In this paper, we aim to overcome the problem given by Abkar et al. [Abstr. Appl. Anal., 2013 (2013), 189567], and so to obtain real generalizations of fixed point results in the literature. In this direction, we introduce a new class of functions, which include $ \mathcal{R} $-functions. Thus, we present a new type of $ \mathcal{R} $ -contraction and weaken $ \mathcal{R} $-contractions that have often been studied recently. We also give a new definition of the $ P $-property. Hence, we obtain some best proximity point results, including fixed point results for the new kind of $ \mathcal{R} $-contractions. Then, we provide an example to show the effectiveness of our results. Finally, inspired by a nice and interesting technique, we investigate the existence of a best proximity point of the homotopic mappings with the help of our main result.
Citation: Mustafa Aslantas, Hakan Sahin, Ishak Altun, Taif Hameed SAADOON SAADOON. A new type of $ \mathcal{R} $-contraction and its best proximity points[J]. AIMS Mathematics, 2024, 9(4): 9692-9704. doi: 10.3934/math.2024474
In this paper, we aim to overcome the problem given by Abkar et al. [Abstr. Appl. Anal., 2013 (2013), 189567], and so to obtain real generalizations of fixed point results in the literature. In this direction, we introduce a new class of functions, which include $ \mathcal{R} $-functions. Thus, we present a new type of $ \mathcal{R} $ -contraction and weaken $ \mathcal{R} $-contractions that have often been studied recently. We also give a new definition of the $ P $-property. Hence, we obtain some best proximity point results, including fixed point results for the new kind of $ \mathcal{R} $-contractions. Then, we provide an example to show the effectiveness of our results. Finally, inspired by a nice and interesting technique, we investigate the existence of a best proximity point of the homotopic mappings with the help of our main result.
[1] | M. Abbas, H. Iqbal, A. Petrusel, Fixed points for multivalued Suzuki type $(\theta, R)$-contraction mapping with applications, J. Funct. Space., 2019 (2019), 9565804. https://doi.org/10.1155/2019/9565804 doi: 10.1155/2019/9565804 |
[2] | A. Abkar, M. Gabeleh, A note on some best proximity point theorems proved under $P$-property, Abstr. Appl. Anal., 2013 (2013), 189567. https://doi.org/10.1155/2013/189567 doi: 10.1155/2013/189567 |
[3] | H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082–1094. |
[4] | H. Aydi, M. Aslam, D. Sagheer, S. Batul, R. Ali, E. Ameer, Kannan-type contractions on new extended-metric spaces, J. Funct. Space., 2021 (2021), 7613684. https://doi.org/10.1155/2021/7613684 doi: 10.1155/2021/7613684 |
[5] | H. Aydi, A. Felhi, S. Sahmim, On fixed points in quasi partial $b$-metric spaces and an application to dynamic programming, Thai J. Math., 19 (2021), 407–419. |
[6] | H. Aydi, H. Lakzian, Z. Mitrović, S. Radenović, Best proximity points of $M\Upsilon $-cyclic contractions with property $ UC$, Numer. Func. Anal. Opt., 41 (2020), 871–882. https://doi.org/10.1080/01630563.2019.1708390 doi: 10.1080/01630563.2019.1708390 |
[7] | S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[8] | S. Basha, Extensions of Banach's contraction principle, Numer. Func. Anal. Opt., 31 (2010), 569–576. https://doi.org/10.1080/01630563.2010.485713 doi: 10.1080/01630563.2010.485713 |
[9] | S. Basha, P. Veeramani, Best proximity pairs and best approximations, Acta Sci. Math., 63 (1997), 289–300. |
[10] | M. Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772–782. https://doi.org/10.1016/j.jmaa.2006.03.016 doi: 10.1016/j.jmaa.2006.03.016 |
[11] | M. Gabeleh, Semi-normal structure and best proximity pair results in convex metric spaces, Banach J. Math. Anal., 8 (2014), 214–228. https://doi.org/10.15352/bjma/1396640065 doi: 10.15352/bjma/1396640065 |
[12] | M. Gabeleh, Best proximity points for weak proximal contractions, Bull. Malays. Math. Sci. Soc., 38 (2015), 143–154. https://doi.org/10.1007/s40840-014-0009-9 doi: 10.1007/s40840-014-0009-9 |
[13] | M. Gabeleh, O. Otafudu, Markov-Kakutani's theorem for best proximity pairs in Hadamard spaces, Indagat. Math., 28 (2017), 680–693. https://doi.org/10.1016/j.indag.2017.02.004 doi: 10.1016/j.indag.2017.02.004 |
[14] | Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061 |
[15] | M. Imdad, H. Saleh, W. Alfaqih, Best proximity point theorems in metric spaces with applications in partial metric spaces, TWMS J. Appl. Eng. Math., 10 (2020), 190–200. |
[16] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. https://doi.org/10.2298/FIL1506189K doi: 10.2298/FIL1506189K |
[17] | D. O'Regan, Topological fixed point theory for compact multifunctions via homotopy and essential maps, Topol. Appl., 265 (2019), 106819. https://doi.org/10.1016/j.topol.2019.106819 doi: 10.1016/j.topol.2019.106819 |
[18] | V. Raj, Best proximity point theorems for non-self mappings, Fixed Point Theor., 14 (2013), 447–454. |
[19] | S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl., 62 (1978), 104–113. https://doi.org/10.1016/0022-247X(78)90222-6 doi: 10.1016/0022-247X(78)90222-6 |
[20] | S. Reich, T. Tuyen, M. Ha, An optimization approach to solving the split feasibility problem in Hilbert spaces, J. Glob. Optim., 79 (2021), 837–852. https://doi.org/10.1007/s10898-020-00964-2 doi: 10.1007/s10898-020-00964-2 |
[21] | S. Reich, R. Zalas, The optimal error bound for the method of simultaneous projections, J. Approx. Theory, 223 (2017), 96–107. https://doi.org/10.1016/j.jat.2017.08.005 doi: 10.1016/j.jat.2017.08.005 |
[22] | A. Roldán-López-de-Hierro, E. Karapınar, C. Roldá n-López-de-Hierro, J. Martínez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345–355. https://doi.org/10.1016/j.cam.2014.07.011 doi: 10.1016/j.cam.2014.07.011 |
[23] | A. Roldán-López-de-Hierro, N. Shahzad, New fixed point theorem under $\mathcal{R}$-contractions, Fixed Point Theory A., 2015 (2015), 98. https://doi.org/10.1186/s13663-015-0345-y doi: 10.1186/s13663-015-0345-y |
[24] | H. Sahin, M. Aslantas, I. Altun, Best proximity and best periodic points for proximal nonunique contractions, J. Fixed Point Theory Appl., 23 (2021), 55. https://doi.org/10.1007/s11784-021-00889-7 doi: 10.1007/s11784-021-00889-7 |
[25] | H. Sahin, A new type of F-contraction and their best proximity point results with homotopy application, Acta Appl. Math., 179 (2022), 9. https://doi.org/10.1007/s10440-022-00496-9 doi: 10.1007/s10440-022-00496-9 |
[26] | H. Sahin, M. Aslantas, A. Nasir, Some extended results for multivalued F-contraction mappings, Axioms, 12 (2023), 116. https://doi.org/10.3390/axioms12020116 doi: 10.3390/axioms12020116 |
[27] | S. Shukla, S. Radenović, C. Vetro, Set-valued Hardy-Rogers type contraction in $0$-complete partial metric spaces, International Journal of Mathematics and Mathematical Sciences, 2014 (2014), 652925. https://doi.org/10.1155/2014/652925 doi: 10.1155/2014/652925 |
[28] | C. Vetro, F. Vetro, A homotopy fixed point theorem in $0$ -complete partial metric space, Filomat, 29 (2015), 2037–2048. https://doi.org/10.2298/FIL1509037V doi: 10.2298/FIL1509037V |