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1. Introduction

Generally speaking, the three-dimensional incompressible non-resistive MHD system in Euclidean
coordinates reads
Ou+u-Vu+VP—-Au=>b-Vb, (t,x)eR*xR>,
Ob+u-Vb=>b-Vu,
divu =divb =0,
(1, D)l=o = (uo, bo) ,

where the unknowns u = (ul, u?, u3), b = (bl, b2, b3), and P represent the velocity of the fluid, the

magnetic field, and the scalar pressure function, respectively. Physically, (1.1) governs the dynamics
of the velocity and magnetic fields in electrically conducting fluids, such as plasmas, liquid metals,
and salt water. It is frequently applied in astrophysics, geophysics, cosmology, and so forth. One may
check the references [7, 11,25] for more applications and numerical studies.

Be aware that system (1.1) reduces to the classical Navier-Stokes equations when b is identically
zero. The global regularity of the 3D Navier-Stokes equations with large initial data remains open and

(1.1)
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it is generally viewed as one of the most challenging open problems in fluid mechanics. As a result,
various efforts are made to study the solutions by using axisymmetric methods.
In this paper, we assume that the solution (i, b) of system (1.1) has the following axisymmetric
form:
u(t, x) = u'(t,r,2)e, + u’(t, r, 2)eg + u(t, r, 2)e.,
b(t,x) = b'(t,1,2)e, + bO(t,1,2)ey + b(2, 1, 2)e..

Here,

r= Rt =20, e=(-2,210, =000
r r r r

In the above, u? is usually called the swirl component. We say u is without swirl if u? = 0.

In recent years, a great deal of mathematical effort has been dedicated to the study of the 3D
axisymmetric Navier-Stokes equations. For the case of u’ = 0, Abidi [1] and Ladyzhenskaya [15]
independently proved the existence, uniqueness, and regularities of generalized solutions. The first
author of this paper in [19] obtained the global well-posedness of the inhomogeneous axisymmetric
Navier-Stokes equations. For the case of u? # 0, the authors need to impose some smallness conditions
on the initial data. For more references, we recommend [4, 28] and references therein.

Many fruitful studies on the well-posedness problem of the MHD system (1.1) have been achieved
in recent years, see [5,8,9, 13] and references therein. Now we recall some results on the axisymmetric
MHD equations. Lei [17] considered a family of special axisymmetric initial data with uf) = bj, =
b, = 0 and showed the global well-posedness of system (1.1) without any smallness assumptions.
Further improvement was made by Ai and Li [2], who weakened the initial regularity. When the
angular velocity is not trivial, Liu [21] obtained the global well-posedness of system (1.1) provided

0
that ||ru8||Loo and IIZ%IIL% are small enough. Later on, Zhang and Rao [27] improved this result by

removing the smallness of IIb—V‘g)IlL%.

Researchers are interested in the classical problem of finding regularity criteria of the axisymmetric
MHD system. In [23], Li and Liu established the following regularity criteria for the 3D axisymmetric
non-resistive MHD system in Lorentz spaces

u@

- w. ] poo(R3)) < OO, —+—S1+S,
”rS”L‘i(O,T ;LPe(R3)) P q 1+s

< p L o0,

Later, by using some inequalities in anisotropic Lorentz spaces and the generalized Hardy-Sobolev
inequality, this result was extended to anisotropic Lorentz spaces in [16]. More precisely, he proved
that if the initial data (uo, by) € H> (R3), bi = by = 0, and the horizontal swirl component of velocity
satisfies

0 2 1 1 1
L el (0.T: L ®LES®LES®R))  with =+ —+ —+— =1+,
rt q D1 P2 Pp3 (1.2)
1 3 2
-=-<s5<0, ——<p;<Loo, < g <o,
2 g 1+ pi = 1+ =
or ‘r‘—g € L*(0,T; L (R)LEZ(R)LEY™(R)) with % + i + % = 1 + s and the norm of

||”r‘—f|| (0.7 RS @ @) is sufficiently small, then the solution (u, ) can be smoothly extended
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beyond 7. For more regularity criteria on the axisymmetric MHD system, see [12, 18, 20] and
references therein.
We can rewrite system (1.1) as

