Research article Special Issues

Numerical simulation and analysis of fractional-order Phi-Four equation

  • Received: 04 August 2023 Revised: 30 August 2023 Accepted: 03 September 2023 Published: 25 September 2023
  • MSC : 33B15, 34A34, 35A20, 35A22, 44A10

  • This paper introduces a novel numerical approach for tackling the nonlinear fractional Phi-four equation by employing the Homotopy perturbation method (HPM) and the Adomian decomposition method (ADM), augmented by the Shehu transform. These established techniques are adept at addressing nonlinear differential equations. The equation's complexity is reduced by applying the Shehu Transform, rendering it amenable to solutions via HPM and ADM. The efficacy of this approach is underscored by conclusive results, attesting to its proficiency in solving the equation. With extensive ramifications spanning physics and engineering domains like fluid dynamics, heat transfer, and mechanics, the proposed method emerges as a precise and efficient tool for resolving nonlinear fractional differential equations pervasive in scientific and engineering contexts. Its potential extends to analogous equations, warranting further investigation to unravel its complete capabilities.

    Citation: Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Roman Ullah, Asfandyar Khan. Numerical simulation and analysis of fractional-order Phi-Four equation[J]. AIMS Mathematics, 2023, 8(11): 27175-27199. doi: 10.3934/math.20231390

    Related Papers:

  • This paper introduces a novel numerical approach for tackling the nonlinear fractional Phi-four equation by employing the Homotopy perturbation method (HPM) and the Adomian decomposition method (ADM), augmented by the Shehu transform. These established techniques are adept at addressing nonlinear differential equations. The equation's complexity is reduced by applying the Shehu Transform, rendering it amenable to solutions via HPM and ADM. The efficacy of this approach is underscored by conclusive results, attesting to its proficiency in solving the equation. With extensive ramifications spanning physics and engineering domains like fluid dynamics, heat transfer, and mechanics, the proposed method emerges as a precise and efficient tool for resolving nonlinear fractional differential equations pervasive in scientific and engineering contexts. Its potential extends to analogous equations, warranting further investigation to unravel its complete capabilities.



