Research article Special Issues

Industry 4.0 project prioritization by using q-spherical fuzzy rough analytic hierarchy process

  • Received: 23 February 2023 Revised: 07 May 2023 Accepted: 18 May 2023 Published: 02 June 2023
  • MSC : 60L70, 68N17

  • The Fourth Industrial Revolution, also known as Industry 4.0, is attracting a significant amount of attention because it has the potential to revolutionize a variety of industries by developing a production system that is fully automated and digitally integrated. The implementation of this transformation, however, calls for a significant investment of resources and may present difficulties in the process of adapting existing technology to new endeavors. Researchers have proposed integrating the Analytic Hierarchy Process (AHP) with extensions of fuzzy rough sets, such as the three-dimensional q-spherical fuzzy rough set (q-SFRS), which is effective in handling uncertainty and quantifying expert judgments, to prioritize projects related to Industry 4.0. This would allow the projects to be ranked in order of importance. In this article, a novel framework is presented that combines AHP with q-SFRS. To calculate aggregated values, the new framework uses a new formula called the q-spherical fuzzy rough arithmetic mean, when applied to a problem involving the selection of a project with five criteria for evaluation and four possible alternatives, the suggested framework produces results that are robust and competitive in comparison to those produced by other multi-criteria decision-making approaches.

    Citation: Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki. Industry 4.0 project prioritization by using q-spherical fuzzy rough analytic hierarchy process[J]. AIMS Mathematics, 2023, 8(8): 18809-18832. doi: 10.3934/math.2023957

    Related Papers:

  • The Fourth Industrial Revolution, also known as Industry 4.0, is attracting a significant amount of attention because it has the potential to revolutionize a variety of industries by developing a production system that is fully automated and digitally integrated. The implementation of this transformation, however, calls for a significant investment of resources and may present difficulties in the process of adapting existing technology to new endeavors. Researchers have proposed integrating the Analytic Hierarchy Process (AHP) with extensions of fuzzy rough sets, such as the three-dimensional q-spherical fuzzy rough set (q-SFRS), which is effective in handling uncertainty and quantifying expert judgments, to prioritize projects related to Industry 4.0. This would allow the projects to be ranked in order of importance. In this article, a novel framework is presented that combines AHP with q-SFRS. To calculate aggregated values, the new framework uses a new formula called the q-spherical fuzzy rough arithmetic mean, when applied to a problem involving the selection of a project with five criteria for evaluation and four possible alternatives, the suggested framework produces results that are robust and competitive in comparison to those produced by other multi-criteria decision-making approaches.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] B. C. Cuong, V. Kreinovich, Picture fuzzy sets, J. Comput. Sci. Cyb., 30 (2014), 409–420.
    [4] X. Zhang, P. Liu, Y. Wang, Multiple attribute group decision-making methods based on intuitionistic fuzzy frank power aggregation operators, J. Intell. Fuzzy Syst., 29 (2015), 2235–2246. https://doi.org/10.3233/IFS-151699 doi: 10.3233/IFS-151699
    [5] M. R. Seikh, U. Mandal, Intuitionistic fuzzy Dombi aggregation operators and their application to multiple attribute decision-making, Granular Comput., 6 (2021), 473–488. https://doi.org/10.1007/s41066-019-00209-y doi: 10.1007/s41066-019-00209-y
    [6] S. Zeng, N. Zhang, C. Zhang, W. Su, L. A. Carlos, Social network multiple-criteria decision-making approach for evaluating unmanned ground delivery vehicles under the Pythagorean fuzzy environment, Technol. Forecast. Soc., 175 (2022), 121–414. https://doi.org/10.1016/j.techfore.2021.121414 doi: 10.1016/j.techfore.2021.121414
    [7] R. R. Yager, Pythagorean fuzzy subsets, In: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), IEEE, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [8] M. Akram, W. A. Dudek, J. M. Dar, Pythagorean Dombi fuzzy aggregation operators with application in multicriteria decision‐making, Int. J. Intell. Syst., 34 (2019), 3000–3019. https://doi.org/10.1002/int.22183 doi: 10.1002/int.22183
    [9] H. Garg, Confidence levels-based Pythagorean fuzzy aggregation operators and its application to the decision-making process, Comput. Math. Organ. Th., 23 (2017), 546–571. https://doi.org/10.1007/s10588-017-9242-8 doi: 10.1007/s10588-017-9242-8
    [10] L. Wang, H. Garg, Algorithm for multiple attribute decision-making with interactive Archimedean norm operations under Pythagorean fuzzy uncertainty, Int. J. Comput. Intell. Syst., 14 (2021), 503–927. https://doi.org/10.2991/ijcis.d.201215.002 doi: 10.2991/ijcis.d.201215.002
    [11] Q. Wu, W. Lin, L. Zhou, Y. Chen, H. Chen, Enhancing multiple attribute group decision-making flexibility based on information fusion technique and hesitant Pythagorean fuzzy sets, Comput. Ind. Eng., 127 (2019), 954–970. https://doi.org/10.1016/j.cie.2018.11.029 doi: 10.1016/j.cie.2018.11.029
    [12] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [13] Y. Xing, R. Zhang, Z. Zhou, J. Wang, Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making, Soft Comput., 23 (2019), 11627–11649. https://doi.org/10.1007/s00500-018-03712-7 doi: 10.1007/s00500-018-03712-7
    [14] P. Liu, P. Wang, Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [15] B. C. Cuong, V. Kreinovich, Picture fuzzy sets-a new concept for computational intelligence problems, In: 2013 third world congress on information and communication technologies (WICT 2013), IEEE, 2013, 1–6. https://doi.org/10.1109/WICT.2013.7113099
    [16] G. Wei, Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making, Fund. Inform., 157 (2018), 271–320. https://doi.org/10.3233/FI-2018-1628 doi: 10.3233/FI-2018-1628
    [17] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [18] I. Deli, N. Çağman, Spherical fuzzy numbers and multi-criteria decision-making, In: Decision Making with Spherical Fuzzy Sets, Springer, 392 (2021), 53–84. https://doi.org/10.1007/978-3-030-45461-6_3
    [19] M. Rafiq, S. Ashraf, S. Abdullah, T. Mahmood, S. Muhammad, The cosine similarity measures of spherical fuzzy sets and their applications in decision making, J. Intell. Fuzzy Syst., 36 (2019), 6059–6073. https://doi.org/10.3233/JIFS-181922 doi: 10.3233/JIFS-181922
    [20] S. Ashraf, S. Abdullah, M. Aslam, Symmetric sum-based aggregation operators for spherical fuzzy information: Application in multi-attribute group decision making problem, J. Intell. Fuzzy Syst., 38 (2020), 5241–5255. https://doi.org/10.3233/JIFS-191819 doi: 10.3233/JIFS-191819
    [21] C. Kahraman, B. Oztaysi, S. C. Onar, I. Otay, q-Spherical fuzzy sets and their usage in multi-attribute decision making, In: Developments of Artificial Intelligence Technologies in Computation and Robotics, World Scientific, 12 (2020), 217–225. https://doi.org/10.1142/9789811223334_0027
    [22] A. B. Azim, A. Aloqaily, A. Ali, S. Ali, N. Mlaiki, F. Hussain, q-Spherical fuzzy rough sets and their usage in multi-attribute decision-making problems, AIMS Math., 8 (2023), 8210–8248. https://doi.org/10.3934/math.2023415 doi: 10.3934/math.2023415
    [23] Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [24] Z. Pawlak, Rough set theory and its applications to data analysis, Cybern. Syst., 29 (1998), 661–688. https://doi.org/10.1080/019697298125470 doi: 10.1080/019697298125470
    [25] Y. Yao, Constructive and algebraic methods of the theory of rough sets, Inform. Sciences, 109 (1998), 21–47. https://doi.org/10.1016/S0020-0255(98)00012-7 doi: 10.1016/S0020-0255(98)00012-7
    [26] J. Dai, S. Gao, G. Zheng, Generalized rough set models determined by multiple neighborhoods generated from a similarity relation, Soft Comput., 22 (2018), 2081–2094. https://doi.org/10.1007/s00500-017-2672-x doi: 10.1007/s00500-017-2672-x
    [27] J. Zhan, B. Sun, Covering-based intuitionistic fuzzy rough sets and applications in multiattribute decision-making, Artif. Intell. Rev., 53 (2020), 671–701. https://doi.org/10.1007/s10462-018-9674-7 doi: 10.1007/s10462-018-9674-7
    [28] B. Sun, S. Tong, W. Ma, T. Wang, C. Jiang, An approach to MCGDM based on multi granulation Pythagorean fuzzy rough set over two universes and its application to the medical decision problem, Artif. Intell. Rev., 55 (2022), 1887–1913. https://doi.org/10.1007/s10462-021-10048-6 doi: 10.1007/s10462-021-10048-6
    [29] H. Garg, M. Atef, Cq-ROFRS: Covering q-rung orthopair fuzzy rough sets and its application to the multi-attribute decision-making process, Complex Intell. Syst., 8 (2022), 2349–2370. https://doi.org/10.1007/s40747-021-00622-4 doi: 10.1007/s40747-021-00622-4
    [30] S. Ashraf, N. Rehman, H. AlSalman, A. H. Gumaei, A decision-making framework using q-rung orthopair probabilistic hesitant fuzzy rough aggregation information for the drug selection to treat COVID-19, Complexity, 2022 (2022). https://doi.org/10.1155/2022/5556309 doi: 10.1155/2022/5556309
    [31] Y. Lu, Industry 4.0: A survey on technologies, applications, and open research issues, J. Ind. Inf. Integ., 6 (2017), 1–10. https://doi.org/10.1016/j.jii.2017.04.005 doi: 10.1016/j.jii.2017.04.005
    [32] J. Posada, C. Toro, I. Barandiaran, D. Oyarzun, D. Stricker, R. De Amicis, et al., Visual computing as a key enabling technology for industry 4.0 and industrial internet, IEEE Comput. Graph., 35 (2015), 26–40. https://doi.org/10.1109/MCG.2015.45 doi: 10.1109/MCG.2015.45
    [33] E. Gossen, E. Abele, M. Rauscher, Multi-criterial selection of track and trace technologies for an anti-counterfeiting strategy, Procedia CIRP, 57 (2016), 73–78. https://doi.org/10.1016/j.procir.2016.11.014 doi: 10.1016/j.procir.2016.11.014
    [34] J. Qin, Y. Liu, R. Grosvenor, A categorical framework of manufacturing for industry 4.0 and beyond, Procedia CIRP, 52 (2016), 173–178. https://doi.org/10.1016/j.procir.2016.08.005 doi: 10.1016/j.procir.2016.08.005
    [35] O. Dogan, B. Öztaysi, In-store behavioral analytics technology selection using fuzzy decision making, J. Enterp. Inf. Manag., 31 (2018), 612–630. https://doi.org/10.1108/JEIM-02-2018-0035 doi: 10.1108/JEIM-02-2018-0035
    [36] J. Lee, B. Bagheri, H. A. Kao, A cyber-physical systems architecture for industry 4.0-based manufacturing systems, Manuf. Lett., 3 (2015), 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001 doi: 10.1016/j.mfglet.2014.12.001
    [37] H. Lasi, P. Fettke, H. G. Kemper, T. Feld, M. Hoffmann, Industry 4.0, Bus. Inform. Syst. Eng., 6 (2014), 239–242. https://doi.org/10.1007/s12599-014-0334-4 doi: 10.1007/s12599-014-0334-4
    [38] Y. C. Shen, S. H. Chang, G. T. Lin, H. C. Yu, A hybrid selection model for emerging technology, Techno. Forecast. Soc., 77 (2010), 151–166. https://doi.org/10.1016/j.techfore.2009.05.001 doi: 10.1016/j.techfore.2009.05.001
    [39] R. W. Saaty, The analytic hierarchy process—what it is and how it is used, Math. Model., 9 (1987), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8 doi: 10.1016/0270-0255(87)90473-8
    [40] B. Oztaysi, A decision model for information technology selection using AHP integrated TOPSIS-Grey: The case of content management systems, Knowl.-Based Syst., 70 (2014), 44–54. https://doi.org/10.1016/j.knosys.2014.02.010 doi: 10.1016/j.knosys.2014.02.010
    [41] B. Oztaysi, O. Dogan, H. Gul, Selection of gamification elements for demand-side energy management: An application using hesitant fuzzy AHP, In: R & D Manag. Knowl. Era: Challenges Emerg. Technol., 2019,299–322. https://doi.org/10.1007/978-3-030-15409-7_11
    [42] R. Verma, S. Chandra, Interval-valued intuitionistic fuzzy-analytic hierarchy process for evaluating the impact of security attributes in fog-based internet of things paradigm, Comput. Commun., 175 (2021), 35–46. https://doi.org/10.1016/j.comcom.2021.04.019 doi: 10.1016/j.comcom.2021.04.019
    [43] M. Rajak, K. Shaw, Evaluation, and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS, Technol. Soc., 59 (2019), 101186. https://doi.org/10.1016/j.techsoc.2019.101186 doi: 10.1016/j.techsoc.2019.101186
    [44] J. Zhao, S. Peng, T. Li, S. Lv, M. Li, H. Zhang, Energy-aware fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level, Front. Mech. Eng., 14 (2019), 474–488. https://doi.org/10.1007/s11465-019-0560-z doi: 10.1007/s11465-019-0560-z
    [45] A. Fetanat, H. Mofid, M. Mehrannia, G. Shafipour, Informing energy justice based decision-making framework for waste-to-energy technologies selection in sustainable waste management: A case of Iran, J. Clean. Prod., 228 (2019), 1377–1390. https://doi.org/10.1016/j.jclepro.2019.04.215 doi: 10.1016/j.jclepro.2019.04.215
    [46] J. Zhan, B. Sun, J. C. R. Alcantud, Covering based multi granulation (I, T)-fuzzy rough set models and applications in multi-attribute group decision-making, Inform. Sciences, 476 (2019), 290–318.
    [47] J. Zhan, J. C. R. Alcantud, A novel type of soft rough covering and its application to multicriteria group decision making, Artif. Intell. Rev., 52 (2019), 2381–2410. https://doi.org/10.1016/j.jclepro.2019.04.215 doi: 10.1016/j.jclepro.2019.04.215
    [48] K. Zhang, J. Zhan, W. Wu, J. C. R. Alcantud, Fuzzy β-covering based (I, T)-fuzzy rough set models and applications to multi-attribute decision-making, Comput. Indust. Eng., 128 (2019), 605–621. https://doi.org/10.1016/j.cie.2019.01.004 doi: 10.1016/j.cie.2019.01.004
    [49] J. C. R. Alcantud, F. Feng, R. R. Yager, An N-soft set approach to rough sets, IEEE T. Fuzzy Syst., 28 (2019), 2996–3007. https://doi.org/10.1109/TFUZZ.2019.2946526 doi: 10.1109/TFUZZ.2019.2946526
    [50] R. V. Rao, M. Parnichkun, Flexible manufacturing system selection using a combinatorial mathematics-based decision-making method, Int. J. Prod. Res., 47 (2009), 6981–6998. https://doi.org/10.1080/00207540802389227 doi: 10.1080/00207540802389227
    [51] K. Maniya, M. Bhatt, The selection of flexible manufacturing system using preference selection index method, Int. J. Ind. Syst. Eng., 9 (2011), 330–349. https://doi.org/10.1504/IJISE.2011.043142 doi: 10.1504/IJISE.2011.043142
    [52] P. Karande, S. Chakraborty, Evaluation and selection of flexible manufacturing systems using MACBETH method, Int. J. Serv. Oper. Manag., 16 (2013), 123–144. https://doi.org/10.1504/IJSOM.2013.055576 doi: 10.1504/IJSOM.2013.055576
    [53] M. Mathew, J. Thomas, Interval-valued multi-criteria decision-making methods for the selection of flexible manufacturing system, Int. J. Data Network Sci., 3 (2019), 349–358. https://doi.org/10.5267/j.ijdns.2019.4.001 doi: 10.5267/j.ijdns.2019.4.001
    [54] P. Zhang, T. Li, G. Wang, C. Luo, H. Chen, J. Zhang, et al., Multi-source information fusion based on rough set theory: A review, Inform. Fusion, 68 (2021), 85–117. https://doi.org/10.1016/j.inffus.2020.11.004 doi: 10.1016/j.inffus.2020.11.004
    [55] Z. Yuan, H. Chen, P. Xie, P. Zhang, J. Liu, T. Li, Attribute reduction methods in fuzzy rough set theory: An overview, comparative experiments, and new directions, Appl. Soft Comput., 107 (2021), 107353. https://doi.org/10.1016/j.asoc.2021.107353 doi: 10.1016/j.asoc.2021.107353
    [56] X. Che, D. Chen, J. Mi, Learning instance-level label correlation distribution for multi-label classification with fuzzy rough sets, IEEE T. Fuzzy Syst., 2023, 1–13. https://doi.org/10.1109/TFUZZ.2023.3248060 doi: 10.1109/TFUZZ.2023.3248060
    [57] S. Ali, A. Ali, A. B. Azim, A. Aloqaily, N. Mlaiki, Averaging aggregation operators under the environment of q-rung orthopair picture fuzzy soft sets and their applications in MADM problems, AIMS Math., 8 (2023), 9027–9053. https://doi.org/10.3934/math.2023452 doi: 10.3934/math.2023452
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(982) PDF downloads(53) Cited by(5)

Article outline

Figures and Tables

Figures(3)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog