). |
From Lemma 2.2, we infer that
‖Λ1−s2x1,x2Ω‖L2p1p1−1,2x1L2p2p2−1,2x2L2p3p3−1,2x3(R3)≤C‖∇Ω‖L2, |
which implies
|I′31|≤C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖∇Ω‖2L2. | (3.13) |
Analogously to the treatments of (3.13), we get
|I′32|≤C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖∇J‖2L2. | (3.14) |
(3.13) and (3.14) lead us to conclude that
|I3|≤C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖∇Ω‖2L2+‖∇J‖2L2). |
Substituting the above estimates into (3.6), we get that, for 0≤s<1,
ddt(‖Ω(t)‖2L2+‖J(t)‖2L2)+‖∇Ω(t)‖2L2+‖∇J(t)‖2L2≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖∇Ω‖2L2+C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖∇Ω‖2L2+‖∇J‖2L2). | (3.15) |
Case 2′. s≥1
Applying Lemmas 2.1 and 2.2, and (3.4), we infer that
|I′31|≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖ruθ‖s−1s+1L∞x1L∞x2L∞x3(R3)‖Ω‖2L2p1(1+s)p1(1+s)−2,2x1L2p2(1+s)p2(1+s)−2,2x2L2p3(1+s)p3(1+s)−2,2x3(R3)≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖∇Ω‖2L2. |
Similarly, we obtain
|I′32|≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)‖∇J‖2L2. |
Thus, we can see that
|I3|≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖∇Ω‖2L2+‖∇J‖2L2). |
Plugging the above estimates into (3.6), we know that, for s≥1,
ddt(‖Ω(t)‖2L2+‖J(t)‖2L2)+‖∇Ω(t)‖2L2+‖∇J(t)‖2L2≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖∇Ω‖2L2+‖∇J‖2L2). | (3.16) |
We infer from (3.15) and (3.16) that, for 0≤s<∞,
ddt(‖Ω(t)‖2L2+‖J(t)‖2L2)+‖∇Ω(t)‖2L2+‖∇J(t)‖2L2≤C‖uθrs‖21+sLp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖∇Ω‖2L2+‖∇J‖2L2)+C‖uθrs‖Lp1,∞x1Lp2,∞x2Lp3,∞x3(R3)(‖∇Ω‖2L2+‖∇J‖2L2). | (3.17) |
We choose
ϵ=(4C)−max{1,1+s2}, | (3.18) |
where C is a sufficiently large constant and C=C(s,ruθ0). Together with Gronwall's inequality, we obtain
sup0≤t≤T(‖Ω(t)‖2L2+‖J(t)‖2L2)+∫T0(‖∇Ω(t)‖2L2+‖∇J(t)‖2L2) dt≤C. |
Thus, we complete the proof of Proposition 3.2.
Now we are in a position to complete the proof of Theorem 1.1.
Proof of Theorem 1.1. With the help of Lemma 3.1 and Proposition 3.2, we naturally infer that the solution (u,b) can be smoothly extended beyond T.
Wenjuan Liu and Zhouyu Li: Conceptualization, Methodology, Validation, Writing-original draft, Writing-review & editing. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to thank the anonymous referees for their suggestions which make the paper more readable. The work is partially supported by the National Natural Science Foundation of China (No. 11801443), Scientic Research Program Funded by Shaanxi Provincial Education Department (No. 22JK0475), Young Talent Fund of Association for Science and Technology in Shaanxi, China (No. 20230525) and Shaanxi Fundamental Science Research Project for Mathematics and Physics (Nos. 23JSQ046 and 22JSQ031).
The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article.
[1] |
H. Abidi, Résultats de régularité de solutions axisymétriques pour le systˊeme de Navier-Stokes, Bull. Sci. Math., 132 (2008), 592–624. http://dx.doi.org/10.1016/j.bulsci.2007.10.001 doi: 10.1016/j.bulsci.2007.10.001
![]() |
[2] |
X. Ai, Z. Li, Global smooth solutions to the 3D non-resistive MHD equations with low regularity axisymmetric data, Commun. Math. Sci., 20 (2022), 1979–1994. http://dx.doi.org/10.4310/CMS.2022.v20.n7.a8 doi: 10.4310/CMS.2022.v20.n7.a8
![]() |
[3] | A. Blozinski, Multivariate rearrangements and Banach function spaces with mixed norms, Trans. Amer. Math. Soc., 263 (1981), 149–167. |
[4] |
H. Chen, D. Fang, T. Zhang, Regularity of 3D axisymmetric Navier-Stokes equations, Discrete Cont. Dyn., 37 (2017), 1923–1939. http://dx.doi.org/10.3934/dcds.2017081 doi: 10.3934/dcds.2017081
![]() |
[5] |
J. Chemin, D. Mccormick, J. Robinson, J. Rodrigo, Local existence for the non-resistive MHD equations in Besov spaces, Adv. Math., 286 (2016), 1–31. http://dx.doi.org/10.1016/j.aim.2015.09.004 doi: 10.1016/j.aim.2015.09.004
![]() |
[6] |
N. Chikami, On Gagliardo-Nirenberg type inequalities in Fourier-Herz spaces, J. Funct. Anal., 275 (2018), 1138–1172. http://dx.doi.org/10.1016/j.jfa.2018.06.001 doi: 10.1016/j.jfa.2018.06.001
![]() |
[7] | P. Davidson, An introduction to magnetohydrodynamics, Cambridge: Cambridge University Press, 2001. http://dx.doi.org/10.1017/CBO9780511626333 |
[8] |
C. Fefferman, D. Mccormick, J. Robinson, J. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, J. Funct. Anal., 267 (2014), 1035–1056. http://dx.doi.org/10.1016/j.jfa.2014.03.021 doi: 10.1016/j.jfa.2014.03.021
![]() |
[9] |
C. Fefferman, D. Mccormick, J. Robinson, J. Rodrigo, Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces, Arch. Ration. Mech. Anal., 223 (2017), 677–691. http://dx.doi.org/10.1007/s00205-016-1042-7 doi: 10.1007/s00205-016-1042-7
![]() |
[10] | D. Fernandez, Lorentz spaces, with mixed norms, J. Funct. Anal., 25 (1977), 128–146. http://dx.doi.org/10.1016/0022-1236(77)90037-4 |
[11] |
G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity, J. Funct. Anal., 267 (2014), 1488–1539. http://dx.doi.org/10.1016/j.jfa.2014.06.002 doi: 10.1016/j.jfa.2014.06.002
![]() |
[12] |
Q. Jiu, J. Liu, Regularity criteria to the axisymmetric incompressible Magneto-hydrodynamics equations, Dyn. Part. Differ. Eq., 15 (2018), 109–126. http://dx.doi.org/10.4310/DPDE.2018.v15.n2.a2 doi: 10.4310/DPDE.2018.v15.n2.a2
![]() |
[13] |
Q. Jiu, H. Yu, X. Zheng, Global well-posedness for axisymmetric MHD system with only vertical viscosity, J. Differ. Equations, 263 (2017), 2954–2990. http://dx.doi.org/10.1016/j.jde.2017.04.021 doi: 10.1016/j.jde.2017.04.021
![]() |
[14] |
D. Khai, N. Tri, Solutions in mixed-norm Sobolev-Lorentz spaces to the initial value problem for the Navier-Stokes equations, J. Math. Anal. Appl., 417 (2014), 819–833. http://dx.doi.org/10.1016/j.jmaa.2014.03.068 doi: 10.1016/j.jmaa.2014.03.068
![]() |
[15] | O. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Nauchn. Sem. Lomi, 7 (1968), 155–177. |
[16] |
Z. Li, Regularity criteria for the 3D axisymmetric non-resistive MHD system, Commun. Nonlinear Sci., 125 (2023), 107367. http://dx.doi.org/10.1016/j.cnsns.2023.107367 doi: 10.1016/j.cnsns.2023.107367
![]() |
[17] |
Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differ. Equations, 259 (2015), 3202–3215. http://dx.doi.org/10.1016/j.jde.2015.04.017 doi: 10.1016/j.jde.2015.04.017
![]() |
[18] |
Z. Li, D. Zhou, On the regularity criteria for the 3D axisymmetric Hall-MHD system in Lorentz spaces, Nonlinear Anal.-Real, 77 (2024), 104067. http://dx.doi.org/10.1016/j.nonrwa.2024.104067 doi: 10.1016/j.nonrwa.2024.104067
![]() |
[19] |
W. Liu, Global well-posedness for the 3D inhomogeneous incompressible magnetohydrodynamics system with axisymmetric data, J. Math. Anal. Appl., 539 (2024), 128459. http://dx.doi.org/10.1016/j.jmaa.2024.128459 doi: 10.1016/j.jmaa.2024.128459
![]() |
[20] |
Z. Li, P. Liu, Regularity criteria for the 3D axisymmetric non-resistive MHD system in the Swirl component of the vorticity, J. Geom. Anal., 34 (2024), 37. http://dx.doi.org/10.1007/s12220-023-01478-5 doi: 10.1007/s12220-023-01478-5
![]() |
[21] |
Y. Liu, Global well-posedness of 3D axisymmetric MHD system with pure swirl magnetic field, Acta Appl. Math., 155 (2018), 21–39. http://dx.doi.org/10.1007/s10440-017-0143-0 doi: 10.1007/s10440-017-0143-0
![]() |
[22] |
Z. Li, X. Pan, One component regularity criteria for the axially symmetric MHD-Boussinesq system, Discrete Cont. Dyn., 42 (2022), 2333–2353. http://dx.doi.org/10.3934/dcds.2021192 doi: 10.3934/dcds.2021192
![]() |
[23] |
Z. Li, W. Liu, Regularity criteria for the 3D axisymmetric non-resistive MHD system in Lorentz spaces, Results Math., 78 (2023), 86. http://dx.doi.org/10.1007/s00025-023-01863-0 doi: 10.1007/s00025-023-01863-0
![]() |
[24] |
R. O'Neil, Convolution operators and Lp,q spaces, Duke Math. J., 30 (1963), 129–142. http://dx.doi.org/10.1215/S0012-7094-63-03015-1 doi: 10.1215/S0012-7094-63-03015-1
![]() |
[25] | E. Priest, T. Forbes, Magnetic reconnection, Cambridge: Cambridge University Press, 2000. |
[26] | Y. Wang, Y. Huang, W. Wei, H. Yu, Anisotropic Hardy-Sobolev inequality in mixed Lorentz spaces with applications to the axisymmetric Navier-Stokes equations, arXiv: 2205.13893vl. |
[27] |
Z. Zhang, J. Yao, Global well-posedness of 3D axisymmetric MHD system with large swirl magnetic field, J. Math. Anal. Appl., 516 (2022), 126483. http://dx.doi.org/10.1016/j.jmaa.2022.126483 doi: 10.1016/j.jmaa.2022.126483
![]() |
[28] |
P. Zhang, T. Zhang, Global axi-symmetric solutions to 3-D Navier-Stokes system, Int. Math. Res. Notices, 2014 (2014), 610–642. http://dx.doi.org/10.1093/imrn/rns232 doi: 10.1093/imrn/rns232
![]() |