    加载中


    [1] J. G. Liu, , X. J. Yang, L. L. Geng, X. J. Yu, On fractional symmetry group scheme to the higher-dimensional space and time fractional dissipative Burgers equation, Int. J. Geom. Methods Mod. Phys., 19 (2022), 2250173. https//doi.org/10.1142/S0219887822501730 doi: 10.1142/S0219887822501730
    [2] J. G. Liu, Y. F. Zhang, J. J. Wang, Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity, Fractals, 31 (2023), 2350033. https://doi.org/10.1142/S0218348X23500330 doi: 10.1142/S0218348X23500330
    [3] C. Guo, J. Hu, Fixed-time stabilization of high-order uncertain nonlinear systems: Output feedback control design and settling time analysis, J. Syst. Sci. Complex., 36 (2023), 1351–1372. https://doi.org/10.1007/s11424-023-2370-y doi: 10.1007/s11424-023-2370-y
    [4] J. G. Liu, X. J. Yang, Symmetry group analysis of several coupled fractional partial differential equations, Chaos Soliton. Fract., 173 (2023), 113603. https://doi.org/10.1016/j.chaos.2023.113603 doi: 10.1016/j.chaos.2023.113603
    [5] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [6] J. A. T. M. J. Sabatier, O. P. Agrawal, J. T. Machado, Advances in fractional calculus, 2007. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-6042-7
    [7] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, World Scientific, 2012.
    [8] X. Zhang, Y. Wang, X. Yuan, Y. Shen, Z. Lu, Z. Wang, Adaptive dynamic surface control with disturbance observers for battery/supercapacitor-based hybrid energy sources in electric vehicles, IEEE T. Transp. Electr., 2022. https://doi.org/10.1109/TTE.2022.3194034
    [9] Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam., 24 (1999), 207–233.
    [10] J. A. T. Machado, A. S. Bhatti, Fractional KdV equation, Nonlinear Dyn., 53 (2008), 79–85.
    [11] S. Mukhtar, R. Shah, S. Noor, The numerical investigation of a fractional-order multi-dimensional model of Navier-Stokes equation via novel techniques, Symmetry, 14 (2022), 1102. https://doi.org/10.3390/sym14061102 doi: 10.3390/sym14061102
    [12] H. Y. Jin, Z. A. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equ., 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
    [13] P. Liu, J. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, DCDS-B, 18 (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
    [14] H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete Cont. Dyn.-A, 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027
    [15] F. Wang, H. Wang, X. Zhou, R. Fu, A driving fatigue feature detection method based on multifractal theory, IEEE Sens. J., 22 (2022), 19046–19059. https://doi.org/10.1109/JSEN.2022.3201015 doi: 10.1109/JSEN.2022.3201015
    [16] A. Atangana, A. Kilicman, Analytical solutions of the space-time fractional derivative of advection dispersion equation, Math. Prob. Eng., 2013 (2013), 853127. https://doi.org/10.1155/2013/853127 doi: 10.1155/2013/853127
    [17] D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, Y. Fan, A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere, 247 (2020), 125869. https://doi.org/10.1016/j.chemosphere.2020.125869
    [18] A. A. Alderremy, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
    [19] B. Wang, Y. Zhang, W. Zhang, A composite adaptive fault-tolerant attitude control for a quadrotor UAV with multiple uncertainties, J. Syst. Sci. Complex., 35 (2022), 81–104. https://doi.org/10.1007/s11424-022-1030-y doi: 10.1007/s11424-022-1030-y
    [20] M. Naeem, H. Yasmin, N. A. Shah, K. Nonlaopon, Investigation of fractional nonlinear regularized long-wave models via novel techniques, Symmetry, 15 (2023), 220. https://doi.org/10.3390/sym15010220 doi: 10.3390/sym15010220
    [21] T. A. A. Ali, Z. Xiao, H. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE T. Ind. Electron., 2023. https://doi.org/10.1109/TIE.2023.3290247
    [22] W. Gao, P. Veeresha, D. G. Prakasha, H. M. Baskonus, G. Yel, New numerical results for the time-fractional Phi-four equation using a novel analytical approach. Symmetry, 12 (2020), 478. https://doi.org/10.3390/sym12030478
    [23] A. K. Alomari, G. A. Drabseh, M. F. Al-Jamal, R. B. AlBadarneh, Numerical simulation for fractional phi-4 equation using homotopy Sumudu approach, Int. J. Simulat. Proc. Model., 16 (2021), 26–33. https://doi.org/10.1504/IJSPM.2021.113072 doi: 10.1504/IJSPM.2021.113072
    [24] X. Deng, M. Zhao, X. Li, Travelling wave solutions for a nonlinear variant of the PHI-four equation, Math. Comput. Model., 49 (2009), 617–622. https://doi.org/10.1016/j.mcm.2008.03.011 doi: 10.1016/j.mcm.2008.03.011
    [25] J. Yousef, Y. Humaira, M. M. Al-Sawalha, R. Shah, A. Khan, Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations, AIMS Mathematics, 8, (2023), 25845–25862. https://doi.org/10.3934/math.20231318
    [26] A. S. Alshehry, H. Yasmin, M. W. Ahmad, A. Khan, Optimal auxiliary function method for analyzing nonlinear system of Belousov-Zhabotinsky equation with Caputo operator, Axioms, 12 (2023), 825. https://doi.org/10.3390/axioms12090825 doi: 10.3390/axioms12090825
    [27] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
    [28] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating families of soliton solutions for the complex structured coupled fractional Biswas-Arshed model in birefringent fibers using a novel analytical technique, Fractal Fract., 7 (2023), 491. https://doi.org/10.3390/fractalfract7070491 doi: 10.3390/fractalfract7070491
    [29] M. Kamran, A. Majeed, J. Li, On numerical simulations of time fractional Phi-four equation using Caputo derivative, Comput. Appl. Math., 40 (2021), 257. https://doi.org/10.1007/s40314-021-01649-6 doi: 10.1007/s40314-021-01649-6
    [30] A. H. Bhrawy, L. M. Assas, M. A. Alghamdi, An efficient spectral collocation algorithm for nonlinear Phi-four equations, Bound. Value Probl., 2013 (2013), 87. https://doi.org/10.1186/1687-2770-2013-87 doi: 10.1186/1687-2770-2013-87
    [31] H. Tariq, G. Akram, New approach for exact solutions of time fractional Cahn-Allen equation and time fractional Phi-4 equation, Physica A, 473 (2017), 352–362. https://doi.org/10.1016/j.physa.2016.12.081 doi: 10.1016/j.physa.2016.12.081
    [32] L. M. B. Alam, J. Xingfang, A. Al-Mamun, S.N. Ananna, Investigation of lump, soliton, periodic, kink, and rogue waves to the time-fractional phi-four and (2+1) dimensional CBS equations in mathematical physics, Partial Differ. Equ. Appl. Math., 4 (2021), 100122. https://doi.org/10.1016/j.padiff.2021.100122 doi: 10.1016/j.padiff.2021.100122
    [33] S. Liao, Homotopy analysis method: A new analytical technique for nonlinear problems, Commun. Nonlinear Sci., 2 (1997), 95–100. https://doi.org/10.1016/S1007-5704(97)90047-2 doi: 10.1016/S1007-5704(97)90047-2
    [34] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9 doi: 10.1016/0022-247X(88)90170-9
    [35] T. Liu, Z. Ding, J. Yu, W. Zhang, Parameter estimation for nonlinear diffusion problems by the constrained homotopy method, Mathematics, 11 (2023), 2642. https://doi.org/10.3390/math11122642 doi: 10.3390/math11122642
    [36] T. Liu, K. Xia, Y. Zheng, Y. Yang, R. Qiu, Y. Qi, C. Liu, A homotopy method for the constrained inverse problem in the multiphase porous media flow, Processes, 10 (2022), 1143. https://doi.org/10.3390/pr10061143 doi: 10.3390/pr10061143
    [37] T. Liu, S. Liu, Identification of diffusion parameters in a non-linear convection-diffusion equation using adaptive homotopy perturbation method, Inverse Probl. Sci. Eng., 26 (2018), 464–478. https://doi.org/10.1080/17415977.2017.1316495 doi: 10.1080/17415977.2017.1316495
    [38] T. Liu, Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method. Chaos Soliton. Fract., 158 (2022), 112007. https://doi.org/10.1016/j.chaos.2022.112007
    [39] S. J. Liao, Beyond perturbation: Introduction to the homotopy analysis method, Appl. Mech. Rev., 57 (2004), B25–B26.
    [40] H. A. Peker, F. A. Cuha, Application of Kashuri Fundo transform and homotopy perturbation methods to fractional heat transfer and porous media equations, Therm. Sci., 26 (2022), 2877–2884. https://doi.org/10.2298/TSCI2204877P doi: 10.2298/TSCI2204877P
    [41] S. Maitama, W. Zhao, Local fractional homotopy analysis method for solving non-differentiable problems on Cantor sets. Adv. Differ. Equ., 2019 (2019), 127. https://doi.org/10.1186/s13662-019-2068-6
    [42] E. K. Jaradat, O. Alomari, M. Abudayah, A. M. Al-Faqih, An approximate analytical solution of the nonlinear Schrödinger equation with harmonic oscillator using homotopy perturbation method and Laplace-Adomian decomposition method, Adv. Math. Phys., 2018 (2018), 6765021. https://doi.org/10.1155/2018/6765021 doi: 10.1155/2018/6765021
    [43] L. Akinyemi, O. S. Iyiola, Exact and approximate solutions of time-fractional models arising from physics via Shehu transform, Math. Methods Appl. Sci., 43 (2020), 7442–7464. https://doi.org/10.1002/mma.6484 doi: 10.1002/mma.6484
    [44] S. Cetinkaya, A. Demir, H. K. Sevindir, Solution of space-time-fractional problem by Shehu variational iteration method, Adv. Math. Phys., 2021 (2021), 5528928. https://doi.org/10.1155/2021/5528928 doi: 10.1155/2021/5528928
    [45] R. Shah, A. S. Alshehry, W. Weera, A semi-analytical method to investigate fractional-order gas dynamics equations by Shehu transform, Symmetry, 14 (2022), 1458. https://doi.org/10.3390/sym14071458 doi: 10.3390/sym14071458
    [46] S. Maitama, W. Zhao, Homotopy perturbation Shehu transform method for solving fractional models arising in applied sciences, J. Appl. Math. Comput. Mech., 20 (2021), 71–82. https://doi.org/10.17512/jamcm.2021.1.07 doi: 10.17512/jamcm.2021.1.07
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(915) PDF downloads(71) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog