Research article Special Issues

A novel structure of $ q $-rung orthopair fuzzy sets in ring theory

  • Received: 30 October 2022 Revised: 15 January 2023 Accepted: 16 January 2023 Published: 03 February 2023
  • MSC : 05C25, 11E04, 20G15

  • The q-rung orthopair fuzzy atmosphere is an innovative approach for handling unclear circumstances in a range of decision making problems. As compare to intuitionistic fuzzy sets, this one is more appropriate and adaptable because it evaluates the significance of ring theory while retaining the features of q-rung orthopair fuzzy sets. In this study, we characterize $ q $-rung orthopair fuzzy subring as a modification of the pythagorean fuzzy subring. We introduce the novel idea of $ q $-rung orthopair fuzzy subring and investigate the algebraic characteristics for the $ q $-rung orthopair fuzzy subrings. Furthermore, we establish the concept of $ q $-rung orthopair fuzzy quotient ring and $ q $-rung orthopair fuzzy left and right ideals. Also, we describe the $ q $-rung orthopair fuzzy level subring and associate axioms. Finally, we investigate how ring homomorphism influences the q-rung orthopair fuzzy subring and investigate there pre-images homomorphism on $ q $-ROFSR and different aspects of images.

    Citation: Dilshad Alghazzwi, Arshad Ali, Ahmad Almutlg, E. A. Abo-Tabl, A. A. Azzam. A novel structure of $ q $-rung orthopair fuzzy sets in ring theory[J]. AIMS Mathematics, 2023, 8(4): 8365-8385. doi: 10.3934/math.2023422

    Related Papers:

  • The q-rung orthopair fuzzy atmosphere is an innovative approach for handling unclear circumstances in a range of decision making problems. As compare to intuitionistic fuzzy sets, this one is more appropriate and adaptable because it evaluates the significance of ring theory while retaining the features of q-rung orthopair fuzzy sets. In this study, we characterize $ q $-rung orthopair fuzzy subring as a modification of the pythagorean fuzzy subring. We introduce the novel idea of $ q $-rung orthopair fuzzy subring and investigate the algebraic characteristics for the $ q $-rung orthopair fuzzy subrings. Furthermore, we establish the concept of $ q $-rung orthopair fuzzy quotient ring and $ q $-rung orthopair fuzzy left and right ideals. Also, we describe the $ q $-rung orthopair fuzzy level subring and associate axioms. Finally, we investigate how ring homomorphism influences the q-rung orthopair fuzzy subring and investigate there pre-images homomorphism on $ q $-ROFSR and different aspects of images.