A’ + W', + wd)u’ — u +0,P = (A - S + (b0, + b9,) b - “’“

O + (o, + w0 u’ + = (A= L) ul + (0, + b°0,) b + L,

ou* + o, + u“o,) u* + 0,P = Au* + (b"0, + b*0,) b?,

Ab" + (U, +ud,) b = (b’& + b, (1.3)
Ob’ + W9, + wd) b + L = (b, + bd)u’ + L,

O,b° + (U'd, + 1°0,) b° = (bra, + b°0,) iF,

Ou +“ +0u5=0, 0b"+%+9.b=0,

def o 19
where the operator A = 75 + - + 622

In this paper, we consider the following initial data:
Uy = uye, + ugeg +uge., bo= boeg

Thus, by using the uniqueness of local solutions to system (1.1), we conclude that b" = b* = 0 for all
later times. Then, system (1.3) is equivalent to

ou" + (o, +ud)u" — @ +0,P=(A- rl—z)u’ - @,
O’ + (o, + urd,) u’ + Lrue = (A - r%) u?,

ot + (Wud, + utd,) u* + 9,P = Aut, (1.4)
Ob’ + W, +1d) b = LV

o.u" +%+(’)Zu =0.

We can also write the vorticity field w in cylindrical coordinates
w=Vxu=w (t,r,2) e, +w(t,r7) ey +w (t r,7)e,,
where

7

w' = —8zu9, w! = ou" —out, w =

According to system (1.4), the quantity (w’, w?, wz) verifies

ow +Wwa, +ud)w =(A- r%)wr + W', + wd,) u",
oW’ + o, + 10w’ = (A = L)w + Ln’ + L. w')? - 1,77, (1.5)
oW+ (U, + u*d,) w* = Au* + (W', + wo,) u.
We notice that condition (1.2) is concerned with the case —% < s < 0. Thus, a natural and interesting
problem is whether or not the range of indicator s in condition (1.2) can be extended. The goal of this

paper is to give a positive answer. Inspired by [16,26], we obtain the regularity criteria of system (1.4)
in anisotropic Lorentz spaces with 0 < s < co. Let us state our main result.
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Theorem 1.1. Let (u, b) be an axially symmetric solution to the MHD system (1.1) associated with the
initial data (ugy, by) € H" (R3), m > 3, and by = by = 0. If the horizontal swirl component of velocity
satisfies

0 2 1 1 1
L el (0.T: L ®LES®LES®R))  with =+ —+ —+— =1+,
rt q P P2 D3 (1.6)
2
0<s< s <p; < s <g< ,
5 1+s Pi =99 1+s 7=
or P | |
u ) 1

”F”Lw(o,T;L,’il"°°(R)L§§’°°(R)L,’£§’°°(R)) <€ with " + I’y + s =1l+s, (1.7)

where € = € (s, ruoe) << 1, then (u,b) can be smoothly extended beyond T.

Remark 1.1. In [26], the authors established several new anisotropic Hardy-Sobolev inequalities in
mixed Lebesgue spaces and mixed Lorentz spaces. They also derived regularity criteria of the 3D
axisymmetric Navier-Stokes system. We extend the related regularity criteria to the MHD system. In
addition, compared to the results in [23], thanks to the new anisotropic Hardy-Sobolev inequality, we
generalize the result to the anisotropic Lorentz space.

Remark 1.2. We extend the results in [16] to the case of 0 < s < oo.

The remaining of this paper is organized as follows: In Section 2, we provide the definition of
anisotropic Lorentz spaces and gather some elementary inequalities. The proof of Theorem 1.1 is
given in Section 3.

Notations. We shall always denote fR3 dx = 2nm fom fR -rdrdz and the letter C as a generic constant
which may vary from line to line. The Fourier transform f of a Schwartz function f on R” is defined as

F(©€ =@ [, e f(x) dx. Furthermore, for s > 0, we define A°f by A'f (€) = (X1, |§,-|2)% f©,

. . . 1 .
where the notation A stands for the square root of the negative Laplacian (—A)2. Similarly, we denote
s —

Rof @ = Il f @ and Az, @ = (S5, 16P)° £ @),
2. Preliminaries

First, we recall the definition of Lorentz spaces, see [24] for details. Given 1 < p < 00,1 < g < oo,
a measurable function f then belongs to the Lorentz spaces L4 (R3) if || £l Lra(®s) < where

q 1
(s e R ¢ |f(x) > tlr dt)” , if g < oo,
||f||uhq(]1§3) = %

supt‘{x eR*: |f(0] > 1]

>0

, if g = oo.

The anisotropic Lorentz space L7 (R3) was first introduced in [3, 10, 14], and its norm is determined
by

WMoy 5= WMo ez = [zl mone Ty

For the convenience of the reader, we present some technical lemmas which will be useful later.
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Lemma 2.1 (Holder’s inequality [10, 14]). Let f € L' (R3) and g € L'*% (R3). Then, there exists a
constant C > 0 such that

1 8llzs(ray < CllAlis gayllglls s zs)

=14 ,0< 71,71, 81, 8 <

Lt

where

+

~—
S
ey l—
2y
Sil—

1

-

Lemma 2.2 (Sobolev inequality [10, 14]). Assume that 1 <[ < oo. It then holds that

1A lyssey < CUAS sy

with 1 < r; < p; < oo and

The subsequent lemmas are crucial in substantiating our findings.

Lemma 2.3 ( [26]). Suppose that R" = Rk x Rk ...RK x R 2% and n > 23:1 kj. Let r, =

= 2 LEEENY 2 _).
Jxl xk, ry = \/xlirl xmk2 cew i = \/XZ"fl] . + xz" . 0<p,g<oo 1< (p]) < o

(j) <coand0 < a; < ( 5o 1< j<i 1 <U<k; Then, forall f € Cy (R"), we have that it holds
Pj)
that

f('xl?'x’-z,.'.‘xl’l) . A jl @j
i a; L7 (REL ... L0 (RA YL Rn—Z}:l ki) = || X1, )CZ‘ .
G Il (RE1)-Lr0di (RY )L 14

I Al

N Lo n—zi. ki\*
LPidi (Rkl)-uL/’iv‘Ii(]Rki)LP»‘I(R j=1 1)

Lemma 2.4 (Gagliardo-Nirenberg inequality [6]). Let 0 < 0 < s < 0o and 1 < q,r < oo. Then we
have

Al sy < Clll] ) 1Al o,

where 2 —g =02 +(1-0)(2-s)and0<0<1-%(0 £ 0if s—o > 3)

Lemma 2.5 ( [22]). Assume that u is a smooth axisymmetric vector field and w = V X u. Then it holds

that
r 9 ar 9
YA, (m) 29 a2y, (m)
r r r r

In addition, for 1 < p < oo, it is valid that

LP(R™) r LP(R7)
and
u’ w?
Vi— <C | 0,— :
r LP(R™) r LP(R")
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3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To begin, motivated by Li and Liu [23], the
following lemma can be obtained.

Lemma 3.1 (Continuation criterion [23]). Assume that (ugy, by) € H™ (R3) withm > 3 and by = b = 0.
Let (u, b) be an axially symmetric local solution of system (1.1). If

w?
sup [[— ., D) [l 23y < +00,
te[O,];) r P®)

then the solution (u, b) can be smoothly extended beyond T.

Now, we introduce the following new variables:

By taking advantage of system (1.4), we obtain

(3.1

oL + o, +wd,)T = (A-20,)T,
oIl + (o, + u*d,)I1 = 0.

The following proposition states fundamental estimates of system (1.1) which do not need the
axisymmetric assumption.

Proposition 3.1. Let (u, b) be a smooth solution of system (1.1) with (ug, bg) € H™ (m > 3). Then, we
have for any t € R,

!
lu@II7, + 1B + fo IVu (D) |12, dr < lluoll2, + 1ol (3.2)
XL zr < [ollzr, Vp € [2,+00], (3.3)
and
IOl < Tollze,  Yp € [2, +00]. 3.4)

Proof. Taking the inner product of (1.1); and (1.1), with u# and b, respectively, integrating by parts, and
summing the results together, we get

5 27 el + 11BIE:) + 19, < 0.
Applying Gronwall’s inequality leads to the desired result (3.2). The estimates for I and II are classical

for the heat equation when p < oo, and follow from the maximum principle when p = co. We omit the
details here, see [22]. O

Now we are in a position to derive the estimates of (€2, /). We deduce from system (1.5) that the
. def 6 N .
pair (QQ,J) = (W—, ”7) satisfies

r

{a,g + W, +100) Q = (A +20,) Q- 4,112 - 22, 45)

O J + W0, +uid.)J = (A + %a,) J+ (W0, +wd,) L.
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Proposition 3.2. Under the assumptions of Theorem 1.1, the following estimate of (2, J) holds:

T
sup (IIQ)I, + IT@IZ) + fo (IVQWIZ, + IV J@I.) dt < oo.

0<t<T

Proof. Multiplying (3.5); and (3.5), by Q and J, respectively, integrating over R?, and using the
divergence-free condition, we observe

1d
2 dr (llQ(t) 12, + 117 () IIiZ) +IVQ @) 2, + IV () |2,

r (7]
- f(w’@, +wid) LT dx - f@ZHZQ dx -2 f %10 dx
r r
+00 00 r +00 00 0r (2]
= —27rf f queﬁru—J rdrdz + 27rf f (ru )8 u J rdrdz
—o0 0 r _oo 0
6
- f O.I12Q dx — 2 f " 10 dx (3:6)
r
u” u” u’
= f u’0,—0,J dx — f u?d,—a,J dx — f AJIIPQ dx -2 f —JQdx
r r r
u" u’
< f|u9||V—||VJ| dx—fazl'le dx—Zf—JQ dx
r r

=L+ + L.

For I,, integration by parts, Young’s inequality, and (3.3) yield
1
L] = Ifﬂzc?zﬂ dx| < CI|= T2 118:21 2 < CIIMo 17 1Mo 17, + ZIIVQIIZ

For any — 1 - < p; < 00, by using Lemmas 2.1 and 2.2, and (3.4) we achieve

6 r
s u’ 1 _u

= f|r”9|3:‘|—|1*S|V—IIVJI dx
rs r

9 1 r

<l|l— Tes 0 pa.oo rue o V 2p1 (14+5) 2py(1+5) 2pa(1+s) VJ|;2

” |LP1 Lﬁz Lp3 (R3)|| ||L°"L°°L°°(R3)” - ||Lp1p(l]+;322Lp2p(2]+5-;322Lp3p(31+:)q2 Z(Rz)” ||L

1
< <|IVJII3, +C||—||'”o<, . ||Fo||”e.f o oo ||V || i) . 2py(iss) . 2p(ies)

8 Lpl Lpz Lp% (R3) L L L R3) Lplp(llw&:;YZ Lpzp(21+:gv22 p;p(gl)ﬁ—:;SZ (R3)

1
< SIVJIE: + Cli ||L';; SN I 1

(i) under the assumption that (1.6) holds.
We get from Lemmas 2.4 and 2.5, and Young’s inequality that

_Zl 1

1 )(1 5) l 1 7(1 )
1] < 2V I, +C||—||]Zi JSRIPN )4 || e ||AV—|| e

8 LT LTI (RY)

1 L1 st 1 it

< SIVIIE, + €l ||1,,1m ey (R3)IIQIIL v

1 72 T

2 i=1 P 2
< 5 (V71 +||VQ||L)+C||—||LP1 LAZLLW(RS)H [
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The term /5 can be bounded by

|u?

ni< [ hop ax L3

|J|2 dx := I3 + Ix.

We shall estimate I3; and I3, in the following two cases:
Casel.0<s<1
Lemma 2.1 yields that

prll T LP21 1’% p3-T’ (R*)

|l/t9| |Q|2 u& QZ
1I51] = | i da = F||Lg11v°°L§§>°°L{;§’°°(R3)||EH WIS
ul

Q

2
< Cll= ===l
r

2pll 2 2p21 5 2]731 .
P1=1"y po=1" 317 oy
L7 LT LT (RY)

2

Dueto 0 < % < ”;7—71, ”;—;1, we invoke Lemma 2.3 with k; =2, k, = 1,i =1 to get

Q
Il 2y 2 20 <C||Ax1 DOl o, o
2 2 2 2

1=s B 2 :
rro LT () L LX”;’1 L (r3)

Noting that 0 < 32

1+s— Z 1—s+2.3

=1 2 -+ s o when = < p;, Lemmas 2.2 and 2.4 allow us to conclude that

i=1 DPj

L=s 3
1A ol 2y 200, 20, < ClAT= QI|L2<CIIQII - IIVQII ’

Lpz I Ll’3 (Rz)

LPI 1

which implies

6

oS o
31| < CII—IILm T (Rs)IIQII e, Tt
Similarly, we have
9 301
Zl pi Zl: 7,
1I52| < CII—IILm e (Rs)IIJII ' IIVJII o
From (3.8), (3.9), and Young’s inequality, we obtain
6 Z 3 %71 1
1] < CII—IILm e (Rz)IIQII z IIVQII o
7 1 301
u s=Xi =1
L e e [ Ak \ 2] Pl

2

T+s— Z l
||nﬁwgﬂﬁw@gmﬂﬁfwuﬁJ+§0W9ﬁfwwn@)
Substituting the above estimates into (3.6), we know that, for 0 < s < 1,

d
7 (IIQ(I) 7 + 117 (1) ”iz) +IVQ @) (17, + VI D) 117,

321,) 2 2
||nﬂmgﬁﬁwmﬂm9mfummy

(3.7)

(3.8)

(3.9)

(3.10)
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Case2. s> 1
By applying Lemmas 2.1, 2.2, 2.4, and (3.4) we get

N
il = [ ISl |Q1 dx

s=1

||—| s 0 ||ru ||VZ.} o0 700 ||Qz|| (1+5) (1+3) p3(1+s)
L,)l °°L/’2 OQLI)% (Rg) Ly L L R3) Lf:]](llﬂ')y—Z’]ng(zlﬂ')y—Z’]L)g3(3l+s)—2’l(R3)

C||_| m 00 ” OHP;J 00 700 ||Q||22 (1+5) 2p5(1+5) 2p3(1+s)
v w9 Ol g s () LQ@L;;.ng;a;iz.zL;;ﬁL;iT ®)
2-
Tts t l p(l+v) i= l p(1+3)
cli leZi gl IR

Along the same line as the proof of I3;, we infer that

9

< _ ]+s
2l < CU e ey

i= l pl(l+v)||VJ|| i= l pl(1+r)

Collecting all estimates above, we conclude from Young’s inequality that

2

2- >3
|I5] < CII—I 7 €21, "”’“*‘)||VQ|| =1

LT LTI (RY)

2—
||—| T 1711, '””“”)IIVJII - e

LPl °°LP2 DOLP3 M(RS)
2
I+s— Z? 1 ]}

1
Cll= ||Lp. e oy (1952 + 1) + 5 (IV QI + V1)

Putting all the estimates above into (3.6) yields for s > 1,

d
7 (IIQ(I) ”iz +17(0) ||iz) +IVQ O (17, + IVT D) 17,
2 (3.11)

I+s= Z? 1 131

2 2
ClI% ||L,,1 sy (19U + 1)

We obtain from (3.10) and (3.11) that, for 0 < s < oo,

d
7 (IIQ(I) 7 + 117 (1) ”iz) +IVQ @) 17, + VT D) 117,
) (3.12)

o 31
u 1+S_Zf—l i

< U e (190 + 117
< OISl b o (10 + 11E2).

which along with Gronwall’s inequality leads to the desired result.
(i) under the assumption that (1.7) holds.
By virtue of Lemma 2.5 and Young’s inequality, we obtain

1
|11|S—|IVJ|| +C||—||1” IAVE ”Lz

LT LS (RY)

1
CII—I T Rz)IIVQIIiz + gllVJ”iz

LP] °°LP2 °°LI73 °°( 3

AIMS Mathematics Volume 9, Issue 8, 20905-20918.
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For I3, similar to that in (3.7), Young’s inequality yields that

ju’| |u’| _
II5] < —IQI dx —IJI dx = I3 + I

We will estimate /5, and I, in the following two cases:
Casel’.0<s<1
Using Lemma 2.1, one finds

0 2

I,|<C poopzw 1>3°° p o, P P

| 1| ” “Ll ek (R*)” 1— s“Lflll_l lL 21 ’)3 (R3)
u’ Q

2

< Ol llgy=seu =yl == |

2p11 2 2p2 2 2p3
- 3
L2 (R‘)

1-
ra
Lfll

Since 0 < 52 < ”;11,”21wecanapplyLemma23w1thk1 2,ky=1,i=1to get

Q
_,Y” 2P, 22 5, 203, < C||Ax1 xZQ” 2Py, 2, 223

1—s 2 ‘
2 Pz r 1’3 P31 o3 Pl p-T Pz D7 p3=1 s
r L' Ly L3 (R3) L! L! L3 (R3)

From Lemma 2.2, we infer that

1-s
IAG QU 201y 2y 20, < CIVQlL,
L L LT (r2)
which implies
u’ 5
’
1] < Clls gz oy IV (3.13)

Analogously to the treatments of (3.13), we get

0
, u
15,] < C”F||L§11’°°L§§~°°LIX’;~°°(R3)|IVJ||22. (3.14)

(3.13) and (3.14) lead us to conclude that

7
u 2 2
111 < Cll= g3y (IVQUE: + I971:)

Substituting the above estimates into (3.6), we get that, for 0 < s < 1,

d

— (||Q(t> 7. + 1T O1E) + IVQ@ 12, + IV ) I,
Y (3.15)
cn—n ey IVQUZ: + Cll— gz as) (IVQUT: + I916)

LP] °°LP2 °°LP3 °°(
Case?2'.s>1

AIMS Mathematics Volume 9, Issue 8, 20905-20918.
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Applying Lemmas 2.1 and 2.2, and (3.4), we infer that

6

|I31| < C” |1+J 00 ||7ed ”3;1 o 7o ”Q” 2p1(+s) - 2py(l+s) . 2pa(l+s)
S Lpl Lp2 LmS (R%) L L L (R3) LI)]I’(]1+$322LI)213(2|+;;52 2Ll"§17(31+:352 (Rg)

s 2
< C”_lLl;l Lpszm (RS)”VQ”L2

Similarly, we obtain
9 2
2
|I§2| < C” 3 |I]4;§ L172°°LP3 00(Rg)”VJ”LZ

Thus, we can see that

13| < C||—| (IVQIE, + IV J117.)

L"' TL2TLET (RY)

Plugging the above estimates into (3.6), we know that, for s > 1,

d
(IR + 11 @ 15:) +IVQ@) I + V7 1) I
; (3.16)
u 2 2
< ClI=IIT%; (IVQIZ, + IVJ11,) .-

ps L2 LE T (R3)

We infer from (3.15) and (3.16) that, for 0 < 5 < oo,

d

— (||Q(r) 2 + 11 0 12.) + IVQ@) I + IV () 112,
i (3.17)
<C||—| (IVQIE: + I1971:) + Cll-llzy= 2oy sy (IVQUE: + 1971:)

L”‘ TLZTLE T (RY)

We choose 1
€ = (4C)yme LT} (3.18)

where C is a sufficiently large constant and C = C(s, ruf)). Together with Gronwall’s inequality, we
obtain

T
sup (IQOIE, + IV, ) + fo (INQ)IZ, + IVJ@I.) dt < C.

0<t<T

Thus, we complete the proof of Proposition 3.2. O
Now we are in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. With the help of Lemma 3.1 and Proposition 3.2, we naturally infer that the

solution (u, b) can be smoothly extended beyond 7. m|
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