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1. Introduction

Let Mn(c) be a complete and simply connected complex space form, which is complex analytically
isometric to

• a complex projective space CPn(c) if c > 0,
• a complex Euclidean space Cn if c = 0,
• a complex hyperbolic space CHn(c) if c < 0,

where c denotes the constant holomorphic sectional curvature. In general, Mn(c) is said to be a nonflat
complex space form when c , 0. Let M be a real hypersurface of real dimension 2n − 1 immersed
in Mn(c), n ≥ 2. On M, there exists a natural almost contact metric structure (φ, ξ, η, g) induced from
the complex structure on Mn(c) and the normal vector field, where ξ and φ are called the structure vector
field and the structure tensor field, respectively. The behavior of the almost contact metric structure
reveals some important properties of the real hypersurfaces and this leads many authors to investigate
geometry of a real hypersurface in a complex space form from the view points of the associated almost
contact metric structures.

An almost contact metric manifold is called

• a contact metric manifold if dη = Φ,
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• an almost Kenmotsu manifold if dη = 0 and dΦ = 2η ∧ Φ,
• an almost cosymplectic manifold if dη = 0 and dΦ = 0,

where the fundamental two-form Φ is determined by Φ = g(·, φ·). According to [5], a contact metric
manifold (resp. almost Kenmotsu and almost cosymplectic manifold) is said to be Sasakian (resp.
Kenmotsu and cosymplectic manifold) if the associated almost contact metric structure is normal.
There are some studies of a real hypersurface in a Kähler manifold whose associated almost contact
metric structures are almost contact metric (see [21, 22]), contact metric (see [2, 13, 24, 27]), Sasakian
(see [1, 19]), almost Kenmotsu (see [12]), almost cosymplectic (see [23, 25]) or normal (see [12]).
Besides the above cases, the generalized Sasakian space forms on a real hypersurface in a nonflat
complex space form were considered recently in [8]. All these results are nice characterizations of
homogeneous, ruled or Hopf hypersurfaces in a complex space form. For example, it was proved
in [1, Lemma 2] that a Sasakian real hypersurface in a nonflat complex space form must be one of
Hopf and homogeneous real hypersurfaces. The studies of real hypersurfaces from view points of
almost contact metric structure can also be seen in papers [30, 31]. Motivated by these results, in this
paper, we aim to investigate the almost contact metric structures of real hypersurfaces being some other
interesting types.

First, we show that an almost contact metric structure of a real hypersurface in a complex space
form is quasi-contact if and only if it is contact, although they are not the same in general, and
consequently, such hypersurfaces are classified completely. Second, we prove that there exist no real
hypersurfaces whose associated almost contact metric structure is nearly Kenmotsu. However, when
the almost contact metric structures are nearly cosymplectic or nearly Sasakian, the corresponding
real hypersurfaces are classified completely. All these can be viewed as natural extensions of some
previous results.

2. Preliminaries

Let M be a real hypersurface in a complex space form Mn(c) and N be a unit normal vector field of
M. Let ∇ be the Levi-Civita connection of the metric g of Mn(c) and J the complex structure. Let g
and ∇ be the induced metric from the ambient space and the Levi-Civita connection of the metric g,
respectively. The Gauss and Weingarten formulas are given respectively by:

∇XY = ∇XY + g(AX,Y)N, ∇XN = −AX (2.1)

for any vector fields X,Y , where A denotes the shape operator of M in Mn(c). For any vector field X,
we put

JX = φX + η(X)N, JN = −ξ. (2.2)

We can define on M an almost contact metric structure (φ, ξ, η, g) satisfying

φ2 = −id + η ⊗ ξ, η(ξ) = 1, φξ = 0, (2.3)

g(φX, φY) = g(X,Y) − η(X)η(Y), η(X) = g(X, ξ) (2.4)

for any X,Y . If the structure vector field ξ is principal, that is, Aξ = αξ at each point, where α = η(Aξ),
then M is called a Hopf hypersurface. From the parallelism of the complex structure (i.e., ∇J = 0) of
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Mn(c) and using (2.1), (2.2) we have

(∇Xφ)Y = η(Y)AX − g(AX,Y)ξ, (2.5)

∇Xξ = φAX (2.6)

for any X,Y . Let R be the Riemannian curvature tensor of M. Because Mn(c) is of constant holomorphic
sectional curvature c, the Gauss and Codazzi equations of M in Mn(c) are given respectively as the
following:

R(X,Y)Z =
c
4
{g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX,Y)φZ} + g(AY,Z)AX − g(AX,Z)AY,
(2.7)

(∇XA)Y − (∇Y A)X =
c
4
{η(X)φY − η(Y)φX − 2g(φX,Y)ξ} (2.8)

for any vector fields X, Y . All above mentioned basic knowledge regarding real hypersurfaces and
almost contact metric manifolds can be found in [4, 9], respectively.

3. Almost contact real hypersurfaces

Recently, Kim, Park and Sekigawa in [20] introduced a generalization of contact metric manifolds,
which was said to be the quasi-contact metric manifolds, and such manifolds received many attentions
in recent literature [3,10,15]. More precisely, an almost contact metric manifold (φ, ξ, η, g) is said to be
quasi-contact if the corresponding almost Hermitian cone is a quasi Kähler manifold, or equivalently,

(∇Xφ)Y + (∇φXφ)φY = 2g(X,Y)ξ − η(Y)X − η(X)η(Y)ξ − η(Y)hX, (3.1)

where the (1, 1)-type tensor field h is defined by

g(hX,Y) =
1
2

g((Lξφ)X,Y) (3.2)

for any vector fields X and Y (see [20, Theorem 4.2]). Here, we refer the reader to [29,32,33] for some
recent results on h-operators of real hypersurfaces. Any contact metric manifold is a quasi-contact
one, but the converse is not necessarily valid in general cases. It has been proposed as an open question
in [20]:

Does there exist a quasi-contact metric manifold of dimension ≥ 5 that is not a contact
metric manifold?

This problem has been considered in [3,10,15] under some reasonable restrictions. In this paper, we
aim to answer this question from the view point of real hypersurfaces and we prove the following result.

Lemma 3.1. The almost contact metric structure of a real hypersurface in a complex space form is
quasi-contact if and only if it is contact.

Proof. If the almost contact metric structure of a real hypersurface in a complex space form is quasi-
contact, then equality (3.1) is valid. Substituting (2.5) into this equality we obtain

η(Y)AX − g(AX,Y)ξ − g(AφX, φY)ξ
=2g(X,Y)ξ − η(Y)X − η(X)η(Y)ξ − η(Y)hX

(3.3)
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for any vector fields X,Y . By a direct calculation, we have

g(hX,Y) =
1
2

g((∇ξφ)X − φAφX + φ2AX,Y)

=
1
2

(η(X)Aξ − φAφX − AX,Y),
(3.4)

where we used again (2.5). Substituting (3.4) into (3.3) we obtain

η(Y)AX − g(AX,Y)ξ − g(AφX, φY)ξ

=2g(X,Y)ξ − η(Y)X − η(X)η(Y)ξ −
1
2
η(X)η(Y)Aξ

+
1
2
η(Y)φAφX +

1
2
η(Y)AX.

(3.5)

In (3.5), setting Y = ξ we get

1
2

AX − η(AX)ξ = η(X)ξ − X −
1
2
η(X)Aξ +

1
2
φAφX. (3.6)

In (3.6), setting X = ξ we get Aξ = η(Aξ)ξ, which is used back in (3.6) giving

1
2

AX −
1
2
η(Aξ)η(X)ξ − η(X)ξ + X −

1
2
φAφX = 0. (3.7)

With the aid of (2.3), the action of φ on (3.7) yields that

Aφ + φA = −2φ. (3.8)

With the aid of (3.8), according to a direct calculation we obtain

(dη − Φ)(X,Y) =
1
2

(X(η(Y)) − Y(η(X)) − η([X,Y])) − g(X, φY)

=
1
2

g(φAX,Y) −
1
2

g(φAY, X) − g(X, φY) = 0

for any vector fields X,Y , where we used (2.6). Obviously, this equality implies that the almost contact
structure is contact. The converse is trivial because any contact metric structure is quasi-contact. �

Theorem 3.1. The almost contact metric structure of a real hypersurface M in a complex space form
Mn(c) is quasi-contact if and only if one of the following cases is valid.

• If Mn(c) = CPn(c), M is locally congruent to a geodesic sphere or a tube around complex
hyperquadric CQn−1.
• If Mn(c) = CHn(c), M is locally congruent to a horosphere, a geodesic hypersphere, a tube over a

complex hyperbolic hyperplane CHn−1(c) or a tube around totally real totally geodesic RHn(c/4).
• If Mn(c) = Cn, M is locally congruent to a sphere S 2n−1 or a product of a sphere and an Euclidean

space S n−1 × Rn.

Proof. If the ambient space is a nonflat complex space form, the proof follows from Lemma 3.1 and [2,
Lemma 2]. If the ambient space is the complex Euclidean space, the proof follows from Lemma 3.1
and [24, Theorem 6.3]. �
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Remark 3.1. A quasi-contact metric manifold of dimension three is necessarily contact, and hence
Lemma 3.1 and also Theorem 3.1 for the case n = 2 are valid naturally from [2, 24].

An almost contact metric manifold is called a nearly Kenmotsu manifold (see [26]) if

(∇Xφ)Y + (∇Yφ)X = −η(X)φY − η(Y)φX (3.9)

for any vector fields X,Y . From [4, 16], an almost contact metric manifold is said to be a Kenmotsu
manifold if

(∇Xφ)Y = g(φX,Y)ξ − η(Y)φX.

So, a Kenmotsu manifold must be a nearly Kenmotsu manifold, but the converse is not necessarily
true. For example, a warped product R ×et N admits a nearly Kenmotsu but not Kenmotsu structure,
where N denotes a non-Kähler nearly Kähler manifold. It was proved in [14, Theorem 3] that every
normal nearly Kenmotsu manifold is Kenmotsu.

Theorem 3.2. There exist no real hypersurfaces in a complex space form whose associated almost
contact metric structure is nearly Kenmotsu.

Proof. Let M be a real hypersurface in a complex space form whose associated almost contact metric
structure is nearly Kenmotsu, (3.9) is valid. Substituting (2.5) into (3.9) we obtain

η(Y)AX + η(X)AY − 2g(AX,Y)ξ = −η(X)φY − η(Y)φX (3.10)

for any vector fields X, Y . In (3.10), setting Y = ξ gives

AX + η(X)Aξ − 2η(AX)ξ + φX = 0. (3.11)

In (3.11), setting X = ξ, with the aid of (2.3), we obtain Aξ = η(Aξ)ξ. Applying this back in (3.11) we
obtain

AX = η(Aξ)η(X)ξ − φX.

Taking the inner product of the above equality with Y yields

g(AX,Y) = η(Aξ)η(X)η(Y) − g(φX,Y).

The interchange of the roles of X and Y in the above equality gives

g(AY, X) = η(Aξ)η(X)η(Y) − g(φY, X).

Recall that the shape operator A is symmetric. Therefore, the subtraction of the above equality from
the previous one gives

g(φX,Y) = 0.

However, this is impossible because we get a contradiction if we select Y = φX being a unit vector field.
This completes the proof. �

Remark 3.2. It was proved in [19, Theorem] that there exist no real hypersurfaces in a nonflat complex
space form whose associated almost contact metric structure is Kenmotsu. Theorem 3.2 is an extension
of this result.
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An almost contact metric manifold is called a nearly cosymplectic manifold (see [4, 6]) if

(∇Xφ)Y + (∇Yφ)X = 0 (3.12)

for any vector fields X,Y . An almost contact metric manifold is called a cosymplectic manifold (see [4])
if

∇φ = 0.

So, a cosymplectic manifold must be a nearly cosymplectic, but the converse is not necessarily true.

Theorem 3.3. The almost contact metric structure of a real hypersurface M in a complex space form
Mn(c) is nearly cosymplectic if and only if c = 0 and M is cylinderical.

Proof. Let M be a real hypersurface in a complex space form whose associated almost contact metric
structure is nearly cosymplectic, (3.12) is valid. Substituting (2.5) into (3.12) we obtain

η(Y)AX + η(X)AY − 2g(AX,Y)ξ = 0 (3.13)

for any vector fields X, Y . In (3.13), setting Y = ξ gives

AX + η(X)Aξ − 2η(AX)ξ = 0. (3.14)

In (3.14), setting X = ξ, with the aid of (2.3), we obtain Aξ = η(Aξ)ξ. Applying this back in (3.14) we
obtain

A = η(Aξ)η ⊗ ξ. (3.15)

Obviously, this implies Aφ+ φA = 0. Ki and Suh in [17, Lemma 2.1] proved that if a real hypersurface
in a complex space form Mn(c) satisfies Aφ + φA = 0, then c = 0. More precisely, it has been proved
in [17, Proposition 2.2] that when (3.15) for real hypersurfaces in the complex Euclidean space is true,
the real hypersurface is cylinderical. The converse is easy to check because of (2.5). �

Remark 3.3. Olszak in [25, Theorem] proved that there are no real hypersurfaces in a nonflat
complex space form whose associated almost contact metric structure is cosympelctic (see also [12]).
Theorem 3.3 and this result are both extensions of [23, Theorem 3.1] in which the author proved
that there are no cosymplectic real hypersurfaces in a complex space form with positive constant
holomorphic sectional curvatures.

An almost contact metric manifold is called a nearly Sasakian manifold (see [4, 7]) if

(∇Xφ)Y + (∇Yφ)X = 2g(X,Y)ξ − η(X)Y − η(Y)X (3.16)

for any vector fields X,Y . An almost contact metric manifold is called a Sasakian manifold (see [4]) if

(∇Xφ)Y = g(X,Y)ξ − η(Y)X.

So, a Sasakian manifold is a nearly Sasakian manifold, but the converse is not necessarily true. It was
proved in [18, Theorem 1] that the almost contact metric structure of a real hypersurface in a nonflat
complex space form is Sasakian if and only if it is nearly Sasakian.
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Theorem 3.4. [18] The almost contact metric structure of a real hypersurface in a nonflat complex
space form is nearly Sasakian if and only if the hypersurface is locally congruent to a geodesic sphere
in CPn or CHn, a horosphere in CHn or a tube around totally geodesic CHn−1.

Since the case of nonflat ambient spaces was considered, in view of this next we only consider the
nearly Sasakian hypersurfaces in a flat complex space form.

Theorem 3.5. The almost contact metric structure of a real hypersurface in a complex Euclidean space
is nearly Sasakian if and only if it is locally isometric to a sphere S 2n−1.

Proof. Let M be a real hypersurface in a complex Euclidean space whose associated almost contact
metric structure is nearly Sasakian, (3.16) is valid. Substituting (2.5) into (3.16) we obtain

η(Y)AX + η(X)AY − 2g(AX,Y)ξ = 2g(X,Y)ξ − η(X)Y − η(Y)X (3.17)

for any vector fields X, Y . In (3.17), setting Y = ξ gives

AX + η(X)Aξ − 2η(AX)ξ − η(X)ξ + X = 0. (3.18)

In (3.18), setting X = ξ, with the aid of (2.3), we obtain Aξ = η(Aξ)ξ. Applying this back in (3.18)
we obtain

AX = −X + (η(Aξ) + 1)η(X)ξ. (3.19)

With the aid of (2.6), taking the covariant derivative of (3.19) we obtain

(∇Y A)X
=Y(η(Aξ))η(X)ξ + (η(Aξ) + 1)g(φAY, X)ξ + (η(Aξ) − 1)η(X)φAY.

(3.20)

Note that in this case, the holomorphic sectional curvature of the ambient space is zero and hence (2.8)
becomes

(∇XA)Y = (∇Y A)X, (3.21)

which is combined with (3.20) yielding

Y(η(Aξ))η(X)ξ + (η(Aξ) + 1)g(φAY, X)ξ + (η(Aξ) + 1)η(X)φAY

=X(η(Aξ))η(Y)ξ + (η(Aξ) + 1)g(φAX,Y)ξ + (η(Aξ) + 1)η(Y)φAX.
(3.22)

In (3.22), setting Y = ξ and using Aξ = η(Aξ)ξ, with the aid of (2.3), we obtain

ξ(η(Aξ))η(X)ξ = X(η(Aξ))ξ + (η(Aξ) + 1)φAX (3.23)

for any vector field X. In view of Aξ = η(Aξ)ξ and (2.3), the action of φ on the above equality gives

(η(Aξ) + 1)(AX − η(Aξ)η(X)ξ) = 0. (3.24)

If there exists a point at which η(Aξ) , −1, it follows from (3.24) that AX = η(Aξ)η(X)ξ at this point.
Now putting this into (3.19) we obtain

X = η(X)ξ

for any vector field X. According to this, we arrive at a contradiction if we select X being a vector field
orthogonal to ξ. Therefore, if follows immediately from (3.24) that

η(Aξ) = −1, (3.25)

everywhere, and hence from (3.19) we obtain A = −Id. Obviously, according to (2.7), we observe that
the hypersurface is of constant sectional curvature 1. The converse is easy to check. �
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4. Conclusions and perspectives

In this paper, we classified real hypersurfaces in a complex space form whose associated almost
contact metric structures are special. As seen from Theorems 3.2–3.5, nearly Kenmotsu, nearly
cosymplectic and nearly Sasakian structures have different effects on geometry of real hypersurfaces
in a complex space form. However, unlike Theorems 3.3 and 3.5, Theorem 3.2 implies that there exists
no real hypersurface in complex space forms whose associated almost contact metric structure is nearly
Kenmotsu. According to this one may state that the nearly Kenmotsu structure is too strong for a real
hypersurface in complex space forms. Therefore, it is very interesting to investigate the existence and
classification problems for certain more weaker almost contact metric structures (for some other types
of almost contact metric structures we refer the reader to [11]).
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