    加载中


    [1] L. A. Zadeh, Fuzzy sets and system, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5 doi: 10.1016/0022-247X(71)90199-5
    [3] J. M. Anthony, H. Sherwood, J. Math. Anal. Appl., 69 (1979), 124–130. https://doi.org/10.1016/0022-247X(79)90182-3
    [4] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981), 264–269. https://doi.org/10.1016/0022-247X(81)90164-5 doi: 10.1016/0022-247X(81)90164-5
    [5] W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set. Syst., 8 (1982), 133–139, https://doi.org/10.1016/0165-0114(82)90003-3 doi: 10.1016/0165-0114(82)90003-3
    [6] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [7] F. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE T. Fuzzy Syst., 51 (2019), 3980–3992. https://doi.org/10.1109/TSMC.2019.2958635 doi: 10.1109/TSMC.2019.2958635
    [8] L. Rudolf, H. Neiderreiter, Introduction to finite fields and their applications, Cambridge University Press, 1994.
    [9] H. Garg, K. Kumar, Linguistic interval-valued atanassov intuitionistic fuzzy sets and their applications to group decision making problems, IEEE T. Fuzzy Syst., 27 (2019), 2302–2311. https://doi.org/10.1109/TFUZZ.2019.2897961 doi: 10.1109/TFUZZ.2019.2897961
    [10] Y. Song, Q. Fu, Y. F. Wang, X. Wang, Divergence-based cross entropy and uncertainty measures of Atanassov's intuitionistic fuzzy sets with their application in decision making, Appl. Soft Comput., 84 (2019), 105703. https://doi.org/10.1016/j.asoc.2019.105703 doi: 10.1016/j.asoc.2019.105703
    [11] V. N. Dixit, R. Kumar, N. Ajmal, On fuzzy rings, Fuzzy Set. Syst., 49 (1992), 205–213. https://doi.org/10.1016/0165-0114(92)90325-X doi: 10.1016/0165-0114(92)90325-X
    [12] D. S. Malik, J. N. Mordeson, Extension of fuzzy subrings and fuzzy ideals, Fuzzy Set. Syst., 45 (1992), 245–251. https://doi.org/10.1016/0165-0114(92)90125-N doi: 10.1016/0165-0114(92)90125-N
    [13] S. K. Bhakat, P. Das, Fuzzy subrings and ideals redefined, Fuzzy Set. Syst., 81 (1996), 383–393. https://doi.org/10.1016/0165-0114(95)00202-2 doi: 10.1016/0165-0114(95)00202-2
    [14] H. Aktas, N. Cagman, A type of fuzzy ring, Arch. Math. Logic, 46 (2007), 165–177. https://doi.org/10.1007/s00153-007-0035-5 doi: 10.1007/s00153-007-0035-5
    [15] R. R. Yager, Pythagorean fuzzy subsets, In Joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013, 57–61.
    [16] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 4. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [17] X. Peng, Y. Yang, Some results for pythagorean fuzzy sets, Int. J. Intell. Syst., 30 (2015), 1133–1160. https://doi.org/10.1002/int.21738 doi: 10.1002/int.21738
    [18] W. Zeng, D. Li, Q. Yin, Distance and similarity measures of pythagorean fuzzy sets and their applications to multiple criteria group decision making, Int. J. Intell. Syst., 33 (2018), 2236–2254. https://doi.org/10.1002/int.22027 doi: 10.1002/int.22027
    [19] P. A. Ejegwa, Pythagorean fuzzy set and its application in career placements based on academic performance using max-min-max composition, Complex Intell. Syst., 5 (2019), 165–175. https://doi.org/10.1007/s40747-019-0091-6 doi: 10.1007/s40747-019-0091-6
    [20] Z. Li, M. Lu, Some novel similarity and distance measures of pythagorean fuzzy sets and their applications, J. Intell. Fuzzy Syst., 37 (2019), 1781–1799. https://doi.org/10.3233/JIFS-179241 doi: 10.3233/JIFS-179241
    [21] P. A. Ejegwa, Improved composite relation for pythagorean fuzzy sets and its application to medical diagnosis, Granular Comput., 5 (2020), 277–286. https://doi.org/10.1007/s41066-019-00156-8 doi: 10.1007/s41066-019-00156-8
    [22] Q. Zhou, H. Mo, Y. Deng, A new divergence measure of pythagorean fuzzy sets based on belief function and its application in medical diagnosis, Mathematics, 8 (2020), 142. https://doi.org/10.3390/math8010142 doi: 10.3390/math8010142
    [23] A. A Masarwah, A. Ghafur, On some properties of doubt bipolar fuzzy H-ideals in BCK/BCI-algebras, Eur. J. Pure Appl. Math., 11 (2018), 652–670. https://doi.org/10.29020/nybg.ejpam.v11i3.3288 doi: 10.29020/nybg.ejpam.v11i3.3288
    [24] A. A Masarwah, A. Ghafur, m-Polar fuzzy ideals of BCK/BCI-algebras, J. King Saud Univ.-Sci., 31 (2019), 1220–1226. https://doi.org/10.1016/j.jksus.2018.10.002 doi: 10.1016/j.jksus.2018.10.002
    [25] A. A Masarwah, A. Ghafur, m-Polar $(\alpha, \beta$)-fuzzy ideals in BCK/BCI-algebras, Symmetry, 11 (2019), 44–55. https://doi.org/10.3390/sym11010044 doi: 10.3390/sym11010044
    [26] T. Senapati, Y. B. Jun, G. Muhiuddin, K. P. Shum, Cubic intuitionistic structures applied to ideals of BCI-algebras, An. Sti. U. Ovid. Co. Mat., 27 (2019), 213–232. https://doi.org/10.2478/auom-2019-0028 doi: 10.2478/auom-2019-0028
    [27] Y. B. Jun, G. Muhiuddin, M. Ali, Ozturk, E. H. Roh, Cubic soft ideals in BCK/BCI-algebras, J. Comput. Anal. Appl., 22 (2019), 929–940.
    [28] S. Naz, M. Akram, A. Fatima, A. Nadeem, q-Rung orthopair fuzzy 2-tuple linguistic Hamy mean operators for MAGDM with modified EDAS method, Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain, Springer, Singapore, 2023,369–415. https://doi.org/10.1007/978-981-19-4929-6_18
    [29] M. Akram, G. Shahzadi, J. C. R. Alcantud, Multi-attribute decision-making with q-rung picture fuzzy information, Granular Comput., 7 (2022), 197–215. https://doi.org/10.1007/s41066-021-00260-8 doi: 10.1007/s41066-021-00260-8
    [30] H. Kul, S. Y. Jang, H. W. Kang, Intutionistic fuzzy ideal of ring, Pure Appl. Math., 12 (2005), 193–209.
    [31] B. Banerjee, D. K. Basnet, Intuitionistic fuzzy subrings and ideals, J. Fuzzy Math., 11 (2003), 139–155.
    [32] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 5. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [33] M. A. Ali, Another view on q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 33 (2018), 2139–2153. https://doi.org/10.1002/int.22007 doi: 10.1002/int.22007
    [34] P. Wang, J. Wang, G. Wei, C. Wei, Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications, Mathematics, 7 (2019), 340. https://doi.org/10.3390/math7040340 doi: 10.3390/math7040340
    [35] X. Peng, L. Liu, Information measures for q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 34 (2019), 1795–1834. https://doi.org/10.1002/int.22115 doi: 10.1002/int.22115
    [36] A. Razzaque, A. Razaq, On q-rung orthopair fuzzy subgroups, J. Funct. Space., 2022 (2022).
    [37] A. Hanan, A. A. Halimah, M. H. Mateen, P. Dragan, M. Gulzar, A novel algebraic structure of $(\alpha, \beta)$-complex fuzzy subgroups, Entropy, 23 (2021), 992. https://doi.org/10.3390/e23080992 doi: 10.3390/e23080992
    [38] M. Gulzar, D. Alghazzawi, M. H. Mateen, N. A. Kausar, Certain class of t-intuitionistic fuzzy subgroups, IEEE Access, 8 (2020), 163260–163268. https://doi.org/10.1109/ACCESS.2020.3020366 doi: 10.1109/ACCESS.2020.3020366
    [39] M. Gulzar, D. Alghazzawi, M. H. Mateen, M. Premkumar, On some characterization of Q-complex fuzzy sub-rings, J. Math. Comput. Sci., 22 (2020), 295–305. https://doi.org/10.22436/jmcs.022.03.08 doi: 10.22436/jmcs.022.03.08
    [40] F. Tchier, G. Ali, M. Gulzar, D. Pamucar, G. Ghorai, A new group decision-making technique under picture fuzzy soft expert information, Entropy, 23 (2021), 1176. https://doi.org/10.3390/e23091176 doi: 10.3390/e23091176
    [41] C. Shit, G. Ghorai, Q. Xin, M. Gulzar, Harmonic aggregation operator with trapezoidal picture fuzzy numbers and its application in a multiple-attribute decision-making problem, Symmetry, 14 (2020), 135. https://doi.org/10.3390/sym14010135 doi: 10.3390/sym14010135
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1232) PDF downloads(80) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog