In this paper, we prove that an almost contact metric structure of a real hypersurface in a complex space form is quasi-contact if and only if it is contact. We also classify real hypersurfaces whose associated almost contact metric structures are nearly Kenmotsu or cosymplectic, which gives several extensions of some earlier results in this field.
Citation: Quanxiang Pan. Real hypersurfaces in complex space forms with special almost contact structures[J]. AIMS Mathematics, 2023, 8(11): 27200-27209. doi: 10.3934/math.20231391
In this paper, we prove that an almost contact metric structure of a real hypersurface in a complex space form is quasi-contact if and only if it is contact. We also classify real hypersurfaces whose associated almost contact metric structures are nearly Kenmotsu or cosymplectic, which gives several extensions of some earlier results in this field.
[1] | T. Adachi, M. Kameda, S. Maeda, Geometric meaning of Sasakian space forms from the viewpoint of submanifold theory, Kodai Math. J., 33 (2010), 383–397. http://dx.doi.org/10.2996/kmj/1288962549 doi: 10.2996/kmj/1288962549 |
[2] | T. Adachi, M. Kameda, S. Maeda, Real hypersurfaces which are contact in a nonflat complex space form, Hokkaido Math. J., 40 (2011), 205–217. http://dx.doi.org/10.14492/hokmj/1310042828 doi: 10.14492/hokmj/1310042828 |
[3] | J. Bae, J. Yeongjae, J. H. Park, K. Sekigawa, Quasi contact metric manifolds with Killing characteristic vector fields, B. Korean Math. Soc., 57 (2000), 1299–1306. http://dx.doi.org/10.4134/BKMS.b190981 doi: 10.4134/BKMS.b190981 |
[4] | D. E. Blair, Almost contact manifolds with Killing structure tensors, Pac. J. Math., 39 (1971), 285–292. http://dx.doi.org/10.2140/pjm.1971.39.285 doi: 10.2140/pjm.1971.39.285 |
[5] | D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, New York: Birkh$\ddot{\mathrm{a}}$user, 2010. http://dx.doi.org/10.1007/978-0-8176-4959-3 |
[6] | D. E. Blair, D. K. Showers, Almost contact manifolds with Killing structure tensors Ⅱ, J. Differ. Geom., 9 (1974), 577–582. http://dx.doi.org/10.4310/jdg/1214432556 doi: 10.4310/jdg/1214432556 |
[7] | D. E. Blair, Y. Komatu, K. Yano, Nearly Sasakian structures, Kodai Math. Semin. Rep., 27 (1976), 175–180. http://dx.doi.org/10.2996/kmj/1138847173 doi: 10.2996/kmj/1138847173 |
[8] | A. Carriazo, J. T. Cho, V. M. Molina, Generalized Sasakian space forms which are realized as real hypersurfaces in complex space forms, Mathematics, 8 (2020), 873. http://dx.doi.org/10.3390/math8060873 doi: 10.3390/math8060873 |
[9] | T. E. Cecil, P. J. Ryan, Geometry of hypersurfaces, Springer Monographs in Mathematics, New York: Springer, 2015. http://dx.doi.org/10.1007/978-1-4939-3246-7 |
[10] | Y. D. Chai, J. H. Kim, J. H. Park, K. Sekigawa, W. M. Shin, Notes on quasi contact metric manifolds, An. Stint. U. Al. I-Mat., 62 (2016), 349–359. |
[11] | D. Chinea, C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pur. Appl., 156 (1990), 15–36. http://dx.doi.org/10.1007/BF01766972 doi: 10.1007/BF01766972 |
[12] | J. T. Cho, Notes on real hypersurfaces in a complex space form, B. Korean Math. Soc., 52 (2015), 335–344. http://dx.doi.org/10.4134/BKMS.2015.52.1.335 doi: 10.4134/BKMS.2015.52.1.335 |
[13] | J. T. Cho, J. Inoguchi, Contact metric hypersurfaces in complex space forms, Proceedings Workshop on Differential Geometry of Submanifolds and its Related Topics, World Scientific, 2013, 87–97. |
[14] | I. K. Erken, P. Dacko, C. Murathan, On the existence of proper nearly Kenmotsu manifolds, Mediterr. J. Math., 13 (2016), 4497–4507. http://dx.doi.org/10.1007/s00009-016-0758-9 doi: 10.1007/s00009-016-0758-9 |
[15] | R. Hojati, F. Malek, Quasi contact metric manifolds with constant sectional curvature, Tokyo J. Math., 41 (2018), 515–525. http://dx.doi.org/10.3836/tjm/1502179276 doi: 10.3836/tjm/1502179276 |
[16] | K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103. http://dx.doi.org/10.2748/tmj/1178241594 doi: 10.2748/tmj/1178241594 |
[17] | U. H. Ki, Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama U., 32 (1990), 207–221. http://dx.doi.org/10.18926/mjou/33298 doi: 10.18926/mjou/33298 |
[18] | B. H. Kim, S. Maeda, Totally $\eta$-umbilic hypersurfaces in a nonflat complex space form and their almost contact metric structures, Scientiae Math. J., 72 (2010), 483–490. http://dx.doi.org/10.32219/isms.72.3-289 doi: 10.32219/isms.72.3-289 |
[19] | B. H. Kim, S. Maeda, H. Tanabe, Normal real hypersurfaces in a nonflat complex space form, Scientiae Math. J., 77 (2014), 159–167. http://dx.doi.org/10.32219/isms.77.2-159 doi: 10.32219/isms.77.2-159 |
[20] | J. H. Kim, J. H. Park, K. Sekigawa, A generalization of contact metric manifolds, Balk. J. Geom. Appl., 19 (2014), 94–105. |
[21] | M. Okumura, Certain almost contact hypersurfaces in Euclidean spaces, Kodai Math. Semin. Rep., 16 (1964), 44–54. http://dx.doi.org/10.2996/kmj/1138844859 doi: 10.2996/kmj/1138844859 |
[22] | M. Okumura, Certain almost contact hypersurfaces in Kaehlerian manifolds of constant holomorphic sectional curvatures, Tohoku Math. J., 16 (1964), 270–284. http://dx.doi.org/10.2748/tmj/1178243673 doi: 10.2748/tmj/1178243673 |
[23] | M. Okumura, Cosymplectic hypersurfaces in Kaehlerian manifold of constant holomorphic sectional curvature, Kodai Math. Semi. Rep., 17 (1965), 63–73. http://dx.doi.org/10.2996/kmj/1138845043 doi: 10.2996/kmj/1138845043 |
[24] | M. Okumura, Contact hypersurfaces in certain Kaehlerian manifolds, Tohoku Math. J., 18 (1966), 74–102. http://dx.doi.org/10.2748/tmj/1178243483 doi: 10.2748/tmj/1178243483 |
[25] | Z. Olszak, Almost cosymplectic real hypersurfaces in Kähler manifolds, Arch. Math., 18 (1982), 187–192. |
[26] | A. Shukla, Nearly trans-Sasakian manifolds, Kuwait J. Sci. Eng., 23 (1996), 139–144. |
[27] | M. H. Vernon, Contact hypersurfaces of a complex hyperbolic space, Tohoku Math. J., 39 (1987), 215–222. http://dx.doi.org/10.2748/tmj/1178228324 doi: 10.2748/tmj/1178228324 |
[28] | W. Wang, A characterization of ruled hypersurfaces in complex space forms in terms of the Lie derivative of shape operator, AIMS Math., 6 (2021), 14054–14063. http://dx.doi.org/10.3934/math.2021813 doi: 10.3934/math.2021813 |
[29] | Y. Wang, Y. Zhang, Transversal Killing operators on real hypersurfaces in nonflat complex space forms, Differ. Geom. Appl., 82 (2022), 101886. http://dx.doi.org/10.1016/j.difgeo.2022.101886 doi: 10.1016/j.difgeo.2022.101886 |
[30] | Y. Wang, Y. Zhang, Weakly Einstein real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$, J. Geom. Phys., 181 (2022), 104648. http://dx.doi.org/10.1016/j.geomphys.2022.104648 doi: 10.1016/j.geomphys.2022.104648 |
[31] | Y. Wang, Y. Zhang, Generalized $\mathcal{D}$-Einstein real hypersurfaces with constant coefficient, J. Math. Anal. Appl., 519 (2023), 126760. http://dx.doi.org/10.1016/j.jmaa.2022.126760 doi: 10.1016/j.jmaa.2022.126760 |
[32] | Y. Wang, Y. Zhang, Transversal Killing $h$-operators on real hypersurfaces in nonflat complex space forms, Mediterr. J. Math., 20 (2023), 101886. http://dx.doi.org/10.1007/s00009-022-02239-4 doi: 10.1007/s00009-022-02239-4 |
[33] | Y. Wang, Y. Zhang, Codazzi type $h$-operators on real hypersurfaces in nonflat complex space forms, Publ. Math. Debrecen, 103 (2023), 203–213. http://dx.doi.org/10.5486/PMD.2023.9541 doi: 10.5486/PMD.2023.9541 |