Citation: Wenjuan Liu, Zhouyu Li. Global weighted regularity for the 3D axisymmetric non-resistive MHD system[J]. AIMS Mathematics, 2024, 9(8): 20905-20918. doi: 10.3934/math.20241017
[1] | H. Abidi, Résultats de régularité de solutions axisymétriques pour le syst$\grave{e}$me de Navier-Stokes, Bull. Sci. Math., 132 (2008), 592–624. http://dx.doi.org/10.1016/j.bulsci.2007.10.001 doi: 10.1016/j.bulsci.2007.10.001 |
[2] | X. Ai, Z. Li, Global smooth solutions to the 3D non-resistive MHD equations with low regularity axisymmetric data, Commun. Math. Sci., 20 (2022), 1979–1994. http://dx.doi.org/10.4310/CMS.2022.v20.n7.a8 doi: 10.4310/CMS.2022.v20.n7.a8 |
[3] | A. Blozinski, Multivariate rearrangements and Banach function spaces with mixed norms, Trans. Amer. Math. Soc., 263 (1981), 149–167. |
[4] | H. Chen, D. Fang, T. Zhang, Regularity of 3D axisymmetric Navier-Stokes equations, Discrete Cont. Dyn., 37 (2017), 1923–1939. http://dx.doi.org/10.3934/dcds.2017081 doi: 10.3934/dcds.2017081 |
[5] | J. Chemin, D. Mccormick, J. Robinson, J. Rodrigo, Local existence for the non-resistive MHD equations in Besov spaces, Adv. Math., 286 (2016), 1–31. http://dx.doi.org/10.1016/j.aim.2015.09.004 doi: 10.1016/j.aim.2015.09.004 |
[6] | N. Chikami, On Gagliardo-Nirenberg type inequalities in Fourier-Herz spaces, J. Funct. Anal., 275 (2018), 1138–1172. http://dx.doi.org/10.1016/j.jfa.2018.06.001 doi: 10.1016/j.jfa.2018.06.001 |
[7] | P. Davidson, An introduction to magnetohydrodynamics, Cambridge: Cambridge University Press, 2001. http://dx.doi.org/10.1017/CBO9780511626333 |
[8] | C. Fefferman, D. Mccormick, J. Robinson, J. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, J. Funct. Anal., 267 (2014), 1035–1056. http://dx.doi.org/10.1016/j.jfa.2014.03.021 doi: 10.1016/j.jfa.2014.03.021 |
[9] | C. Fefferman, D. Mccormick, J. Robinson, J. Rodrigo, Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces, Arch. Ration. Mech. Anal., 223 (2017), 677–691. http://dx.doi.org/10.1007/s00205-016-1042-7 doi: 10.1007/s00205-016-1042-7 |
[10] | D. Fernandez, Lorentz spaces, with mixed norms, J. Funct. Anal., 25 (1977), 128–146. http://dx.doi.org/10.1016/0022-1236(77)90037-4 |
[11] | G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity, J. Funct. Anal., 267 (2014), 1488–1539. http://dx.doi.org/10.1016/j.jfa.2014.06.002 doi: 10.1016/j.jfa.2014.06.002 |
[12] | Q. Jiu, J. Liu, Regularity criteria to the axisymmetric incompressible Magneto-hydrodynamics equations, Dyn. Part. Differ. Eq., 15 (2018), 109–126. http://dx.doi.org/10.4310/DPDE.2018.v15.n2.a2 doi: 10.4310/DPDE.2018.v15.n2.a2 |
[13] | Q. Jiu, H. Yu, X. Zheng, Global well-posedness for axisymmetric MHD system with only vertical viscosity, J. Differ. Equations, 263 (2017), 2954–2990. http://dx.doi.org/10.1016/j.jde.2017.04.021 doi: 10.1016/j.jde.2017.04.021 |
[14] | D. Khai, N. Tri, Solutions in mixed-norm Sobolev-Lorentz spaces to the initial value problem for the Navier-Stokes equations, J. Math. Anal. Appl., 417 (2014), 819–833. http://dx.doi.org/10.1016/j.jmaa.2014.03.068 doi: 10.1016/j.jmaa.2014.03.068 |
[15] | O. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Nauchn. Sem. Lomi, 7 (1968), 155–177. |
[16] | Z. Li, Regularity criteria for the 3D axisymmetric non-resistive MHD system, Commun. Nonlinear Sci., 125 (2023), 107367. http://dx.doi.org/10.1016/j.cnsns.2023.107367 doi: 10.1016/j.cnsns.2023.107367 |
[17] | Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differ. Equations, 259 (2015), 3202–3215. http://dx.doi.org/10.1016/j.jde.2015.04.017 doi: 10.1016/j.jde.2015.04.017 |
[18] | Z. Li, D. Zhou, On the regularity criteria for the 3D axisymmetric Hall-MHD system in Lorentz spaces, Nonlinear Anal.-Real, 77 (2024), 104067. http://dx.doi.org/10.1016/j.nonrwa.2024.104067 doi: 10.1016/j.nonrwa.2024.104067 |
[19] | W. Liu, Global well-posedness for the 3D inhomogeneous incompressible magnetohydrodynamics system with axisymmetric data, J. Math. Anal. Appl., 539 (2024), 128459. http://dx.doi.org/10.1016/j.jmaa.2024.128459 doi: 10.1016/j.jmaa.2024.128459 |
[20] | Z. Li, P. Liu, Regularity criteria for the 3D axisymmetric non-resistive MHD system in the Swirl component of the vorticity, J. Geom. Anal., 34 (2024), 37. http://dx.doi.org/10.1007/s12220-023-01478-5 doi: 10.1007/s12220-023-01478-5 |
[21] | Y. Liu, Global well-posedness of 3D axisymmetric MHD system with pure swirl magnetic field, Acta Appl. Math., 155 (2018), 21–39. http://dx.doi.org/10.1007/s10440-017-0143-0 doi: 10.1007/s10440-017-0143-0 |
[22] | Z. Li, X. Pan, One component regularity criteria for the axially symmetric MHD-Boussinesq system, Discrete Cont. Dyn., 42 (2022), 2333–2353. http://dx.doi.org/10.3934/dcds.2021192 doi: 10.3934/dcds.2021192 |
[23] | Z. Li, W. Liu, Regularity criteria for the 3D axisymmetric non-resistive MHD system in Lorentz spaces, Results Math., 78 (2023), 86. http://dx.doi.org/10.1007/s00025-023-01863-0 doi: 10.1007/s00025-023-01863-0 |
[24] | R. O'Neil, Convolution operators and $L^{p, q}$ spaces, Duke Math. J., 30 (1963), 129–142. http://dx.doi.org/10.1215/S0012-7094-63-03015-1 doi: 10.1215/S0012-7094-63-03015-1 |
[25] | E. Priest, T. Forbes, Magnetic reconnection, Cambridge: Cambridge University Press, 2000. |
[26] | Y. Wang, Y. Huang, W. Wei, H. Yu, Anisotropic Hardy-Sobolev inequality in mixed Lorentz spaces with applications to the axisymmetric Navier-Stokes equations, arXiv: 2205.13893vl. |
[27] | Z. Zhang, J. Yao, Global well-posedness of 3D axisymmetric MHD system with large swirl magnetic field, J. Math. Anal. Appl., 516 (2022), 126483. http://dx.doi.org/10.1016/j.jmaa.2022.126483 doi: 10.1016/j.jmaa.2022.126483 |
[28] | P. Zhang, T. Zhang, Global axi-symmetric solutions to 3-D Navier-Stokes system, Int. Math. Res. Notices, 2014 (2014), 610–642. http://dx.doi.org/10.1093/imrn/rns232 doi: 10.1093/imrn/rns232 |