Research article

The best approximation problems between the least-squares solution manifolds of two matrix equations

  • Received: 16 April 2024 Revised: 01 June 2024 Accepted: 24 June 2024 Published: 28 June 2024
  • MSC : 15A24, 15A60

  • In this paper, we will deal with the following two classes of best approximation problems about the linear manifolds: Problem 1. Given matrices $ A_1, B_1, C_1, $ and $ D_1 \in {\mathbb R}^{ m \times n} $, find $ d(L_1, L_2) = \min_{X\in L_1, Y\in L_2}\|X-Y\|, $ and find $ \hat{X}\in L_1, \hat{Y}\in L_2 $ such that $ \|\hat{X}-\hat{Y}\| = d(L_1, L_2) $, where $ L_1 = \left\{{X \in {\mathbb {SR}} ^{n \times n} \left|{\ \|A_1X-B_1\| = \min}\right.} \right\} $ and $ L_2 = \left\{{Y \in {\mathbb {SR}} ^{n \times n} \left|{\ \|C_1Y-D_1\| = \min}\right.} \right\} $. Problem 2. Given matrices $ A_2, B_2, E_2, F_2 \in {\mathbb R}^{ m \times n} $ and $ C_2, D_2, G_2, H_2 \in {\mathbb R}^{ n \times p} $, find $ d(L_3, L_4) = \min_{X\in L_3, Y\in L_4}\|X-Y\|, $ and find $ \tilde{X}\in L_3, \tilde{Y}\in L_4 $ such that $ \|\tilde{X}-\tilde{Y}\| = d(L_3, L_4) $, where $ L_3 = \left\{{X \in {\mathbb {R}}^{n \times n} \left|{\ \|A_2X-B_2\|^2+||XC_2-D_2\|^2 = \min}\right.} \right\} $ and $ L_4 = \left\{{Y \in {\mathbb {R}} ^{n \times n} \left|{\ \|E_2Y-F_2\|^2+||YG_2-H_2\|^2 = \min}\right.} \right\} $. We obtain explicit formulas for $ d(L_1, L_2) $ and $ d(L_3, L_4), $ and all the matrices in question by using the singular value decompositions and the canonical correlation decompositions of matrices.

    Citation: Yinlan Chen, Yawen Lan. The best approximation problems between the least-squares solution manifolds of two matrix equations[J]. AIMS Mathematics, 2024, 9(8): 20939-20955. doi: 10.3934/math.20241019

    Related Papers:

  • In this paper, we will deal with the following two classes of best approximation problems about the linear manifolds: Problem 1. Given matrices $ A_1, B_1, C_1, $ and $ D_1 \in {\mathbb R}^{ m \times n} $, find $ d(L_1, L_2) = \min_{X\in L_1, Y\in L_2}\|X-Y\|, $ and find $ \hat{X}\in L_1, \hat{Y}\in L_2 $ such that $ \|\hat{X}-\hat{Y}\| = d(L_1, L_2) $, where $ L_1 = \left\{{X \in {\mathbb {SR}} ^{n \times n} \left|{\ \|A_1X-B_1\| = \min}\right.} \right\} $ and $ L_2 = \left\{{Y \in {\mathbb {SR}} ^{n \times n} \left|{\ \|C_1Y-D_1\| = \min}\right.} \right\} $. Problem 2. Given matrices $ A_2, B_2, E_2, F_2 \in {\mathbb R}^{ m \times n} $ and $ C_2, D_2, G_2, H_2 \in {\mathbb R}^{ n \times p} $, find $ d(L_3, L_4) = \min_{X\in L_3, Y\in L_4}\|X-Y\|, $ and find $ \tilde{X}\in L_3, \tilde{Y}\in L_4 $ such that $ \|\tilde{X}-\tilde{Y}\| = d(L_3, L_4) $, where $ L_3 = \left\{{X \in {\mathbb {R}}^{n \times n} \left|{\ \|A_2X-B_2\|^2+||XC_2-D_2\|^2 = \min}\right.} \right\} $ and $ L_4 = \left\{{Y \in {\mathbb {R}} ^{n \times n} \left|{\ \|E_2Y-F_2\|^2+||YG_2-H_2\|^2 = \min}\right.} \right\} $. We obtain explicit formulas for $ d(L_1, L_2) $ and $ d(L_3, L_4), $ and all the matrices in question by using the singular value decompositions and the canonical correlation decompositions of matrices.


