Citation: Ebenezer Fiifi Emire Atta Mills. The worst-case scenario: robust portfolio optimization with discrete distributions and transaction costs[J]. AIMS Mathematics, 2024, 9(8): 20919-20938. doi: 10.3934/math.20241018
[1] | A. Ahmadi-Javid, Entropic value-at-risk: A new coherent risk measure, J. Optim. Theory Appl., 155 (2012), 1105–1123. https://dx.doi.org/10.1007/s10957-011-9968-2 doi: 10.1007/s10957-011-9968-2 |
[2] | Y. Amihud, H. Mendelson, Liquidity and stock returns, Financ. Anal. J., 42 (1986), 43–48. http://dx.doi.org/10.2469/faj.v42.n3.43 doi: 10.2469/faj.v42.n3.43 |
[3] | P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Thinking coherently, Risk, 10 (1997), 68–71. |
[4] | P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Coherent measures of risk, Math. Financ., 9 (1999), 203–228. http://dx.doi.org/10.1111/1467-9965.00068 |
[5] | A. Axelrod, L. Carlone, G. Chowdhary, S. Karaman, Data-driven prediction of EVAR with confidence in time-varying datasets, 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 2016, 5833–5838. http://dx.doi.org/10.1109/CDC.2016.7799166 |
[6] | D. P. Baron, On the utility theoretic foundations of mean-variance analysis, J. Financ., 32 (1977), 1683–1697. http://dx.doi.org/10.1111/j.1540-6261.1977.tb03363.x doi: 10.1111/j.1540-6261.1977.tb03363.x |
[7] | A. Ben-Tal, D. Bertsimas, D. B. Brown, A soft robust model for optimization under ambiguity, Oper. Res., 58 (2010), 1220–1234. http://dx.doi.org/10.1287/opre.1100.0821 doi: 10.1287/opre.1100.0821 |
[8] | D. Bertsimas, D. B. Brown, Constructing uncertainty sets for robust linear optimization, Oper. Res., 57 (2009), 1483–1495. http://dx.doi.org/10.1287/opre.1080.0646 doi: 10.1287/opre.1080.0646 |
[9] | M. Borkovec, I. Domowitz, B. Kiernan, V. Serbin, Portfolio optimization and the cost of trading, J. Invest., 19 (2010), 63–76. http://dx.doi.org/10.3905/joi.2010.19.2.063 doi: 10.3905/joi.2010.19.2.063 |
[10] | J. P. Bouchaud, J. Bonart, J. Donier, M. Gould, Trades, quotes and prices: financial markets under the microscope, Cambridge: Cambridge University Press, 2018. http://dx.doi.org/https://doi.org/10.1017/9781316659335 |
[11] | S. P. Boyd, L. Vandenberghe, Convex optimization, Cambridge: Cambridge University Press, 2004. |
[12] | S. Caçador, J. M. Dias, P. Godinho, Portfolio selection under uncertainty: a new methodology for computing relative-robust solutions, Int. T. Oper. Res., 28 (2021), 1296–1329. http://dx.doi.org/10.1111/itor.12674 doi: 10.1111/itor.12674 |
[13] | D. Cajas, Entropic portfolio optimization: a disciplined convex programming framework, SSRN Electronic Journal, 2021 (2021), 3792520. |
[14] | A. H. Chen, F. J. Fabozzi, D. S. Huang, Portfolio revision under mean-variance and mean-cvar with transaction costs, Rev. Quant. Finan. Acc., 39 (2012), 509–526. http://dx.doi.org/10.1007/s11156-012-0292-1 doi: 10.1007/s11156-012-0292-1 |
[15] | S. Chennaf, J. B. Amor, Entropic value at risk to find the optimal uncertain random portfolio, Soft Comput., 27 (2023), 15185–15197. http://dx.doi.org/10.1007/s00500-023-08547-5 doi: 10.1007/s00500-023-08547-5 |
[16] | J. Dufitinema, S. Pynnönen, T. Sottinen, Maximum likelihood estimators from discrete data modeled by mixed fractional brownian motion with application to the nordic stock markets, Commun. Stat. Simul. C., 51 (2022), 5264–5287. http://dx.doi.org/10.1080/03610918.2020.1764581 doi: 10.1080/03610918.2020.1764581 |
[17] | P. Embrechts, S. I. Resnick, G. Samorodnitsky, Extreme value theory as a risk management tool, N. Am. Actuar. J., 3 (1999), 30–41. http://dx.doi.org/10.1080/10920277.1999.10595797 doi: 10.1080/10920277.1999.10595797 |
[18] | D. Goldfarb, G. Iyengar, Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1–38. http://dx.doi.org/10.1287/moor.28.1.1.14260 doi: 10.1287/moor.28.1.1.14260 |
[19] | F. Hooshmand, Z. Anoushirvani, S. A. MirHassani, Model and efficient algorithm for the portfolio selection problem with real-world constraints under value-at-risk measure, Int. T. Oper. Res., 30 (2023), 2665–2690. http://dx.doi.org/10.1111/itor.13239 doi: 10.1111/itor.13239 |
[20] | R. P. Huang, Z. S. Xu, S. J. Qu, X. G. Yang, M. Goh, Robust portfolio selection with distributional uncertainty and integer constraints, J. Oper. Res. Soc. China, 11 (2023), 1–27. http://dx.doi.org/10.1007/s40305-023-00466-4 doi: 10.1007/s40305-023-00466-4 |
[21] | G. Kara, A. Özmen, G.-W. Weber, Stability advances in robust portfolio optimization under parallelepiped uncertainty, Cent. Eur. J. Oper. Res., 27 (2019), 241–261. http://dx.doi.org/10.1007/s10100-017-0508-5 doi: 10.1007/s10100-017-0508-5 |
[22] | J. Kriens, J. T. van Lieshout, Notes on the Markowitz portfolio selection method, Stat. Neerl., 42 (1988), 181–191. http://dx.doi.org/10.1111/j.1467-9574.1988.tb01232.x doi: 10.1111/j.1467-9574.1988.tb01232.x |
[23] | W. Liu, L. Yang, B. Yu, Distributionally robust optimization based on Kernel density estimation and mean-entropic value-at-risk, INFORMS Journal on Optimization, 5 (2022), 68–91. http://dx.doi.org/10.1287/ijoo.2022.0076 doi: 10.1287/ijoo.2022.0076 |
[24] | G. M. Luo, Mixed complementarity problems for robust optimization equilibrium in bimatrix game, Appl. Math., 57 (2012), 503–520. http://dx.doi.org/10.1007/s10492-012-0029-4 doi: 10.1007/s10492-012-0029-4 |
[25] | H. Markowitz, Portfolio selection, J. Financ., 7 (1952), 77–91. http://dx.doi.org/10.1111/j.1540-6261.1952.tb01525.x |
[26] | E. J. Menvouta, S. Serneels, T. Verdonck, Portfolio optimization using cellwise robust association measures and clustering methods with application to highly volatile markets, Journal of Finance and Data Science, 9 (2023), 100097. http://dx.doi.org/10.1016/j.jfds.2023.100097 doi: 10.1016/j.jfds.2023.100097 |
[27] | J. E. Mitchell, S. Braun, Rebalancing an investment portfolio in the presence of convex transaction costs, submitted for publication. |
[28] | J. E. Mitchell, S. Braun, Rebalancing an investment portfolio in the presence of convex transaction costs, including market impact costs, Optim. Method. Softw., 28 (2013), 523–542. http://dx.doi.org/10.1080/10556788.2012.717940 doi: 10.1080/10556788.2012.717940 |
[29] | K. Muthuraman, S. Kumar, Multidimensional portfolio optimization with proportional transaction costs, Math. Financ., 16 (2006), 301–335. http://dx.doi.org/10.1111/j.1467-9965.2006.00273.x doi: 10.1111/j.1467-9965.2006.00273.x |
[30] | G. C. Pflug, Some remarks on the value-at-risk and the conditional value-at-risk, In: Probabilistic constrained optimization, Boston: Springer, 2000,272–281. http://dx.doi.org/10.1007/978-1-4757-3150-7_15 |
[31] | R. T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk, J. Risk, 3 (2000), 21–41. |
[32] | R. Sehgal, A. Mehra, Robust reward–risk ratio portfolio optimization, Int. T. Oper. Res., 28 (2021), 2169–2190. http://dx.doi.org/10.1111/itor.12652 doi: 10.1111/itor.12652 |
[33] | R. L. Sun, T. F. Ma, S. Z. Liu, Portfolio selection based on semivariance and distance correlation under minimum variance framework, Stat. Neerl., 73 (2019), 373–394. http://dx.doi.org/10.1111/stan.12174 doi: 10.1111/stan.12174 |
[34] | X. J. Tong, F. L. Wu, L. Q. Qi, Worst-case cvar based portfolio optimization models with applications to scenario planning, Optim. Method. Softw., 24 (2009), 933–958. http://dx.doi.org/10.1080/10556780902865942 doi: 10.1080/10556780902865942 |
[35] | X. J. Tong, F. L. Wu, Robust reward–risk ratio optimization with application in allocation of generation asset, Optimization, 63 (2014), 1761–1779. http://dx.doi.org/10.1080/02331934.2012.672419 doi: 10.1080/02331934.2012.672419 |
[36] | X. T. Wang, Z. Li, L. Zhuang, Risk preference, option pricing and portfolio hedging with proportional transaction costs, Chaos Soliton. Fract., 95 (2017), 111–130. https://dx.doi.org/10.1016/j.chaos.2016.12.010 doi: 10.1016/j.chaos.2016.12.010 |
[37] | L. J. Xu, Y. J. Zhou, New robust reward-risk ratio models with CVaR and standard deviation, J. Math., 2022 (2022), 8304411. http://dx.doi.org/10.1155/2022/8304411 doi: 10.1155/2022/8304411 |
[38] | C. L. Zheng, Y. Chen, Portfolio selection based on relative entropy coherent risk measure, Systems Engineering-Theory & Practice, 34 (2014), 648–655. |
[39] | Y. J. Zhou, L. Yang, L. J. Xu, B. Yu, Inseparable robust reward–risk optimization models with distribution uncertainty, Japan J. Indust. Appl. Math., 33 (2016), 767–780. http://dx.doi.org/10.1007/s13160-016-0230-z doi: 10.1007/s13160-016-0230-z |
[40] | S. S. Zhu, D. Li, S. Y. Wang, Robust portfolio selection under downside risk measures, Quant. Financ., 9 (2009), 869–885. http://dx.doi.org/10.1080/14697680902852746 doi: 10.1080/14697680902852746 |
[41] | S. S. Zhu, M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management, Oper. Res., 57 (2009), 1155–1168. http://dx.doi.org/10.1287/opre.1080.0684 doi: 10.1287/opre.1080.0684 |
[42] | J. X. Zhu, Optimal financing and dividend distribution with transaction costs in the case of restricted dividend rates, ASTIN Bull., 47 (2017), 239–268. http://dx.doi.org/10.1017/asb.2016.29 doi: 10.1017/asb.2016.29 |