Material selection is a complex process that involves selecting the best material for a given application. It is a critical process in engineering, and the importance of selecting the right material for the job cannot be overstated. Multi-criteria decision-making (MCDM) is an important tool that can be used to help engineers make informed decisions about material selection. The logistic function can be extended using the soft-max function, which is widely used in stochastic classification methods like neural nets, soft-max extrapolation, linear differential analysis, and Naïve Bayes detectors. This has inspired researchers to develop soft-max-based fuzzy aggregation operators (AOs) for q-rung orthopair fuzzy sets (q-ROPFS) and to propose an MCDM approach based on these AOs. To test the effectiveness of this approach, the researchers applied it to a practical problem using q-rung orthopair fuzzy data and conducted a numerical example to validate the suggested procedures.
Citation: Adel Fahad Alrasheedi, Jungeun Kim, Rukhsana Kausar. q-Rung orthopair fuzzy information aggregation and their application towards material selection[J]. AIMS Mathematics, 2023, 8(8): 18780-18808. doi: 10.3934/math.2023956
Material selection is a complex process that involves selecting the best material for a given application. It is a critical process in engineering, and the importance of selecting the right material for the job cannot be overstated. Multi-criteria decision-making (MCDM) is an important tool that can be used to help engineers make informed decisions about material selection. The logistic function can be extended using the soft-max function, which is widely used in stochastic classification methods like neural nets, soft-max extrapolation, linear differential analysis, and Naïve Bayes detectors. This has inspired researchers to develop soft-max-based fuzzy aggregation operators (AOs) for q-rung orthopair fuzzy sets (q-ROPFS) and to propose an MCDM approach based on these AOs. To test the effectiveness of this approach, the researchers applied it to a practical problem using q-rung orthopair fuzzy data and conducted a numerical example to validate the suggested procedures.
[1] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3 |
[3] | R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584 |
[4] | R. R. Yager, Pythagorean fuzzy subsets, In: 2013 joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, Canada, IEEE, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
[5] | R. R. Yager, Pythagorean membership grades in multi criteria decision-making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989 |
[6] | R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005 |
[7] | T. Mahmood, F. Mehmood, Q. Khan, Some generalized aggregation operators for cubic hesitant fuzzy sets and their application to multi-criteria decision making, Punjab Univ. J. Math., 49 (2017), 31–49. |
[8] | G. Wei, H. Wang, X. Zhao, R. Lin, Hesitant triangular fuzzy information aggregation in multiple attribute decision making, J. Intell. Fuzzy Syst., 26 (2014), 1201–1209. https://doi.org/10.3233/IFS-130806 doi: 10.3233/IFS-130806 |
[9] | S. Jose, S. Kuriaskose, Aggregation operators, score function and accuracy function for multi criteria decision making in intuitionistic fuzzy context, Note. Intuition. Fuzzy Set., 20 (2014), 40–44. |
[10] | M. R. Hashmi, M. Riaz, F. Smarandache, m-Polar neutrosophic topology with applications to multi-criteria decision-making in medical diagnosis and clustering analysis, Int. J. Fuzzy Syst., 22 (2020), 273–292. https://doi.org/10.1007/s40815-019-00763-2 doi: 10.1007/s40815-019-00763-2 |
[11] | M. R. Hashmi, M. Riaz, A novel approach to censuses process by using Pythagorean m-polar fuzzy Dombi's aggregation operators, Int. J. Fuzzy Syst., 38 (2020), 1977–1995. https://doi.org/10.3233/JIFS-190613 doi: 10.3233/JIFS-190613 |
[12] | W. Wang, X. Liu, Intuitionistic fuzzy information aggregation using Einstein operators, IEEE Trans. Fuzzy Syst., 20 (2012), 923–938. https://doi.org/10.1109/TFUZZ.2012.2189405 doi: 10.1109/TFUZZ.2012.2189405 |
[13] | P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operator and their application to multi-attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927 |
[14] | H. Y. Zhang, J. Q, Wang, X. H. Chen, Interval neutrosophic sets and their applications in multi-criteria decision making problems, Sci. World J., 2014 (2014), 1–15. https://doi.org/10.1155/2014/645953 doi: 10.1155/2014/645953 |
[15] | H. Zhao, Z. S. Xu, M. F. Ni, S. S. Lui, Generalized aggregation operators for intuitionistic fuzzy sets, Int. J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386 doi: 10.1002/int.20386 |
[16] | F. Feng, H. Fujita, M. I. Ali, R. R. Yager, X. Liu, Another view on generalized intuitionistic fuzzy soft sets and related multi-attribute decision making methods, IEEE Trans. Fuzzy Syst., 27 (2019), 474–488. https://doi.org/10.1109/TFUZZ.2018.2860967 doi: 10.1109/TFUZZ.2018.2860967 |
[17] | H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operators and its applications to decision-making, Int. J. Intell. Syst., 12 (2016), 1–35. |
[18] | K. Rahman, S. Abdullah, R. Ahmad, M. Ullah, Pythagorean fuzzy Einstein weighted geometric aggregation operator and their application to multiple-attribute group decision-making, J. Intell. Fuzzy Syst., 33 (2017), 635–647. https://doi.org/10.3233/JIFS-16797 doi: 10.3233/JIFS-16797 |
[19] | L. Wang, H. Garg, N. Li, Pythagorean fuzzy interactive Hamacher power aggregation operators for assessment of express service quality with entropy weight, Soft Comput., 25 (2021), 973–993. https://doi.org/10.1007/s00500-020-05193-z doi: 10.1007/s00500-020-05193-z |
[20] | L. Wang, H. Garg, Algorithm for multiple attribute decision-making with interactive Archimedean norm operations under Pythagorean fuzzy uncertainty, Int. J. Comput. Intell. Syst., 14 (2021), 503–527. https://doi.org/10.2991/ijcis.d.201215.002 doi: 10.2991/ijcis.d.201215.002 |
[21] | L. Wang, N. Li, Pythagorean fuzzy interaction power Bonferroni mean aggregation operators in multiple attribute decision making, Int. J. Intell. Syst., 35 (2020), 150–183. https://doi.org/10.1002/int.22204 doi: 10.1002/int.22204 |
[22] | G. Wei, Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 33 (2017), 2119–2132. https://doi.org/10.3233/JIFS-162030 doi: 10.3233/JIFS-162030 |
[23] | H. Gao, M. Lu, G. Wei, Y. Wei, Some novel Pythagorean fuzzy interaction aggregation operators in multiple attribute decision making, Fund. Inform., 159 (2018), 385–428. https://doi.org/10.3233/FI-2018-1669 doi: 10.3233/FI-2018-1669 |
[24] | Z. S. Chen, X. Zhang, K. Govindan, X. J. Wang, K. S. Chinf, Third-party reverse logistics provider selection: A computational semantic analysis-based multi-perspective multi-attribute decision-making approach, Expert Syst. Appl., 166 (2021), 114051. https://doi.org/10.1016/j.eswa.2020.114051 doi: 10.1016/j.eswa.2020.114051 |
[25] | Y. Yang, Z. S. Chen, R. M. Rodríguez, W. Pedrycz, K. S. Chin, Novel fusion strategies for continuous interval-valued q-rung orthopair fuzzy information: A case study in quality assessment of SmartWatch appearance design, Int. J. Mach. Learn. Cybern., 13 (2022), 609–632. https://doi.org/10.1007/s13042-020-01269-2 doi: 10.1007/s13042-020-01269-2 |
[26] | P. Liu, J. Liu, Some q-rung orthopai fuzzy Bonferroni mean operators and their application to multi-attribute group decision making, J. Intell. Syst., 33 (2018), 315–347. https://doi.org/10.1002/int.21933 doi: 10.1002/int.21933 |
[27] | M. Riaz, H. Garg, H. M. A. Farid, R. Chinram, Multi-criteria decision making based on bipolar picture fuzzy operators and new distance measures, Comput. Model. Eng. Sci., 127 (2022), 771–800. https://doi.org/10.32604/cmes.2021.014174 doi: 10.32604/cmes.2021.014174 |
[28] | Z. Liu, S. Wang, P. Liu, Multiple attribute group decision making based on q-rung orthopair fuzzy Heronianmean operators, J. Intell. Syst., 33 (2018), 2341–2363. https://doi.org/10.1002/int.22032 doi: 10.1002/int.22032 |
[29] | B. P. Joshi, A. Gegov, Confidence levels q-rung orthopair fuzzy aggregation operators and its applications to MCDM problems, J. Intell. Syst., 35 (2019), 125–149. https://doi.org/10.1002/int.22203 doi: 10.1002/int.22203 |
[30] | J. R. Trillo, F. J. Cabrerizo, F. Chiclana, M. Á. Martínez, F. Mata, E. Herrera-Viedma, Theorem verification of the quantifier-guided dominance degree with the mean operator for additive preference relations, Mathematics, 10 (2022), 2035. https://doi.org/10.3390/math10122035 doi: 10.3390/math10122035 |
[31] | F. Chiclana, F. Herrera, E. Herrera-Viedma, Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations, Fuzzy Set. Syst., 97 (1998), 33–48. https://doi.org/10.1016/S0165-0114(96)00339-9 doi: 10.1016/S0165-0114(96)00339-9 |
[32] | B. Efe, An integrated fuzzy multi criteria group decision making approach for ERP system selection, Appl. Soft Comput., 38 (2016), 106–117. https://doi.org/10.1016/j.asoc.2015.09.037 doi: 10.1016/j.asoc.2015.09.037 |
[33] | J. R. Trillo, E. Herrera-Viedma, J. A. Morente-Molinera, F. J. Cabrerizo, A large scale group decision making system based on sentiment analysis cluster, Inform. Fusion, 91 (2023), 633–643. https://doi.org/10.1016/j.inffus.2022.11.009 doi: 10.1016/j.inffus.2022.11.009 |
[34] | S. Zhang, S. Liu, A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel selection, Expert Syst. Appl., 38 (2011), 11401–11405. https://doi.org/10.1016/j.eswa.2011.03.012 doi: 10.1016/j.eswa.2011.03.012 |
[35] | B. Limboo, P. Dutta, A q-rung orthopair basic probability assignment and its application in medical diagnosis, Decis. Mak. Appl. Manag. Eng., 5 (2022), 290–308. https://doi.org/10.31181/dmame191221060l doi: 10.31181/dmame191221060l |
[36] | M. Narang, M. C. Joshi, K. Bisht, A. Pal, Stock portfolio selection using a new decision-making approach based on the integration of fuzzy CoCoSo with Heronian mean operator, Decis. Mak. Appl. Manag. Eng., 5 (2022), 90–112. https://doi.org/10.31181/dmame0310022022n doi: 10.31181/dmame0310022022n |
[37] | M. Riaz, H. M. A. Farid, Picture fuzzy aggregation approach with application to third-party logistic provider selection process, Rep. Mech. Eng., 3 (2022), 227–236. https://doi.org/10.31181/rme20023062022r doi: 10.31181/rme20023062022r |
[38] | A. Ashraf, K. Ullah, A. Hussain, M. Bari, Interval-valued picture fuzzy Maclaurin symmetric mean operator with application in multiple attribute decision-making, Rep. Mech. Eng., 3 (2022), 210–226. https://doi.org/10.31181/rme20020042022a doi: 10.31181/rme20020042022a |
[39] | T. Mahmood, U. ur Rehman, Bipolar complex fuzzy subalgebras and ideals of BCK/BCI-algebras, J. Decis. Anal. Int. Comp., 3 (2023), 47–61. https://doi.org/10.31181/jdaic10021042023m doi: 10.31181/jdaic10021042023m |
[40] | M. Akram, G. Shahzadi, J. C. R. Alcantud, Multi-attribute decision-making with q-rung picture fuzzy information, Granul. Comput., 7 (2022), 197–215. https://doi.org/10.1007/s41066-021-00260-8 doi: 10.1007/s41066-021-00260-8 |
[41] | M. Akram, A. Khan, U. Ahmad, J. C. R. Alcantud, M. A. Al-Shamiri, A new group decision-making framework based on 2-tuple linguistic complex q-rung picture fuzzy sets, Math. Biosci. Eng., 19 (2022), 11281–11323. https://doi.org/10.3934/mbe.2022526 doi: 10.3934/mbe.2022526 |
[42] | H. M. A. Farid, H. Garg, M. Riaz, G. Santos-Garcia, Multi-criteria group decision-making algorithm based on single-valued neutrosophic Einstein prioritized aggregation operators and its applications, Manag. Decis., 61 (2023), 382–420. https://doi.org/10.1108/MD-04-2022-0484 doi: 10.1108/MD-04-2022-0484 |
[43] | M. Riaz, H. M. A. Farid, H. M. Shakeel, M. Aslam, S. H. Mohamed, Innovative q-rung orthopair fuzzy prioritized aggregation operators based on priority degrees with application to sustainable energy planning: A case study of Gwadar, AIMS Math., 6 (2021), 12795–12831. https://doi.org/10.3934/math.2021739 doi: 10.3934/math.2021739 |
[44] | P. Liu, B. Zhu, P. Wang, A multi-attribute decision-making approach based on spherical fuzzy sets for Yunnan Baiyao's R & D project selection problem, Int. J. Fuzzy Syst. 21 (2019), 2168–2191. https://doi.org/10.1007/s40815-019-00687-x doi: 10.1007/s40815-019-00687-x |
[45] | P. Liu, B. Zhu, P. Wang, M. Shen, An approach based on linguistic spherical fuzzy sets for public evaluation of shared bicycles in China, Eng. Appl. Artif. Intell., 87 (2020), 103295. https://doi.org/10.1016/j.engappai.2019.103295 doi: 10.1016/j.engappai.2019.103295 |
[46] | P. Liu, P. Liu, P. Wang, B. Zhu, An extended multiple attribute group decision making method based on q-rung orthopair fuzzy numbers, IEEE Access, 7 (2019), 162050–162061. https://doi.org/10.1109/ACCESS.2019.2951357 doi: 10.1109/ACCESS.2019.2951357 |