Research article

A new double inertial subgradient extragradient method for solving a non-monotone variational inequality problem in Hilbert space

  • Received: 01 April 2024 Revised: 15 June 2024 Accepted: 20 June 2024 Published: 28 June 2024
  • MSC : 47H05, 47J20, 65K15

  • In this paper, we introduced a new double inertial subgradient extragradient method for solving a variational inequality problem in Hilbert space. In our method, the mapping needed not to satisfy any assumption of monotonicity and two different self-adaptive step sizes were used for avoiding the need of Lipschitz constant of the mapping. The strong convergence of the proposed method was proved under some new conditions. Finally, some numerical examples were presented to illustrate the convergence of our method and compare with some related methods in the literature.

    Citation: Ziqi Zhu, Kaiye Zheng, Shenghua Wang. A new double inertial subgradient extragradient method for solving a non-monotone variational inequality problem in Hilbert space[J]. AIMS Mathematics, 2024, 9(8): 20956-20975. doi: 10.3934/math.20241020

    Related Papers:

  • In this paper, we introduced a new double inertial subgradient extragradient method for solving a variational inequality problem in Hilbert space. In our method, the mapping needed not to satisfy any assumption of monotonicity and two different self-adaptive step sizes were used for avoiding the need of Lipschitz constant of the mapping. The strong convergence of the proposed method was proved under some new conditions. Finally, some numerical examples were presented to illustrate the convergence of our method and compare with some related methods in the literature.


    加载中


    [1] S. Migórski, S. D. Zeng, Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model, Nonlinear Anal. Real World Appl., 43 (2018), 121–143. https://doi.org/10.1016/j.nonrwa.2018.02.008 doi: 10.1016/j.nonrwa.2018.02.008
    [2] S. D. Zeng, S. Migórski, Noncoercive hyperbolic variational inequalities with applications to contact mechanics, J. Math. Anal. Appl., 455 (2017), 619–637. https://doi.org/10.1016/j.jmaa.2017.05.072 doi: 10.1016/j.jmaa.2017.05.072
    [3] G. J. Tang, M. Zhu, H. W. Liu, A new extragradient-type method for mixed variational inequalities, Oper. Res. Lett., 43 (2015), 567–572. https://doi.org/10.1016/j.orl.2015.08.009 doi: 10.1016/j.orl.2015.08.009
    [4] G. M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekon. Mate. Metody, 12 (1976), 747–756.
    [5] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318–335. https://doi.org/10.1007/s10957-010-9757-3 doi: 10.1007/s10957-010-9757-3
    [6] B. S. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim., 35 (1997), 69–76. https://doi.org/10.1007/s002459900037 doi: 10.1007/s002459900037
    [7] M. V. Solodov, B. F. Svaiter, New projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765–776. https://doi.org/10.1137/S0363012997317475 doi: 10.1137/S0363012997317475
    [8] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446. https://doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
    [9] D. V. Thong, D. V. Hieu, Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms, 79 (2018), 597–610. https://doi.org/10.1007/s11075-017-0452-4 doi: 10.1007/s11075-017-0452-4
    [10] S. Reich, D. V. Thong, P. Cholamjiak, L. V. Long, Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space, Numer. Algorithms, 88 (2021), 813–835. https://doi.org/10.1007/s11075-020-01058-6 doi: 10.1007/s11075-020-01058-6
    [11] Q. L. Dong, Y. J. Cho, L. L. Zhong, T. M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Global Optim., 70 (2018), 687–704. https://doi.org/10.1007/s10898-017-0506-0 doi: 10.1007/s10898-017-0506-0
    [12] S. Noinakorn, N. Wairojjana, N. Pakkaranang, A novel accelerated extragradient algorithm to solve pseudomonotone variational inequalities, Arab. J. Math., 12 (2023), 201–218. https://doi.org/10.1007/s40065-022-00400-1 doi: 10.1007/s40065-022-00400-1
    [13] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3–11. https://doi.org/10.1023/A:1011253113155 doi: 10.1023/A:1011253113155
    [14] B. Tan, P. Sunthrayuth, P. Cholamjiak, Y. J. Cho, Modified inertial extragradient methods for finding minimum-norm solution of the variational inequality problem with applications to optimal control problem, Int. J. Comput. Math., 100 (2023), 525–545. https://doi.org/10.1080/00207160.2022.2137672 doi: 10.1080/00207160.2022.2137672
    [15] Y. H. Yao, O. S. Iyiola, Y. Shehu, Subgradient extragradient method with double inertial steps for variational inequalities, J. Sci. Comput., 90 (2022). https://doi.org/10.1007/s10915-021-01751-1 doi: 10.1007/s10915-021-01751-1
    [16] D. V. Thong, V. T. Dung, P. K. Anh, H. V. Thang, A single projection algorithm with double inertial extrapolation steps for solving pseudomonotone variational inequalities in Hilbert space, J. Comput. Appl. Math., 426 (2023), 115099. https://doi.org/10.1016/j.cam.2023.115099 doi: 10.1016/j.cam.2023.115099
    [17] H. Y. Li, X. F. Wang, Subgradient extragradient method with double inertial steps for quasi-monotone variational inequalities, Filomat, 37 (2023), 9823–9844. https://doi.org/10.2298/FIL2329823L doi: 10.2298/FIL2329823L
    [18] H. Y. Li, X. F. Wang, F. H. Wang, Projection and contraction method with double inertial steps for quasi-monotone variational inequalities, Optimization, 2024, 1–32. https://doi.org/10.1080/02331934.2024.2323102 doi: 10.1080/02331934.2024.2323102
    [19] K. Wang, Y. H. Wang, O. S. Iyiola, Y. Shehu, Double inertial projection method for variational inequalities with quasi-monotonicity, Optimization, 73 (2024), 707–739. https://doi.org/10.1080/02331934.2022.2123241 doi: 10.1080/02331934.2022.2123241
    [20] S. He, C. Yang, P. Duan, Realization of the hybrid method for Mann iterations, Appl. Math Comput., 217 (2010), 4239–4247. https://doi.org/10.1016/j.amc.2010.10.039 doi: 10.1016/j.amc.2010.10.039
    [21] H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2011.
    [22] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, B. Aust. Math. Soc., 65 (2002), 109–113. https://doi.org/10.1017/S0004972700020116 doi: 10.1017/S0004972700020116
    [23] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Variational Anal., 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z
    [24] Y. R. He, Solvability of the Minty variational inequality, J. Optim. Theory Appl., 174 (2017), 686–692. https://doi.org/10.1007/s10957-017-1124-1 doi: 10.1007/s10957-017-1124-1
    [25] J. Mashreghi, M. Nasri, Forcing strong convergence of Korpelevich's method in Banach spaces with its applications in game theory, Nonlinear Anal., 72 (2010), 2086–2099. https://doi.org/10.1016/j.na.2009.10.009 doi: 10.1016/j.na.2009.10.009
    [26] P. N. Anh, T. T. H. Anh, N. D. Hien, Modified basic projection methods for a class of equilibrium problems, Numer. Algorithms, 79 (2018), 139–152. https://doi.org/10.1007/s11075-017-0431-9 doi: 10.1007/s11075-017-0431-9
    [27] H. Rehman, P. Kumam, Y. J. Cho, Y. I. Suleiman, W. Kumam, Modified Popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Method. Softw., 36 (2021), 82–113. https://doi.org/10.1080/10556788.2020.1734805 doi: 10.1080/10556788.2020.1734805
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(729) PDF downloads(51) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog