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Abstract: In this paper, we aim to overcome the problem given by Abkar et al. [Abstr. Appl.
Anal., 2013 (2013), 189567], and so to obtain real generalizations of fixed point results in the literature.
In this direction, we introduce a new class of functions, which include R-functions. Thus, we present
a new type of R-contraction and weaken R-contractions that have often been studied recently. We also
give a new definition of the P-property. Hence, we obtain some best proximity point results, including
fixed point results for the new kind of R-contractions. Then, we provide an example to show the
effectiveness of our results. Finally, inspired by a nice and interesting technique, we investigate the
existence of a best proximity point of the homotopic mappings with the help of our main result.
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1. Introduction and preliminaries

Recently, Khojasteh et al. [16] introduced a new concept of the so-called simulation function, and
also Z-contractions by using these functions. Moreover, with the help of these functions, a nice fixed
point result was obtained which generalized many famous results [4, 5, 7, 10]. Now, we recall the
definition ofZ-contractions and a related fixed point result:

Let ζ : [0,∞) × [0,∞) → R be a function. If ζ satisfies the following conditions, then it is said to
be a simulation function:

(ζ1) ζ (0, 0) = 0,
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(ζ2) ζ(p, q) < q − p for all q, p > 0,
(ζ3) If {pn},{qn} ⊆ (0,∞) are sequences satisfying limn→∞ pn = limn→∞ qn > 0, then

lim
n→∞

sup ζ (pn, qn) < 0.

Theorem 1 ( [16]). Let Υ : Λ → Λ be a mapping on a complete metric space (Λ, d) and ζ : [0,∞) ×
[0,∞)→ R be a simulation function. If the mapping Υ is aZ-contraction w.r.t. ζ, that is, it satisfies

ζ (d(Υκ,Υη), d(κ, η)) ≥ 0

for each κ, η ∈ Λ, then Υ has a unique fixed point u in Λ. Also, the Picard sequence {Υnκ} for any
initial point κ ∈ Λ converges to u.

Then, Argoubi et al. [3] noticed that the condition (ζ1) can be removed because of the fact that it
is not used in the proof of Theorem 1. Another approach to these expansion efforts was achieved by
Roldán-López-de-Hierro et al. [22] by modifying the condition (ζ3) as follows:

(ζ3)′ If {pn},{qn} ⊆ (0,∞) are sequences satisfying limn→∞ pn = limn→∞ qn > 0 and pn < qn for all
n ∈ N, then

lim
n→∞

sup ζ (pn, qn) < 0.

Later, surprisingly it was proved that every Z-contraction in the sense of Roldán-López-de-Hierro
et al. is a Meir-Keeler contraction. To obtain a real larger family of contractions than the family
of Meir-Keeler contractions, Roldán-López-de-Hierro et al. [23] introduced R-functions, and hence
R-contractions with the help of these functions:

Definition 1. Let ∅ , A ⊆ R. If a function % : A × A → R satisfies the following conditions, then it is
called an R-function on A:

(%1) If {pn} ⊆ (0,∞) ∩ A is a sequence satisfying %(pn+1, pn) > 0 for all n ∈ N ∪ {0}, then we have
pn → 0.

(%2) If {pn},{qn} ⊆ (0,∞) ∩ A are sequences satisfying limn→∞ pn = limn→∞ qn = L ≥ 0, L < pn and
% (pn, qn) > 0 for each n ∈ N, then we have L = 0.

The following property for an R-function % on A is useful in some cases:

(%3) If {pn},{qn} ⊆ (0,∞) ∩ A are sequences satisfying % (pn, qn) > 0 for each n ∈ N and qn → 0 as
n→ ∞, then we get pn → 0.

Definition 2. Let Υ : Λ → Λ be a mapping on a metric space (Λ, d). If there is an R-function % on A
satisfying ran(d,Λ) = {d(κ, η) : κ, η ∈ Λ} ⊆ A and

% (d(Υκ,Υη), d(κ, η)) > 0

for each κ, η ∈ Λ with κ , η, then Υ is called an R-contraction with respect to %.

On the other hand, the best proximity point theory has been considered as a new way of extending
the results in fixed point theory. Let P and Q be non-empty subsets of a metric space (Λ, d) and Υ :
P→ Q be a mapping. If P ∩ Q = ∅, then Υ cannot have a fixed point. Then, it is natural to investigate
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the existence of a point κ ∈ P satisfying d(κ,Υκ) = d(P,Q) that is said to be a best proximity point of
Υ. It is obvious that each best proximity point of Υ is a fixed point of Υ in a special case P = Q = Λ.
Also, a best proximity point of Υ is a solution for the optimization problem minκ∈P d(κ,Υκ). There are
many papers on this topic in the literature due to these facts [6,8,9,11–13,15,18–21,24–26]. Now, we
recall some fundamental notions and definitions about this theory:

Let P and Q be non-empty subsets of a metric space (Λ, d). Denote P0,Q0 ⊆ Λ by

P0 = {κ ∈ P : d(κ, η) = d(P,Q) for some η ∈ Q}

and
Q0 = {η ∈ Q : d(κ, η) = d(P,Q) for some κ ∈ P} ,

respectively.

Definition 3 ( [18]). Let ∅ , P,Q be subsets of a metric space (Λ, d). Then, the pair (P,Q) is said to
have a P-property if it satisfies

d(κ1, η1) = d(P,Q)
d(κ2, η2) = d(P,Q)

}
⇒ d(κ1, κ2) = d(η1, η2)

for all κ1, κ2 ∈ P and η1, η2 ∈ Q.

In this paper, we first modify the condition (%2) in the definition of the R-function to overcome a
problem that will be mentioned in Section 2 in the proof of the main result (Theorem 27) in [23]. Then,
considering a weaker condition (%1)′ than, (%1), we introduce a new concept of the so-called modified
R-function. Thus, we extend the family ofR-functions. We also change the definition of the P-property
by considering a note given by Abkar et al. [2]. Further, we obtain some best proximity point results
which are real generalizations of fixed point results for the new kind of R-contractions. Hence, we
generalize and unify some famous results in the literature. To show this fact, we provide an interesting
example. Finally, inspired a nice and interesting technique used by Vetro et al. [28], we investigate the
existence of a best proximity point of the homotopic mappings.

2. Main result

In the proof of the main result (Theorem 27) in [23], we notice that the authors need L ≤ pn for
all n ∈ N instead of L < pn for all n ∈ N in the condition (%2) to show the Picard sequence {κn} is a
Cauchy sequence. To overcome this problem, we slightly modify the condition (%2) as (%2)′. So, in the
rest of the paper and in Definition 2, it is reasonable to assume that an R-function on A is a function
% : A × A → R satisfying the conditions (%1) and (%2)′. Also, taking into account the condition (%1)′

which is weaker than (%1), we introduce a new concept of the so-called modified R-function as follows:

Definition 4. Let ∅ , A ⊆ R. If a function % : A × A → R satisfies the following conditions, then it is
called a modified R-function on A:

(%1)′ If {pn} ⊆ (0,∞)∩ A is a sequence satisfying %(pn+1, pn) > 0 for all n ∈ N∪ {0}, then there exists a
subsequence

{
pnk

}
of {pn} such that pnk → 0 as k → ∞.

(%2)′ If {pn},{qn} ⊆ (0,∞) ∩ A are sequences satisfying limn→∞ pn = limn→∞ qn = L ≥ 0, L ≤ pn and
% (pn, qn) > 0 for all n ∈ N, then we have L = 0.
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It is clear that every R-function on A is a modified R-function on A. Using modified R-functions
and taking into account the best proximity point theory, we introduce a new type contraction called a
generalized R-contraction. Hence, we enlarge the family of R-contractions. Before this new concept,
we present the following proposition that is important for our main result.

Proposition 1. Let % : A × A → R be a modified R-function on A. Then, we have %(κ, κ) ≤ 0 for all
κ ∈ (0,∞) ∩ A.

Proof. Assume the contrary. That is, there exists a point κ ∈ (0,∞) ∩ A such that %(κ, κ) > 0. If we
consider the sequence pn = κ for all n ∈ N, then we have %(pn+1, pn) > 0 for all n ∈ N. Thus, using the
condition (%1)′, we conclude that there exists a subsequence

{
pnk

}
of {pn} such that pnk → 0 as k → ∞,

which contradicts κ > 0. �

Now, we state our new concept.

Definition 5. Let Υ : P → Q be a mapping on a metric space (Λ, d) where ∅ , P,Q ⊆ Λ. If there is a
modified R-function % : A × A→ R on A satisfying ran(d, P ∪ Q) = {d(κ, η) : κ, η ∈ P ∪ Q} ⊆ A and

% (d(Υκ,Υη), d(κ, η)) > 0

for each κ, η ∈ P with κ , η, then Υ is called a generalized R-contraction with respect to %.

On the other hand, it has been shown that the existence of a best proximity point under the P-
property can be obtained by corresponding fixed point results by Abkar and Gabeleh [2]. Hence, to
obtain a real generalization of fixed point results, we modify the definition of the P-property as follows:

Definition 6. Let ∅ , P,Q be subsets of a metric space (Λ, d). Then, the pair (P,Q) is said to have a
generalized P-property if it satisfies

d(κ1, η1) = d(P,Q)
d(κ2, η2) = d(P,Q)

}
⇒ d(κ1, κ2) = d(η1, η2)

for all κ1, κ2 ∈ P with κ1 , κ2 and η1, η2 ∈ Q.

Remark 1. As we know, every nonempty, bounded, closed, and convex pair in a strictly convex and
reflexive Banach space Λ has the P-property, and so, it has the generalized P-property. But, there is a
reflexive Banach space for which bounded, closed, and convex pairs in this space have the generalized
P-property but do not have the P-property. Indeed, if we consider the set Λ = R2 with the maximum
norm ‖·‖∞, then (Λ, ‖·‖∞) is a reflexive Banach space, but it is not strictly convex. Suppose that

P = {(0, 1)} and Q = {(x, 0) : 0 ≤ x ≤ 1} .

Then, the pair (P,Q) is a bounded, closed, and convex pair. Also, we have dist(P,Q) = inf{‖κ − η‖∞ :
κ ∈ P, η ∈ Q} = 1, P0 = P and Q0 = Q. Since the set P is singleton, then the pair (P,Q) has the
generalized P-property. But, it does not have the P-property. Indeed, although∥∥∥∥∥∥(0, 1) −

(
1
2
, 0

)∥∥∥∥∥∥
∞

= 1 = dist(P,Q),

‖(0, 1) − (0, 0)‖∞ = 1 = dist(P,Q),

we have

‖(0, 1) − (0, 1)‖∞ = 0 ,
1
2

=

∥∥∥∥∥∥(0, 0) −
(
1
2
, 0

)∥∥∥∥∥∥
∞

.
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Now, we present our main result:

Theorem 2. Let Υ : P→ Q be a mapping on a complete metric space (Λ, d) where P and Q are closed
subsets of Λ. Assume that P0 , ∅, Υ(P0) ⊆ Q0 and the pair (P,Q) has the generalized P-property.
Suppose that Υ is a generalized R-contraction with respect to %. If one of the following conditions is
satisfied:

(i) Υ is continuous,
(ii) The function % satisfies the condition (%3),

then Υ has a unique best proximity point in P.

Proof. Let κ0 ∈ P0 be an arbitrary point. Since Υκ0 ∈ Υ(P0) ⊆ Q0, there exists κ1 ∈ P0 satisfying

d(κ1,Υκ0) = d(P,Q).

Also, since Υκ1 ∈ Υ(P0) ⊆ Q0, there exists κ2 ∈ P0 satisfying

d(κ2,Υκ1) = d(P,Q).

In this way, we can construct a sequence {κn} in P0 such that

d(κn+1,Υκn) = d(P,Q) (2.1)

for all n ∈ N ∪ {0}. If κn0 = κn0+1 for some n0 ∈ N ∪ {0}, then from (2.1) we have

d(κn0 ,Υκn0) = d(P,Q),

and so the proof is completed. Hence, we assume that κn , κn+1 for all n ∈ N ∪ {0}. Then, since the
pair (P,Q) has the generalized P-property, from (2.1) we get

d(κn, κn+1) = d(Υκn−1,Υκn) (2.2)

for all n ∈ N. Also, since Υ is a generalized R-contraction w.r.t. %, we obtain

%(d(Υκn−1,Υκn), d(κn−1, κn)) > 0

for all n ∈ N, and so from (2.2), we get

%(d(κn, κn+1), d(κn−1, κn)) > 0 (2.3)

for all n ∈ N. Therefore, if we denote a sequence {pn} by pn = d(κn−1, κn) for all n ∈ N, then from (2.3)
we have pn > 0 and %(pn+1, pn) > 0 for all n ∈ N. Also, since {pn} ⊆ (0,∞) ∩ A, using the condition
(%1)′, we can say that there exists a subsequence

{
pnk

}
of {pn} such that

lim
k→∞

pnk = lim
k→∞

d(κnk−1, κnk) = 0. (2.4)

Now, we want to show that
{
κnk

}
is a Cauchy sequence. For convenience, let us denote a sequence {ηk}

as ηk = κnk for all k ∈ N. Assume the contrary, that is, {ηk} is not a Cauchy sequence. Then, there exist
ε > 0 and two subsequences of natural numbers {kr}, {`r} with `r > kr ≥ r such that

d(ηkr , η`r ) ≥ ε (2.5)
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for all r ∈ N where `r is the least integer satisfying (2.5), that is, d(ηkr , η`r−1) < ε for all r ∈ N. Hence,
using the triangular inequality we have

ε ≤ d(ηkr , η`r )
≤ d(ηkr , η`r−1) + d(η`r−1, η`r )
< ε + d(η`r−1, η`r )

for all r ∈ N. Taking the limit as r → ∞, we get

lim
r→∞

d(ηkr , η`r ) = ε. (2.6)

Also, since ∣∣∣d(ηkr−1, η`r−1) − d(ηkr , η`r )
∣∣∣ ≤ d(ηkr−1, ηkr ) + d(η`r−1, η`r )

for all r ∈ N, from (2.6) we have
lim
r→∞

d(ηkr−1, η`r−1) = ε. (2.7)

Because of the fact that Υ is a generalized R-contraction w.r.t. %, we obtain

%
(
d
(
Υηkr−1,Υη`r−1

)
, d(ηkr−1, η`r−1)

)
> 0

for all r ∈ N. Hence, since the pair (P,Q) has the generalized P-property, we have

%
(
d(ηkr , η`r ), d(ηkr−1, η`r−1)

)
> 0 (2.8)

for all r ∈ N. Now, since limr→∞ d
(
ηkr−1, η`r−1

)
= limr→∞ d(ηkr , η`r ) = ε, taking into account the

condition (%2), from (2.5) and (2.8), we have ε = 0 which is contradiction. Hence, {ηk} =
{
κnk

}
is a

Cauchy sequence in P. Using the equality (2.2), we obtain that
{
Υκnk−1

}
is a Cauchy sequence in Q,

too. Due to the closedness of subsets P and Q of the complete metric space (Λ, d), there exists κ ∈ P
and η ∈ Q such that

lim
k→∞
κnk = κ and lim

k→∞
Υκnk−1 = η. (2.9)

From (2.1), taking the limit as k → ∞ , we have

d(κ, η) = d(P,Q). (2.10)

Also, we obtain
d(κnk−1, κ) ≤ d(κnk−1, κnk) + d(κnk , κ)

for each k ∈ N. Hence, considering (2.4) and (2.9), we get

lim
k→∞
κnk−1 = κ. (2.11)

If there exists a subsequence of
{
κnk−1

}
whose terms each equal κ, then from (2.9) it can be seen that

η = Υκ. So, from (2.10), the proof is complete. Therefore, suppose that κnk−1 , κ for all k ∈ N and for
some r ∈ N with k ≥ r. Now, we have the following cases:
Case (i). Suppose that Υ is a continuous mapping. Then, we obtain

lim
k→∞

Υκnk−1 = Υκ,
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and so η = Υκ. From (2.10), we conclude that κ ∈ P is a best proximity point of Υ.
Case (ii). Suppose that the condition (%3) is satisfied. Since Υ is a generalized R-contraction mapping,
we have

%(d(Υκnk−1,Υκ), d(κnk−1, κ)) > 0.

Hence, considering the condition (%3), from (2.11) we have

lim
k→∞

Υκnk−1 = Υκ,

and so η = Υκ. From (2.10), we conclude that κ ∈ P is a best proximity point of Υ.
For the uniqueness, suppose that there exists κ, η ∈ P with κ , η such that

d(κ,Υκ) = d(P,Q)

and
d(η,Υη) = d(P,Q).

Hence, considering the generalized P-property we have

d(κ, η) = d(Υκ,Υη).

Also, because of the fact that Υ is a generalized R-contraction with respect to ζ, we obtain

% (d(Υκ,Υη), d(κ, η)) > 0,

which contradicts Proposition 1. Therefore, Υ has a unique best proximity point in P. �

Since every R-function % on A is a modified R-function on A, we obtain the following result, which
includes the main result of [23]:

Corollary 1. Let Υ : P → Q be a mapping on a complete metric space (Λ, d) where P and Q are
closed subsets of Λ. Assume that P0 , ∅, Υ(P0) ⊆ Q0 and the pair (P,Q) has the generalized P-
property. Suppose that there is an R-function % : A × A → R on A satisfying ran(d, P ∪ Q) =

{d(κ, η) : κ, η ∈ P ∪ Q} ⊆ A and
% (d(Υκ,Υη), d(κ, η)) > 0

for each κ, η ∈ P with κ , η. If it satisfies one of the following conditions:

(i) Υ is continuous,
(ii) The R-function % satisfies the condition (%3),

then Υ has a unique best proximity point in P.

The following example shows that Theorem 2 is a real generalization of Corollary 1:

Example 1. Let Λ = R2 be a complete metric space with the taxi-cab metric d. Consider the closed
subsets of Λ

P =

{
0,

1
n

: n ∈ N
}
× {0}
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and

Q =

{
0,

1
n

: n ∈ N
}
× {1} .

Then, d(P,Q) = 1, P0 = P, and Q0 = Q. Also, the pair (P,Q) has the generalized P-property. Define
the mapping Υ : P→ Q and the function % : [0,∞) × [0,∞)→ R by Υ (κ, 0) = (0, 1) and

%(p, q) =



1,
p = 1

n+1 and q = 1 + 1
n , n ≥ 1

or
p = 1 + 1

n and q = 1
n , n ≥ 1,

0,
p <

{
0, 1

n+1

}
and q = 1 + 1

n , n ≥ 1
or

p <
{
0, 1 + 1

n

}
and q = 1

n , n ≥ 1,
q
2 − p, otherwise,

respectively. Then, it can be easily seen that Υ(P0) ⊆ Q0 and Υ is a continuous mapping. Let A =

ran (d, P ∪ Q), that is,

A =

{
0,

1
n

: n ∈ N
}
∪

{∣∣∣∣∣1n − 1
m

∣∣∣∣∣ : n,m ∈ N
}
∪

{
1 +

∣∣∣∣∣1n − 1
m

∣∣∣∣∣ : n,m ∈ N
}
∪

{
1 +

1
n

: n ∈ N
}
.

In this case, Υ is a modified R-function on A. Indeed, to show that the condition (%1)′ holds, let us
take a sequence {pn} ⊆ (0,∞) ∩ A satisfying %(pn+1, pn) > 0 for all n ∈ N. If there is n0 ∈ N such that
pn0 = 1

n0
or pn0 = 1 + 1

n0
, then we have pn0+2n → 0 or pn0+(2n−1) → 0 for all n ∈ N. Otherwise, since

%(pn+1, pn) > 0 for each n ∈ N, we have

pn

2
− pn+1 > 0 (2.12)

for all n ∈ N, and so {pn} is decreasing. Hence, there exists L ≥ 0 such that pn → L as n → ∞.
Assume that L > 0. Taking the limit as n → ∞ in inequality (2.12), we obtain L ≤ L

2 < L, which is
contradiction. So, L = 0. Similar to (%1)′, it can be shown that the condition (%2)′ holds. Now, we want
to show that Υ is a generalized R-contraction w.r.t. %. For this, we have the following conditions:
Case 1. Let κ = (0, 0) , η =

(
1
n , 0

)
, n ≥ 1. Then, we have Υκ = (0, 1) and Υη = (0, 1). In this case, we

obtain
d(Υκ,Υη) = 0

and
d(κ, η) =

1
n
.

Hence, we get

%(d (Υκ,Υη) , d(κ, η)) = %

(
0,

1
n

)
=

1
2n

> 0.

Case 2. Let κ =
(

1
n , 0

)
, η =

(
1
m , 0

)
, n,m ≥ 1 (without loss of the generality, we assume that n < m).

Then, we have Υκ = (0, 1) and Υη = (0, 1). In this case, we get

d(Υκ,Υη) = 0

AIMS Mathematics Volume 9, Issue 4, 9692–9704.
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and

d(κ, η) =

∣∣∣∣∣1n − 1
m

∣∣∣∣∣ =
1
n
−

1
m
.

Hence, we obtain

%(d (Υκ,Υη) , d(κ, η)) = %

(
0,

1
n
−

1
m

)
=

1
2n
−

1
2m

> 0.

However, we cannot apply Corollary 1 to this example since % is not an R-function on any subset E of
R satisfying ran(d, P ∪ Q) ⊆ E. Assume the contrary, that is, there exists a subset E of R satisfying
ran(d) ⊆ E and % is a R-function on E. Now, consider the sequence

(pn) =

(
1
2
, 1 +

1
2
,

1
3
, 1 +

1
4
,

1
5
· · ·

)
in (0,∞) ∩ E. Then, we have %(pn+1, pn) = 1 > 0 for all n ∈ N, but pn 9 0, which contradicts the
condition (%1).

If we take P = Q = Λ in Corollary 1, we have the main result of [23]:

Corollary 2. Let Υ : Λ→ Λ be a mapping on a complete metric space (Λ, d). Suppose there exists an
R-function % : A × A→ R on A satisfying ran(d,Λ) = {d(κ, η) : κ, η ∈ Λ} ⊆ A and

% (d(Υκ,Υη), d(κ, η)) > 0

for all κ, η ∈ Λ with κ , η. If it satisfies one of the following conditions:

(i) Υ is continuous,
(ii) The R-function % satisfies the condition (%3),

then Υ has a unique fixed point in Λ.

3. Application

Recently, many authors have obtained an application of their fixed point results to homotopy theory
because of the close relationship between this topic and other branches of mathematics [1,14,17,27,28].
Therefore, inspired by a nice and interesting technique used by Vetro et al. [28], we present an
application of our best proximity point result, Theorem 2, to homotopy theory in this section. In this
sense, we show that, under the assumption that one of the homotopic mappings has the best proximity
point, another has one, too. Now, we recall the definition of homotopy.

Definition 7. Let (Λ1, τ1) and (Λ2, τ2) be topological spaces, Υ, F : Λ1 → Λ2 be a continuous
mappings. If there exists continuous function h : Λ1 × [0, 1] → Λ2 satisfying h(κ, 0) = Υκ and
h(κ, 1) = Fκ for all κ ∈ Λ1, then it is said that Υ and F are homotopic mappings. Also, the mapping h
is called a homotopy.

The following definition is important for the results of this section:

AIMS Mathematics Volume 9, Issue 4, 9692–9704.
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Definition 8. Let ∅ , P,Q be subsets of a metric space (Λ, d) and h : P × [0, 1]→ Q be a mapping. If
Gd(h) ⊆ (Λ × [0, 1] × Λ, d∗) is closed, then h is said to be a d-closed mapping, where

Gd(h) = {(κ, β, η) : κ ∈ P, η ∈ Λ and β ∈ [0, 1] with d(η, h(κ, β)) = d(P,Q)}

and
d∗((κ1, β1, η1), (κ2, β2, η2)) = d(κ1, κ2) + |β1 − β2| + d(η1, η2)

for all (κ1, β1, η1), (κ2, β2, η2) ∈ Λ × [0, 1] × Λ.

Note that, in case of d(P,Q) = 0, Definition 8 turns to the definition of closed mappings defined
from P to Q.

Now, we can present the main result of this section:

Theorem 3. Let (Λ, d) be a complete metric space, P,Q be nonempty closed subsets of Λ and ∅ , U ⊆
P. Assume that the pair (P,Q) has the generalized P-property and h : P × [0, 1] → Q is a continuous
d-closed mapping such that

(i) d(κ, h(κ, λ)) > d(P,Q) for each κ ∈ P\U and λ ∈ [0, 1],
(ii) there exists a modified R-function % : A × A → R on A satisfying ran(d, P ∪ Q) =

{d(κ, η) : κ, η ∈ P ∪ Q} ⊆ A and

% (d(h(κ, λ), h(η, µ)), d(κ, η)) > 0

for each κ, η ∈ P with κ , η and λ, µ ∈ [0, 1],
(iii) for all κ ∈ A, β, r ∈ [0, 1], and κ0 ∈ B(κ, r)∩P0 there exists κ1 ∈ B(κ, r) such that d(κ1, h(κ0, β)) =

d(P,Q) where
B(κ, r) =

{
κ ∈ P : d(κ, κ) ≤ r

}
.

Then, h(·, 1) has a best proximity point in P if h(·, 0) has a best proximity point in P.

Proof. Consider the following subset:

K = {(β, κ) : d(κ, h(κ, β)) = d(P,Q)} .

From the hypothesis and the condition (i), there is a point κ in P such that d(κ, h(x, 0)) = d(P,Q), that
is, we have (0, κ) ∈ K. Hence, we get K , ∅. Define a partial order on K by

(β, κ) � (µ, η)⇔ β ≤ µ and d(κ, η) ≤ µ − β.

Now, let L be an arbitrary totally ordered subset of K and β∗ = sup{β : (β, κ) ∈ L}. Consider a sequence
{(βn, κn)} in L such that (βn, κn) � (βn+1, κn+1) for all n ∈ N ∪ {0} and βn → β∗as n → ∞. In this case,
we get

d(κn, κm) ≤ βm − βn,

for each n,m ∈ N ∪ {0} with m > n. Thus, {κn} ⊆ P is a Cauchy sequence. Then, there is κ∗ ∈ P such
that d(κn, κ

∗) → 0 as n → ∞ since P ⊆ Λ is closed and (Λ, d) is a complete metric space. Also, we
have {(κn, βn, κn)} ⊆ Gd(h) and

lim
n→∞

d∗ ((κn, βn, κn), (κ∗, β∗, κ∗)) = 0).
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Since h is a d-closed mapping, we get

d(κ∗, h(κ∗, β∗)) = d(P,Q).

From (i), we have κ∗ ∈ U, and so (β∗, κ∗) ∈ K. Since L is a totally ordered, it satisfies (β, κ) � (β∗, κ∗)
for all (β, κ) ∈ L. Hence, (β∗, κ∗) is an upper bound of L. Therefore, using the Zorn lemma, we say
that K has a maximal element (β0, κ0) in K. Now, we want to show that β0 = 1. Assume the contrary,
that is, β0 < 1. Then, there is a real number β satisfying β0 < β < 1. Let r = β − β0. From (ii), the
mapping H(·, β) : B(κ0, r) → Q is a generalized R-contraction. Considering condition (iii) and using
Theorem 2, we can say that there exists κβ ∈ B(κ0, r) such that d(κβ, h(κβ, β)) = d(P,Q). From (i),
κβ ∈ U, and so (β, κβ) ∈ K, which contradicts that (β0, κ0) is maximal element of K. So, β0 = 1 and
h(·, 1) has a best proximity point κ0 in P. �

Taking Q = Λ in Theorem 3, we obtain the following corollary:

Corollary 3. Let (Λ, d) be a complete metric space, P be a nonempty closed subset of Λ and ∅ , U ⊆
P. Assume that h : P × [0, 1]→ Λ is a continuous closed mapping such that

(i) d(κ, h(κ, λ)) > 0 for each κ ∈ P\U and λ ∈ [0, 1],
(ii) there exists a modified R-function % : A×A→ R on A such that ran(d,Λ) = {d(κ, η) : κ, η ∈ Λ} ⊆

A and
% (d(h(κ, λ), h(η, µ)), d(κ, η)) > 0

for each κ, η ∈ P with κ , η and λ, µ ∈ [0, 1],
(iii) for all κ ∈ A, β, r ∈ [0, 1] and κ0 ∈ B(κ, r) , there exists κ1 ∈ B(κ, r) such that κ1 = h(κ0, β).

If h(·, 0) has a fixed point in P, then h(·, 1) has a fixed point P.

Proof. Assume that h(·, 0) has a fixed point κ in P. Therefore, from Theorem 3 we say that there is
κ∗ ∈ P satisfying

d(κ∗, h(κ∗, 1)) = d(P,Λ) = 0.

This shows that κ∗ is a fixed point of h(·, 1). �
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