    加载中


    [1] J. E. Mottershead, Y. M. Ram, Inverse eigenvalue problems in vibration absorption: passive modification and active control, Mech. Syst. Signal Process., 20 (2006), 5–44. https://doi.org/10.1016/j.ymssp.2005.05.006 doi: 10.1016/j.ymssp.2005.05.006
    [2] B. Dong, M. M. Lin, M. T. Chu, Parameter reconstruction of vibration systems from partial eigeninformation, J. Sound Vibration, 327 (2009), 391–401. https://doi.org/10.1016/j.jsv.2009.06.026 doi: 10.1016/j.jsv.2009.06.026
    [3] S. A. Avdonin, M. I. Belishev, S. A. Ivano, Boundary control and a matrix inverse problem for the equation $u_tt-u_xx+V(x)u = 0$, Math. USSR Sb., 72 (1992), 287–310. https://doi.org/10.1070/SM1992v072n02ABEH002141 doi: 10.1070/SM1992v072n02ABEH002141
    [4] Y. X. Yuan, A symmetric inverse eigenvalue problem in structural dynamic model updating, Appl. Math. Comput., 213 (2009), 516–521. https://doi.org/10.1016/j.amc.2009.03.045 doi: 10.1016/j.amc.2009.03.045
    [5] Y. X. Yuan, H. Dai, An inverse problem for undamped gyroscopic systems, J. Comput. Appl. Math., 236 (2012), 2574–2581. https://doi.org/10.1016/j.cam.2011.12.015 doi: 10.1016/j.cam.2011.12.015
    [6] L. Wu, The re-positive definite solutions to the matrix inverse problem $AX = B$, Linear Algebra Appl., 174 (1992), 145–151. https://doi.org/10.1016/0024-3795(92)90048-F doi: 10.1016/0024-3795(92)90048-F
    [7] K. W. E. Chu, Symmetric solutions of linear matrix equations by matrix decompositions, Linear Algebra Appl., 119 (1989), 35–50. https://doi.org/10.1016/0024-3795(89)90067-0 doi: 10.1016/0024-3795(89)90067-0
    [8] L. J. Zhao, X. Y. Hu, L. Zhang, Least squares solutions to $AX = B$ for bisymmetric matrices under a central principal submatrix constraint and the optimal approximation, Linear Algebra Appl., 428 (2008), 871–880. https://doi.org/10.1016/j.laa.2007.08.019 doi: 10.1016/j.laa.2007.08.019
    [9] Q. W. Wang, Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl., 49 (2005), 641–650. https://doi.org/10.1016/j.camwa.2005.01.014 doi: 10.1016/j.camwa.2005.01.014
    [10] S. K. Mitra, The matrix equations $AX = C$, $XB = D$, Linear Algebra Appl., 59 (1984), 171–181.
    [11] S. K. Mitra, A pair of simultaneous linear matrix equations $A_{1}XB_{1} = C_{1}$, $A_{2}XB_{2} = C_{2}$ and a matrix programming problem, Linear Algebra Appl., 131 (1990), 107–123. https://doi.org/10.1016/0024-3795(90)90377-O doi: 10.1016/0024-3795(90)90377-O
    [12] A. Dajić, J. J. Koliha, Positive solutions to the equations $AX = C$ and $XB = D$ for Hilbert space operators, J. Math. Anal. Appl., 333 (2007), 567–576. https://doi.org/10.1016/j.jmaa.2006.11.016 doi: 10.1016/j.jmaa.2006.11.016
    [13] Y. Y. Qiu, A. D. Wang, Least squares solutions to the equations $AX = B$, $XC = D$ with some constraints, Appl. Math. Comput., 204 (2008), 872–880. https://doi.org/10.1016/j.amc.2008.07.035 doi: 10.1016/j.amc.2008.07.035
    [14] Y. H. Liu, Some properties of submatrices in a solution to the matrix equations $AX = C$, $XB = D$, J. Appl. Math. Comput., 31 (2009), 71–80. https://doi.org/10.1007/s12190-008-0192-7 doi: 10.1007/s12190-008-0192-7
    [15] F. J. H. Don, On the symmetric solutions of a linear matrix equation, Linear Algebra Appl., 93 (1987), 1–7. https://doi.org/10.1016/S0024-3795(87)90308-9 doi: 10.1016/S0024-3795(87)90308-9
    [16] D. Hua, On the symmetric solutions of linear matrix equations, Linear Algebra Appl., 131 (1990), 1–7. https://doi.org/10.1016/0024-3795(90)90370-r doi: 10.1016/0024-3795(90)90370-r
    [17] J. G. Sun, Two kinds of inverse eigenvalue problems for real symmetric matrices (Chinese), Math. Numer. Sinica, 3 (1988), 282–290.
    [18] C. R. Rao, S. K. Mitra, Generalized inverse of matrices and its applications, John Wiley & Sons, 1971.
    [19] Y. X. Yuan, Least-squares solutions to the matrix equations $AX = B$ and $XC = D$, Appl. Math. Comput., 216 (2010), 3120–3125. https://doi.org/10.1016/j.amc.2010.04.002 doi: 10.1016/j.amc.2010.04.002
    [20] R. Hettiarachchi, J. F. Peters, Multi-manifold LLE learning in pattern recognition, Pattern Recogn., 48 (2015), 2947–2960. https://doi.org/10.1016/j.patcog.2015.04.003 doi: 10.1016/j.patcog.2015.04.003
    [21] R. Souvenir, R. Pless, Image distance functions for manifold learning, Image Vision Comput., 25 (2007), 365–373. https://doi.org/10.1016/j.imavis.2006.01.016 doi: 10.1016/j.imavis.2006.01.016
    [22] J. X. Du, M. W. Shao, C. M. Zhai, J. Wang, Y. Y. Tang, C. L. P. Chen, Recognition of leaf image set based on manifold-manifold distance, Neurocomputing, 188 (2016), 131–188. https://doi.org/10.1016/j.neucom.2014.10.113 doi: 10.1016/j.neucom.2014.10.113
    [23] L. K. Huang, J. W. Lu, Y. P. Tan, Multi-manifold metric learning for face recognition based on image sets, J. Vis. Commun. Image Represent., 25 (2014), 1774–1783. https://doi.org/10.1016/j.jvcir.2014.08.006 doi: 10.1016/j.jvcir.2014.08.006
    [24] C. Y. Chen, J. P. Zhang, R. Fleischer, Distance approximating dimension reduction of Riemannian manifolds, IEEE Trans. Syst. Man Cybernet. Part B, 40 (2010), 208–217. https://doi.org/10.1109/TSMCB.2009.2025028 doi: 10.1109/TSMCB.2009.2025028
    [25] H. R. Chen, Y. F. Sun, J. B. Gao, Y. L. Hu, B. C. Yin, Solving partial least squares regression via manifold optimization approaches, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 588–600. https://doi.org/10.1109/TNNLS.2018.2844866 doi: 10.1109/TNNLS.2018.2844866
    [26] M. Shahbazi, A. Shirali, H. Aghajan, H. Nili, Using distance on the Riemannian manifold to compare representations in brain and in models, NeuroImage, 239 (2021), 118271. https://doi.org/10.1016/j.neuroimage.2021.118271 doi: 10.1016/j.neuroimage.2021.118271
    [27] K. Sharma, R. Rameshan, Distance based kernels for video tensors on product of Riemannian matrix manifolds, J. Vis. Commun. Image Represent., 75 (2021), 103045. https://doi.org/10.1016/j.jvcir.2021.103045 doi: 10.1016/j.jvcir.2021.103045
    [28] S. Kass, Spaces of closest fit, Linear Algebra Appl., 117 (1989), 93–97. https://doi.org/10.1016/0024-3795(89)90550-8 doi: 10.1016/0024-3795(89)90550-8
    [29] A. M. Dupré, S. Kass, Distance and parallelism between flats in ${\mathbb R}^n$, Linear Algebra Appl., 171 (1992), 99–107. https://doi.org/10.1016/0024-3795(92)90252-6 doi: 10.1016/0024-3795(92)90252-6
    [30] Y. X. Yuan, On the approximation between affine subspaces (Chinese), J. Nanjing Univ. Math. Biq., 17 (2000), 244–249.
    [31] P. Grover, Orthogonality to matrix subspaces, and a distance formula, Linear Algebra Appl., 445 (2014), 280–288. https://doi.org/10.1016/j.laa.2013.11.040 doi: 10.1016/j.laa.2013.11.040
    [32] H. K. Du, C. Y. Deng, A new characterization of gaps between two subspaces, Proc. Amer. Math. Soc., 133 (2005), 3065–3070.
    [33] O. M. Baksalary, G. Trenkler, On angles and distances between subspaces, Linear Algebra Appl., 431 (2009), 2243–2260. https://doi.org/10.1016/j.laa.2009.07.021 doi: 10.1016/j.laa.2009.07.021
    [34] C. Scheffer, J. Vahrenhold, Approximating geodesic distances on 2-manifolds in ${\mathbb R}^{ 3}$, Comput. Geom., 47 (2014), 125–140. https://doi.org/10.1016/j.comgeo.2012.05.001 doi: 10.1016/j.comgeo.2012.05.001
    [35] C. Scheffer, J. Vahrenhold, Approximating geodesic distances on 2-manifolds in ${\mathbb R}^{3}$: the weighted case, Comput. Geom., 47 (2014), 789–808. https://doi.org/10.1016/j.comgeo.2014.04.003 doi: 10.1016/j.comgeo.2014.04.003
    [36] G. P. Xu, M. S. Wei, D. S. Zheng, On solutions of matrix equation $AXB + CYD = F$, Linear Algebra Appl., 279 (1998), 93–109. https://doi.org/10.1016/S0024-3795(97)10099-4 doi: 10.1016/S0024-3795(97)10099-4
    [37] G. H. Golub, H. Y. Zha, Perturbation analysis of the canonical correlations of matrix pairs, Linear Algebra Appl., 210 (1994), 3–28. https://doi.org/10.1016/0024-3795(94)90463-4 doi: 10.1016/0024-3795(94)90463-4
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(553) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog