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and pseudo-monotone operators to solve variational inequality and fixed point problems. We also
demonstrated that, under certain conditions, the sequence produced by our algorithm exhibits weak
convergence. Moreover, some numerical experiments have been proposed to compare our algorithm
with previous algorithms in order to demonstrate the effectiveness of our algorithm.

Keywords: fixed point; self adaptive stepsize; alternated inertial; variational inequality
Mathematics Subject Classification: 47H04, 47H09, 47H10, 65K10

1. Introduction

In a real Hilbert space H, with D being a nonempty closed convex subset, where the inner product
〈·, ·〉 and norm ‖ · ‖ are defined, the classical variational inequality problem (VIP) is to determine a
point x∗ ∈ D such that 〈A x∗, y − x∗〉 ≥ 0 holds for all y ∈ D, where A : H → H is an operator. Then,
we define ♦ as its solution set. Stampacchia [1] proposed variational inequality theory in 1964, which
appeared in various models to solve a wide range of engineering, regional, physical, mathematical,
and other problems. The mathematical theory of variational inequality problems was first applied to
solve equilibrium problems. Within this model, the function is derived from the first-order variation of
the respective potential energy. As a generalization and development of classical variational problems,
the form of variational inequality has become more diverse, and many projection algorithms have been
studied by scholars [2–10]. In [11], Hu and Wang utilized the projected neural network (PNN) to solve
the VIP under the pseudo-monotonicity or pseudoconvexity assumptions. Furthermore, He et al. [12]
proposed an inertial PNN method for solving the VIP, while Eshaghnezhad et al. [13] presented a novel
PNN method for solving the VIP. In addition, in [14], a modified neurodynamic network (MNN)
was proposed for solving the VIP, and under the assumptions of strong pseudo monotonicity and L-
continuity, the fixed-time stability convergence of MNN was established.
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The most famous method for solving the VIP is called the projection gradient method (GM), which
is expressed as

xn+1 = PD(xn − γA xn). (1.1)

Observably, the iterative sequence {xn} produced by this method converges towards a solution of the
VIP, and PD : H → D is a metric projection, with γ denoting the stepsize parameter, and A being
both strongly monotone and Lipschitz continuous. The projection gradient method fails when A is
weakened to a monotonic operator. On this basis, Korpelevich [15] proposed a two-step iteration
called the extragradient method (EGM)

x0 ∈ D,
sn = PD(xn − γA xn),
xn+1 = PD(xn − γA sn),

(1.2)

where γ is the stepsize parameter, and A is Lipschitz continuous and monotone. However, the
calculation of projection is a major challenge in each iteration process. Hence, to address this issue,
Censor et al. [16] proposed the idea of the half-space and modified the algorithm to

sn = PD(xn − γA xn),
Hn = {x ∈ H : 〈xn − γA xn − sn, x − sn〉 ≤ 0},
xn+1 = PHn(xn − γA sn).

(1.3)

Recently, adaptive step size [17–19] and inertia [20–23] have been frequently used to accelerate
algorithm convergence. For example, Thong and Hieu [24] presented the following algorithm:

hn = xn + αn(xn − xn−1),
sn = PD(hn − τnA hn),
en = PHn(hn − τnA sn),
xn+1 = βn f (en) + (1 − βn)en,

(1.4)

where Hn = {x ∈ H : 〈hn − τnA hn − sn, x − sn〉 ≤ 0}, and

τn+1 =

 min
{

µ‖hn−sn‖

‖A hn−A sn‖
, τn

}
, if A hn −A sn , 0,

τn, otherwise.

They also combined the VIP with fixed point problems [25] (we define ∆ as a common solution set).
For example, Nadezhkina and Takahashi [26] proposed the following algorithm:

x0 ∈ D,
sn = PD(xn − τnA xn),
xn+1 = (1 − αn)xn + αnT PD(xn − τnA sn),

(1.5)

where A is Lipschitz continuous and monotone, and T : D → D is nonexpansive. The sequence
produced by this algorithm exhibits weak convergence toward an element in ∆. Another instance is the
algorithm proposed by Thong et al. [27], which is as follows:

hn = xn + αn(xn − xn−1),
sn = PD(hn − τnA hn),
en = PHn(hn − τnA sn),
xn+1 = (1 − βn)hn + βnT en,

(1.6)
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where τn is selected as the maximum τ within the set {γ, γl, γl2, ...} that satisfies the condition

τ‖A hn −A sn‖ ≤ µ‖hn − sn‖.

Based on the preceding research, we present a self-adaptive step-size and alternated inertial
subgradient extragradient algorithm designed for addressing the VIP and fixed-point problems
involving non-Lipschitz and pseudo-monotone operators in this paper. The article’s structure is
outlined as follows: Section 2 contains definitions and preliminary results essential for our approach.
Section 3 establishes the convergence of the iterative sequence generated. Finally, Section 4 includes
a series of numerical experiments demonstrating the practicality and effectiveness of our algorithm.

2. Preliminaries

For a sequence {xn} and x in H, strong convergence is represented as xn → x, weak convergence is
represented as xn ⇀ x.

Definition 2.1. [28] We define a nonlinear operator T : H → H to have an empty fixed point set
(Fix(T ) , ∅), if the following expression holds for {qn} ∈ H:{

qn ⇀ q
(I −T )qn → 0

⇒ q ∈ Fix(T ),

where I denotes the identity operator. In such cases, we characterize I − T as being demiclosed at
zero.

Definition 2.2. For an operator T : H → H, the following definitions apply:

(1) T is termed nonexpansive if

‖T q1 −T q2‖ ≤ ‖q1 − q2‖ ∀q1, q2 ∈ H.

(2) T is termed quasi-nonexpansive with a non-empty fixed point set Fix(T ) , ∅ if

‖T x − η‖ ≤ ‖x − η‖ ∀x ∈ H, η ∈ Fix(T ).

Definition 2.3. A sequence {qn} is said to be Fejér monotone concerning a set D if

‖qn+1 − q‖ ≤ ‖qn − q‖, ∀q ∈ D.

Lemma 2.1. For each ζ1, ζ2 ∈ H and ε ∈ R, we have

‖ζ1 + ζ2‖
2 ≤ 2〈ζ1 + ζ2, ζ2〉 + ‖ζ1‖

2; (2.1)

‖εζ2 + (1 − ε)ζ1‖
2 = (1 − ε)‖ζ1‖

2 + ε‖ζ2‖
2 − ε(1 − ε)‖ζ2 − ζ1‖

2. (2.2)

Lemma 2.2. [26] Given ψ ∈ H and ϕ ∈ D, then

(1) ‖PDψ − PDϕ‖
2 ≤ 〈ψ − ϕ, PDψ − PDϕ〉;

(2) ‖ϕ − PDψ‖
2 ≤ ‖ψ − ϕ‖2 − ‖ψ − PDψ‖

2;
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(3) 〈ψ − PDψ, PDψ − ϕ〉 ≥ 0.

Lemma 2.3. [29] Suppose A : D → H is pseudomonotone and uniformly continuous. Then, ς is a
solution of ♦⇐⇒ 〈A x, x − ς〉 ≥ 0, ∀x ∈ D.

Lemma 2.4. [30] Let D be a nonempty subset of H. A sequence {xn} in H is said to weakly converge
to a point in D if the following conditions are met:

(1) For every x ∈ D, lim
n→∞
‖xn − x‖ exists;

(2) Every sequential weak cluster point of {xn} is in D.

3. Main results

This section presents an alternated inertial projection algorithm designed to address the VIP and
fixed point problems associated with a quasi-nonexpansive mapping T in H. We have the following
assumptions:

Assumption 3.1.
(a) The operator A : H → H is pseudo-monotone, uniformly continuous over H, and exhibits

sequential weak continuity on D;
(b) $ ∈ (1−µ

4 , 1−µ
2 ), 0 < κn < min{ 1−µ−2$

2$ , 1−$
1+$
}.

The algorithm (Algorithm 1) is as follows:

Algorithm 1
Initialization: Let x0, x1 ∈ H be arbitrary. Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1).
Iterative step: Calculate xn+1 as follows:
Step 1. Set

hn =

{
xn, n=even,
xn +$(xn − xn−1), n=odd.

Step 2. Compute
sn = PD(hn − τnA hn).

If sn = hn, stop. Otherwise compute

en = PHn(hn − τnA sn),

where
Hn = {x ∈ H : 〈hn − τnA hn − sn, x − sn〉 ≤ 0},

and τn is selected as the maximum τ from the set {γ, γl, γl2, · · · } that satisfies

τ 〈A sn −A hn, sn − en〉 ≤ µ ‖sn − hn‖ ‖sn − en‖ .

Step 3. Compute
xn+1 = (1 − κn)en + κnT en.

Set n := n + 1 and go back to Step 1.
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To prove the algorithm, we first provide several lemmas.

Lemma 3.1. The sequence produced by Algorithm 1, denoted as {x2n}, is bounded and lim
n→∞
‖x2n − %‖

exists for all % ∈ ∆.

Proof. Indeed, let % ∈ ∆. Then, we have

‖en − %‖
2 = ‖PHn(hn − τnA sn) − %‖2

≤ ‖hn − τnA sn − %‖
2 − ‖hn − τnA sn − en‖

2

= ‖hn − %‖
2 + τ2

n‖A sn‖
2 − 2τn〈hn − %,A sn〉

−‖hn − en‖
2 − τ2

n‖A sn‖
2 + 2τn〈hn − en,A sn〉

= ‖hn − %‖
2 − ‖hn − en‖

2 + 2τn〈% − en,A sn〉

= ‖hn − %‖
2 − ‖hn − en‖

2 − 2τn〈sn − %,A sn〉

+2τn〈sn − en,A sn〉. (3.1)

According to % ∈ ∆, it follows that 〈A %, s − %〉 ≥ for all s ∈ D, and, at the same time, because of
the pseudomonotonicity of A , we establish 〈A s, s − %〉 ≥ 0 for all s ∈ D. If we set s = sn, then
〈A sn, sn − %〉 ≥ 0. Thus, by (3.1), we can get

‖en − %‖
2 ≤ ‖hn − %‖

2 − ‖hn − en‖
2 + 2τn〈sn − en,A sn〉

= ‖hn − %‖
2 − ‖hn − sn‖

2 − ‖en − sn‖
2

−2〈hn − sn, sn − en〉 + 2τn〈sn − en,A sn〉

= ‖hn − %‖
2 − ‖hn − sn‖

2 − ‖en − sn‖
2

+2〈sn − hn + τnA sn, sn − en〉

= ‖hn − %‖
2 − ‖hn − sn‖

2 − ‖en − sn‖
2

+2〈hn − τnA hn − sn, en − sn〉 + 2τn〈A sn −A hn, sn − en〉

≤ ‖hn − %‖
2 − ‖hn − sn‖

2 − ‖en − sn‖
2

+2µ‖sn − hn‖‖sn − en‖

≤ ‖hn − %‖
2 − ‖hn − sn‖

2 − ‖en − sn‖
2

+µ[‖sn − hn‖
2 + ‖en − sn‖

2]
= ‖hn − %‖

2 − (1 − µ)‖hn − sn‖
2 − (1 − µ)‖en − sn‖

2. (3.2)

Subsequently, by (2.2), we obtain

‖xn+1 − %‖
2 = ‖(1 − κn)en + κnT en − %‖

2

= ‖κn(T en − %) + (1 − κn)(en − %)‖2

= κn‖T en − %‖
2 + (1 − κn)‖en − %‖

2 − κn(1 − κn)‖T en − en‖
2

≤ κn‖en − %‖
2 + (1 − κn)‖en − %‖

2 − κn(1 − κn)‖T en − en‖
2

= ‖en − %‖
2 − κn(1 − κn)‖T en − en‖

2

≤ ‖hn − %‖
2 − (1 − µ)‖hn − sn‖

2 − (1 − µ)‖en − sn‖
2

−κn(1 − κn)‖T en − en‖
2. (3.3)
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Meanwhile, combined with (3.3), it is evident that

‖xn+1 − %‖
2 ≤ (1 − κn)‖hn − %‖

2 + κn‖en − %‖
2. (3.4)

In particular,

‖x2n+2 − %‖
2 ≤ ‖h2n+1 − %‖

2 − (1 − µ)‖h2n+1 − s2n+1‖
2

−(1 − µ)‖e2n+1 − s2n+1‖
2

−κ2n+1(1 − κ2n+1)‖T e2n+1 − e2n+1‖
2. (3.5)

By (2.2), we obtain

‖h2n+1 − %‖
2 = ‖x2n+1 +$(x2n+1 − x2n) − %‖2

= (1 +$)‖x2n+1 − %‖
2 −$‖x2n − %‖

2

+$(1 +$)‖x2n+1 − x2n‖
2. (3.6)

As another special case of (3.3), we have

‖x2n+1 − %‖
2 ≤ ‖x2n − %‖

2 − (1 − µ)‖x2n − s2n‖
2

−(1 − µ)‖e2n − s2n‖
2 − κ2n(1 − κ2n)‖T e2n − e2n‖

2

≤ ‖x2n − %‖
2 −

1 − µ
2
‖x2n − e2n‖

2

−κ2n(1 − κ2n)‖T e2n − e2n‖
2, (3.7)

and then, bringing (3.7) into (3.6), we can get

‖h2n+1 − %‖
2 = ‖x2n − %‖

2 −
(1 +$)(1 − µ)

2
‖x2n − e2n‖

2

−κ2n(1 − κ2n)(1 +$)‖T e2n − e2n‖
2

+$(1 +$)‖x2n+1 − x2n‖
2. (3.8)

Plugging (3.8) into (3.5) gives

‖x2n+2 − %‖
2 ≤ ‖x2n − %‖

2 −
(1 +$)(1 − µ)

2
‖x2n − e2n‖

2

−κ2n(1 − κ2n)(1 +$)‖T e2n − e2n‖
2 +$(1 +$)‖x2n+1 − x2n‖

2

−(1 − µ)‖h2n+1 − s2n+1‖
2 − (1 − µ)‖e2n+1 − s2n+1‖

2

−κ2n+1(1 − κ2n+1)‖T e2n+1 − e2n+1‖
2, (3.9)

where

‖x2n+1 − x2n‖
2 = ‖(1 − κ2n)e2n + κ2nT e2n − x2n‖

2

= ‖e2n − x2n + κ2n(T e2n − e2n)‖2

= ‖e2n − x2n‖
2 + κ2

2n‖T e2n − e2n‖
2 + 2κ2n 〈e2n − x2n,T e2n − e2n〉

≤ ‖e2n − x2n‖
2 + κ2

2n‖T e2n − e2n‖
2
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+κ2n(‖e2n − x2n‖
2 + ‖T e2n − e2n‖

2)
= (1 + κ2n)‖e2n − x2n‖

2 + κ2n(κ2n + 1)‖T e2n − e2n‖
2. (3.10)

Thus, putting (3.10) into (3.9), we have

‖x2n+2 − %‖
2 ≤ ‖x2n − %‖

2 − [
(1 +$)(1 − µ)

2
−$(1 +$)(1 + κ2n)]‖e2n − x2n‖

2

−[κ2n(1 − κ2n)(1 +$) −$(1 +$)κ2n(κ2n + 1)]‖T e2n − e2n‖
2

−(1 − µ)‖h2n+1 − s2n+1‖
2 − (1 − µ)‖e2n+1 − s2n+1‖

2

−κ2n+1(1 − κ2n+1)‖T e2n+1 − e2n+1‖
2. (3.11)

According to $ ∈ (1−µ
4 , 1−µ

2 ), 0 < κn < min{1−µ−2$
2$ , 1−$

1+$
}, we get the sequence {‖x2n − %‖} is

decreasing, and thus lim
n→∞
‖x2n − %‖ exists. This implies {‖x2n − %‖} is bounded, hence, {x2n} is bounded.

For (3.7), we can get that {‖x2n+1 − %‖} is also bounded. Therefore, {‖xn − %‖} is bounded. Thus, {xn} is
bounded. �

Lemma 3.2. Consider the sequence {x2n} produced by Algorithm 1. If the subsequence {x2nk} of {x2n}

weakly converges to x∗ ∈ H and lim
k→∞
‖x2nk − s2nk‖ = 0, then x∗ ∈ ♦.

Proof. Because of h2n = x2n, using the definition of {s2nk} and Lemma 2.2, we get〈
x2nk − τ2nkA x2nk − s2nk , x − s2nk

〉
≤ 0, ∀x ∈ D,

and so
1
τ2nk

〈
x2nk − s2nk , x − s2nk

〉
≤

〈
A x2nk , x − s2nk

〉
, ∀x ∈ D.

Hence,

1
τ2nk

〈
x2nk − s2nk , x − s2nk

〉
+

〈
A x2nk , s2nk − x2nk

〉
≤

〈
A x2nk , x − x2nk

〉
, ∀x ∈ D. (3.12)

Because of lim
k→∞
‖x2nk − s2nk‖ = 0 and taking the limit as k → ∞ in (3.12), we acquire

lim
k→∞

〈
A x2nk , x − x2nk

〉
≥ 0, ∀x ∈ D. (3.13)

Select a decreasing sequence {εk} ⊂ (0,∞) to make lim
k→∞

εk = 0 hold. Then, for each εk, based on (3.13)
we use Mk to represent the smallest positive integer satisfying〈

A x2n j , x − x2n j

〉
+ εk ≥ 0, ∀ j ≥ Mk. (3.14)

Since {εk} is decreasing, then {Mk} is increasing. Also, for each k, A x2Mk , 0, let

v2Mk =
A x2Mk

‖A x2Mk‖
2 .

Here,
〈
A x2Mk , v2Mk

〉
= 1 for each k. Then, by (3.14), for each k we have〈

A x2Mk , x + εkv2Mk − x2Mk

〉
≥ 0.
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Because A is pseudo-monotonic, we get〈
A (x + εkv2Mk), x + εkv2Mk − x2Mk

〉
≥ 0. (3.15)

Since x2nk ⇀ x∗ as k → ∞, and A exhibits sequential weak continuity on H, it follows that the
sequence {A x2nk} weakly converges to A x∗. Then, based on the weakly sequential continuity of the
norm, we obtain

0 < ‖A x∗‖ ≤ lim
k→∞
‖A x2nk‖.

Since {xMk} ⊂ {xnk} and lim
k→∞

εk = 0, we have

0 ≤ lim
k→∞
‖εkv2Mk‖ = lim

k→∞
(

εk

‖A x2nk‖
) ≤

lim
k→∞

εk

lim
k→∞
‖A x2nk‖

=
0

‖A x∗‖
= 0,

which means lim
k→∞
‖εkv2Mk‖ = 0. Finally, we let k → ∞ in (3.15) and get

〈A x, x − x∗〉 ≥ 0.

This implies x∗ ∈ ♦. �

Lemma 3.3. Considering {x2n} as the sequence produced by Algorithm 1, since {x2n} is a bounded
sequence, there exists a subsequence {x2nk} of {x2n} and x∗ ∈ H such that x2nk ⇀ x∗. Hence, x∗ ∈ ∆.

Proof. From (3.11) and the convergence of {‖x2n − %‖}, we can deduce that

‖e2n+1 − s2n+1‖ → 0, ‖x2n − x2n+1‖ → 0, (3.16)

‖h2n+1 − s2n+1‖ → 0, ‖T e2n − e2n‖ → 0, (3.17)

‖T e2n+1 − e2n+1‖ → 0, as n→ +∞.

By the definition of {x2n+1}, we have

‖x2n − e2n‖ = ‖x2n − x2n+1 + κ2n(T e2n − e2n)‖
≤ ‖x2n − x2n+1‖ + κ2n‖T e2n − e2n‖,

then
‖x2n − e2n‖ → 0, (3.18)

and by (3.18) and x2nk ⇀ x∗, we can get
e2nk ⇀ x∗. (3.19)

Since T is demiclosed at zero, Definition 2.1, (3.17), and (3.19) imply

x∗ ∈ Fix(T ). (3.20)

AIMS Mathematics Volume 9, Issue 4, 9705–9720.
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From (3.2), we deduce

‖e2n − %‖
2 ≤ ‖x2n − %‖

2 − (1 − µ)‖x2n − s2n‖
2 − (1 − µ)‖e2n − s2n‖

2.

This implies that
(1 − µ)‖x2n − s2n‖

2 ≤ ‖x2n − %‖
2 − ‖e2n − %‖

2. (3.21)

Based on the convergence of {‖x2n − %‖
2}, we can assume that

‖x2n − %‖
2 → l. (3.22)

At the same time, according to (3.16), it can be obtained that

‖x2n+1 − %‖
2 → l. (3.23)

It follows from (3.4) that

‖x2n+1 − %‖
2 ≤ (1 − κ2n)‖x2n − %‖

2 + κ2n‖e2n − %‖
2.

Then,

‖e2n − %‖
2 ≥
‖x2n+1 − %‖

2 − ‖x2n − %‖
2

κ2n
+ ‖x2n − %‖

2. (3.24)

It implies from (3.22)–(3.24) that

lim
n→∞
‖e2n − %‖

2 ≥ lim
n→∞
‖x2n − %‖

2 = l. (3.25)

By (3.2),we get
lim
n→∞
‖e2n − %‖

2 ≤ lim
n→∞
‖x2n − %‖

2 = l. (3.26)

Combining (3.25) and (3.26), we get

lim
n→∞
‖e2n − %‖

2 = l. (3.27)

Combining with (3.21), (3.22), and (3.27), we have

lim
n→∞
‖x2n − s2n‖

2 = 0.

Therefore, it implies from Lemma 3.2 that
x∗ ∈ ♦. (3.28)

Combining (3.20) and (3.28), we can derive

x∗ ∈ ∆.

�

Theorem 3.2. {xn}, a sequence produced by Algorithm 1, weakly converges to a point within ∆.
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Proof. Let x∗ ∈ H such that x2nk ⇀ x∗. Then, by Lemma 3.3, it implies

x∗ ∈ ∆.

Combining lim
n→∞
‖x2n − %‖

2 exists for all % ∈ ∆, and by Lemma 2.4, we get that {x2n} converges weakly
to an element within ∆. Now, suppose {x2n} converges weakly to ξ ∈ ∆. For all g ∈ H, it follows that

lim
n→∞
〈x2n − ξ, g〉 = 0.

Furthermore, by (3.16), for all g ∈ H,

| 〈x2n+1 − ξ, g〉 | = | 〈x2n+1 − x2n + x2n − ξ, g〉 |

≤ | 〈x2n+1 − x2n, g〉 | + | 〈x2n − ξ, g〉 |

≤ ‖x2n+1 − x2n‖‖g‖ + | 〈x2n − ξ, g〉 | → 0, as n→ ∞.

Therefore, {x2n+1} weakly converges to ξ ∈ ∆. Hence, {xn} weakly converges to ξ ∈ ∆ �

4. Numerical experiments

This section will showcase three numerical experiments aiming to compare Algorithm 1 against
scheme (1.6) and Algorithm 6.1 in [31], and Algorithm 3.1 in [32]. All codes were written in MATLAB
R2018b and performed on a desktop PC with Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz,
RAM 8.00 GB.

Example 4.1. Assume that H = R3 and D := {x ∈ R3 : Φx ≤ φ}, where Φ represents a 3 × 3 matrix
and φ is a nonnegative vector. For A (x) := Qx + q, with Q = BBT + E + F, where B is a 3 × 3 matrix,
E is a 3 × 3 skew-symmetric matrix, F is a 3 × 3 diagonal matrix with nonnegative diagonal entries,
and q is a vector in R3. Notably, A is both monotone and Lipschitz continuous with constant L = ‖Q‖.
Define T (x) = x,∀x ∈ R3.

Under the assumption q = 0, the solution set ∆ = {0}, which means that x∗ = 0. Now, the error
at the n-th step iteration is measured using ‖xn − x∗‖. In both Algorithm 1 and scheme (1.6), we let
µ = 0.5, γ = 0.5, l = 0.5; in Algorithm 1, we let $ = 0.2, κn = 0.2; in scheme (1.6), we let αn = 0.25,
βn = 0.5; in Algorithm 6.1 in [31], we let τ = 0.01, αn = 0.25; in Algorithm 3.1 in [32], we let
αn = 1

n+1 , βn = n
2n+1 , f (x) = 0.5x, τ1 = 1, µ = 0.2, θ = 0.3, εn = 100

(n+1)2 . The outcomes of this numerical
experiment are presented in Table 1 and Figure 1.

Table 1. Numerical results for Example 4.1.

Iter. Time [sec]
Algorithm 1 297 1.7283
scheme (1.6) 482 3.0215
Algorithm 6.1 in [31] 1311 8.5415
Algorithm 3.1 in [32] 477 2.3758

AIMS Mathematics Volume 9, Issue 4, 9705–9720.
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Figure 1. Comparison of Algorithm 1 and scheme (1.6), Algorithm 6.1 in [31], and
Algorithm 3.1 in [32] for Example 4.1.

From Table 1, we can see that the algorithm in this article has the least number of iterations and the
shortest required time. Therefore, this indicates that Algorithm 1 is feasible. According to the situation
shown in Figure 1, we can see that Algorithm 1 is more efficient than the other two algorithms.

Example 4.2. Consider H = R and the feasible set D = [−2, 5]. Let A : H → H be defined as

A t := t + sin(t),

and T : H → H be defined as

T t :=
t
2

sin(t).

It is evident that A is Lipschitz continuous and monotone, while T is a quasi-nonexpansive mapping.
Consequently, it is straightforward to observe that ∆ = {0}.

In Algorithm 1 and scheme (1.6), we let γ = 0.5, l = 0.5, µ = 0.9; in Algorithm 1, we let κn = 2
3 ,

$ = 0.03; in scheme (1.6), we let αn = 0.25, βn = 0.5; in Algorithm 6.1 in [31], we let τ = 0.4,
αn = 0.5, in Algorithm 3.1 in [32], we let αn = 1

n+1 , βn = n
2n+1 , f (x) = 0.5x, τ1 = 1, µ = 0.2, θ = 0.3,

εn = 100
(n+1)2 . The results of the numerical experiment are shown in Table 2 and Figure 2.

Table 2. Numerical results for Example 4.2.

Iter. Time [sec]
Algorithm 1 20 0.3542
scheme (1.6) 26 0.5168
Algorithm 6.1 in [31] 41 0.4293
Algorithm 3.1 in [32] 26 0.3574
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Figure 2. Comparison of Algorithm 1 and scheme (1.6), Algorithm 6.1 in [31], and
Algorithm 3.1 in [32] for Example 4.2.

Table 2 and Figure 2 illustrate that Algorithm 1 has a faster convergence speed.

Example 4.3. Consider H = L2([0, 1]) with the inner product

〈m, n〉 :=
∫ 1

0
m(p)n(p)dp ∀m, n ∈ H,

and the induced norm

‖m‖ :=
(∫ 1

0
|m(p)|2dp

) 1
2

∀m ∈ H.

The operator A : H → H is defined as

(A m)(p) = max{0,m(p)}, p ∈ [0, 1] ∀m ∈ H.

The set D := {m ∈ H : ‖m‖ ≤ 1} represents the unit ball. Specifically, the projection operator PD(m) is
defined as

PD(m) =

 m
‖m‖L2

, ‖m‖L2 > 1,
m, ‖m‖L2 ≤ 1 .

Let T : L2([0, 1])→ L2([0, 1]) be defined by

(T m)(p) =
m(p)

2
.

Therefore, we can get that ∆ = {0} .
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9717

In Algorithm 1 and scheme (1.6), we let γ = 0.5, l = 0.5, µ = 0.5; in Algorithm 1, we let κn = 0.2,
$ = 0.2; in scheme (1.6), we let αn = 0.25, βn = 0.3; in Algorithm 6.1 in [31], we let τ = 0.9,
αn = 0.6. The results of the numerical experiment are shown in Figure 3.
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Figure 3. Comparison of Algorithm 1 and scheme (1.6), and Algorithm 6.1 in [31] for
Example 4.3.

Figure 3 shows the behaviors of En = ‖xn − x∗‖ generated by all the algorithms, commencing from
the initial point x0(p) = p2. The presented results also indicate that our algorithm is superior to other
algorithms.

5. Conclusions

This paper introduces a novel approach for tackling variational inequality problems and fixed
point problems. Algorithm 1 extends the operator A to pseudo-monotone, uniformly continuous,
and incorporates a new self-adaptive step size, and adds an alternated inertial method based on
scheme (1.6). The efficiency of our algorithm is validated through the results obtained from three
distinct numerical experiments.
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