Research article Special Issues

Self adaptive alternated inertial algorithm for solving variational inequality and fixed point problems

  • Received: 13 January 2024 Revised: 01 March 2024 Accepted: 07 March 2024 Published: 11 March 2024
  • MSC : 47H04, 47H09, 47H10, 65K10

  • We introduce an alternated inertial subgradient extragradient algorithm of non-Lipschitz and pseudo-monotone operators to solve variational inequality and fixed point problems. We also demonstrated that, under certain conditions, the sequence produced by our algorithm exhibits weak convergence. Moreover, some numerical experiments have been proposed to compare our algorithm with previous algorithms in order to demonstrate the effectiveness of our algorithm.

    Citation: Yuanheng Wang, Chenjing Wu, Yekini Shehu, Bin Huang. Self adaptive alternated inertial algorithm for solving variational inequality and fixed point problems[J]. AIMS Mathematics, 2024, 9(4): 9705-9720. doi: 10.3934/math.2024475

    Related Papers:

  • We introduce an alternated inertial subgradient extragradient algorithm of non-Lipschitz and pseudo-monotone operators to solve variational inequality and fixed point problems. We also demonstrated that, under certain conditions, the sequence produced by our algorithm exhibits weak convergence. Moreover, some numerical experiments have been proposed to compare our algorithm with previous algorithms in order to demonstrate the effectiveness of our algorithm.



    加载中


    [1] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci., 258 (1964), 4413–4416.
    [2] Y. Malitsky, V. Semenov, An extragradient algorithm for monotone variational inequalities, Cybern. Syst. Anal., 50 (2014), 271–277. http://dx.doi.org/10.1007/s10559-014-9614-8 doi: 10.1007/s10559-014-9614-8
    [3] P. Tseng, A modified forward-backward splitting method for maximal monotone mapping, SIAM J. Control Optim., 38 (2000), 431–446. http://dx.doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
    [4] M. Solodov, B. Svaiter, New projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765–776. http://dx.doi.org/10.1137/S0363012997317475 doi: 10.1137/S0363012997317475
    [5] Y. Malitsky, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 25 (2015), 502–520. http://dx.doi.org/10.1137/14097238X doi: 10.1137/14097238X
    [6] P. Mainge, M. Gobinddass, Convergence of one-step projected gradient methods for variational inequalities, J. Optim. Theory Appl., 171 (2016), 146–168. http://dx.doi.org/10.1007/s10957-016-0972-4 doi: 10.1007/s10957-016-0972-4
    [7] A. Iusem, B. Svaiter, A variant of Korpelevich's method for variational inequalities with a new search strategy, Optimization, 42 (1997), 309–321. http://dx.doi.org/10.1080/02331939708844365 doi: 10.1080/02331939708844365
    [8] R. Kraikaew, S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 163 (2014), 399–412. http://dx.doi.org/10.1007/s10957-013-0494-2 doi: 10.1007/s10957-013-0494-2
    [9] Y. Shehu, O. Iyiola, Strong convergence result for monotone variational inequalities, Numer. Algor., 76 (2017), 259–282. http://dx.doi.org/10.1007/s11075-016-0253-1 doi: 10.1007/s11075-016-0253-1
    [10] A. Gibali, A new non-Lipschitzian method for solving variational inequalities in Euclidean spaces, Journal of Nonlinear Analysis and Optimization: Theory and Applications, 6 (2015), 41–51.
    [11] X. Hu, J. Wang, Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network, IEEE Trans. Neural Netw., 17 (2006), 1487–1499. http://dx.doi.org/10.1109/TNN.2006.879774 doi: 10.1109/TNN.2006.879774
    [12] X. He, T. Huang, J. Yu, C. D. Li, C. J. Li, An inertial projection neural network for solving variational inequalities, IEEE Trans. Cybern., 47 (2017), 809–814. http://dx.doi.org/10.1109/TCYB.2016.2523541 doi: 10.1109/TCYB.2016.2523541
    [13] M. Eshaghnezhad, S. Effati, A. Mansoori, A neurodynamic model to solve nonlinear pseudo-monotone projection equation and its applications, IEEE Trans. Cybern., 47 (2017), 3050–3062. http://dx.doi.org/10.1109/TCYB.2016.2611529 doi: 10.1109/TCYB.2016.2611529
    [14] J. Zheng, J. Chen, X. Ju, Fixed-time stability of projection neurodynamic network for solving pseudomonotone variational inequalities, Neurocomputing, 505 (2022), 402–412. http://dx.doi.org/10.1016/j.neucom.2022.07.034 doi: 10.1016/j.neucom.2022.07.034
    [15] G. Korpelevich, The extragradient method for finding saddle points and other problem, Matecon, 12 (1976), 747–756.
    [16] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318–335. http://dx.doi.org/10.1007/s10957-010-9757-3 doi: 10.1007/s10957-010-9757-3
    [17] D. Thong, A. Gibali, Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities, J. Fixed Point Theory Appl., 21 (2019), 20. http://dx.doi.org/10.1007/s11784-018-0656-9 doi: 10.1007/s11784-018-0656-9
    [18] Q. Dong, G. Cai, Convergence analysis for fixed point problem of asymptotically nonexpansive mappings and variational inequality problem in Hilbert spaces, Optimization, 70 (2021), 1171–1193. http://dx.doi.org/10.1080/02331934.2020.1789127 doi: 10.1080/02331934.2020.1789127
    [19] Q. Dong, S. He, L. Liu, A general inertial projected gradient method for variational inequality problems, Comp. Appl. Math., 40 (2021), 168. http://dx.doi.org/10.1007/s40314-021-01540-4 doi: 10.1007/s40314-021-01540-4
    [20] A. Moudafi, E. Elisabeth, Approximate inertial proximal method using enlargement of a maximal monotone operator, International Journal of Pure and Applied Mathematics, 5 (2003), 283–299.
    [21] S. Denisov, V. Semenov, L. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51 (2015), 757–765. http://dx.doi.org/10.1007/s10559-015-9768-z doi: 10.1007/s10559-015-9768-z
    [22] D. Thong, Y. Shehu, O. Iyiola, Weak and strong convergence theorems for solving pseudomonotone variational inequalities with non-Lipschitz mappings, Numer. Algor., 84 (2020), 795–823. http://dx.doi.org/10.1007/s11075-019-00780-0 doi: 10.1007/s11075-019-00780-0
    [23] Y. Shehu, Q. Dong, L. Liu, J. Yao, New strong convergence method for the sum of two maximal monotone operators, Optim. Eng., 22 (2021), 2627–2653. http://dx.doi.org/10.1007/s11081-020-09544-5 doi: 10.1007/s11081-020-09544-5
    [24] D. Thong, D. Hieu, T. Rassias, Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems, Optim. Lett., 14 (2020), 115–144. http://dx.doi.org/10.1007/s11590-019-01511-z doi: 10.1007/s11590-019-01511-z
    [25] F. Ma, J. Yang, M. Yin, A strong convergence theorem for solving pseudo-monotone variational inequalities and fixed point problems using subgradient extragradient method in Banach spaces, AIMS Mathematics, 7 (2022), 5015–5028. http://dx.doi.org/10.3934/math.2022279 doi: 10.3934/math.2022279
    [26] N. Nadezhkina, W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 128 (2006), 191–201. http://dx.doi.org/10.1007/s10957-005-7564-z doi: 10.1007/s10957-005-7564-z
    [27] D. Thong, D. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algor., 80 (2019), 1283–1307. http://dx.doi.org/10.1007/s11075-018-0527-x doi: 10.1007/s11075-018-0527-x
    [28] H. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279–291. http://dx.doi.org/10.1016/j.jmaa.2004.04.059 doi: 10.1016/j.jmaa.2004.04.059
    [29] R. Cottle, J. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75 (1992), 281–295. http://dx.doi.org/10.1007/BF00941468 doi: 10.1007/BF00941468
    [30] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. http://dx.doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0
    [31] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318–335. http://dx.doi.org/10.1007/s10957-010-9757-3 doi: 10.1007/s10957-010-9757-3
    [32] B. Tan, Z. Zhou, S. Li, Viscosity-type inertial extragradient algorithms for solving variational inequality problems and fixed point problems, J. Appl. Math. Comput., 68 (2022), 1387–1411. http://dx.doi.org/10.1007/s12190-021-01576-z doi: 10.1007/s12190-021-01576-z
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(753) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog