Research article

Lie symmetry analysis, and traveling wave patterns arising the model of transmission lines

  • Received: 20 March 2024 Revised: 01 May 2024 Accepted: 09 May 2024 Published: 27 May 2024
  • MSC : 22E60, 35C07, 35Q60

  • This work studies the behavior of electrical signals in resonant tunneling diodes through the application of the Lonngren wave equation. Utilizing the method of Lie symmetries, we have identified optimal systems and found symmetry reductions; we have also found soliton wave solutions by applying the tanh technique. The bifurcation and Galilean transformation are found to determine the model implications and convert the system into a planar dynamical system. In this experiment, the equilibrium state, sensitivity, and chaos are investigated and numerical simulations are conducted to show how the frequency and amplitude of alterations affect the system. Furthermore, local conservation rules are demonstrated in more detail to unveil the whole system of movements.

    Citation: Adil Jhangeer, Ali R Ansari, Mudassar Imran, Beenish, Muhammad Bilal Riaz. Lie symmetry analysis, and traveling wave patterns arising the model of transmission lines[J]. AIMS Mathematics, 2024, 9(7): 18013-18033. doi: 10.3934/math.2024878

    Related Papers:

  • This work studies the behavior of electrical signals in resonant tunneling diodes through the application of the Lonngren wave equation. Utilizing the method of Lie symmetries, we have identified optimal systems and found symmetry reductions; we have also found soliton wave solutions by applying the tanh technique. The bifurcation and Galilean transformation are found to determine the model implications and convert the system into a planar dynamical system. In this experiment, the equilibrium state, sensitivity, and chaos are investigated and numerical simulations are conducted to show how the frequency and amplitude of alterations affect the system. Furthermore, local conservation rules are demonstrated in more detail to unveil the whole system of movements.



    加载中


    [1] K. Lonngren, D. Landt, C. Burde, J. Kolosick, Observation of shocks on a nonlinear dispersive transmission line, IEEE Trans. Circuits Syst., 22 (1975), 376–378. https://doi.org/10.1109/TCS.1975.1084039 doi: 10.1109/TCS.1975.1084039
    [2] R. Zhang, M. Shakeel, N. B. Turki, N. A. Shah, S. M. Tag, A novel analytical technique for a mathematical model representing communication signals: a new traveling wave solutions, Results Phys., 51 (2023), 106576. https://doi.org/10.1016/j.rinp.2023.106576 doi: 10.1016/j.rinp.2023.106576
    [3] K. Lonngren, H. C. S. Hsuan, W. F. Ames, On the soliton, invariant, and shock solutions of a fourth-order nonlinear equation, J. Math. Anal. Appl., 52 (1975), 538–545. https://doi.org/10.1016/0022-247X(75)90078-5 doi: 10.1016/0022-247X(75)90078-5
    [4] M. M. Rahman, A. Akhtar, K. C. Roy, Analytical solutions of nonlinear coupled Schrödinger–KdV equation via advanced exponential expansion, Amer. J. Math. Comput. Model., 3 (2019), 46–51. https://doi.org/10.11648/j.ajmcm.20180303.11 doi: 10.11648/j.ajmcm.20180303.11
    [5] Ş. Akçaği, T. Aydemir, Comparison between the $(\frac{G^{\prime}}{G})$-expansion method and the modified extended tanh method, Open Phys., 14 (2016), 88–94. https://doi.org/10.1515/phys-2016-0006 doi: 10.1515/phys-2016-0006
    [6] H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 129–138. https://doi.org/10.2478/AMNS.2019.1.00013 doi: 10.2478/AMNS.2019.1.00013
    [7] S. Duran, Breaking theory of solitary waves for the Riemann wave equation in fluid dynamics, Int. J. Modern Phys. B, 35 (2021), 2150130. https://doi.org/10.1142/S0217979221501307 doi: 10.1142/S0217979221501307
    [8] I. Aziz, I. Khan, Numerical solution of diffusion and reaction-diffusion partial integrodifferential equations, Int. J. Comput. Methods, 15 (2018), 1850047. https://doi.org/10.1142/S0219876218500470 doi: 10.1142/S0219876218500470
    [9] W. Gao, H. M. Baskonus, L. Shi, New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system, Adv. Differ. Equ., 2020 (2020), 391. https://doi.org/10.1186/s13662-020-02831-6 doi: 10.1186/s13662-020-02831-6
    [10] K. K. Ali, R. Yilmazer, A. Yokus, H. Bulut, Analytical solutions for the (3+1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation in plasma physics, Phys. A: Stat. Mechanics Appl., 548 (2020), 124327. https://doi.org/10.1016/j.physa.2020.124327 doi: 10.1016/j.physa.2020.124327
    [11] H. M. Baskonus, H. Bulut, On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method, Waves Random Complex Media, 25 (2015), 720–728. https://doi.org/10.1080/17455030.2015.1080392 doi: 10.1080/17455030.2015.1080392
    [12] B. Dünweg, U. D. Schiller, A. J. Ladd, Statistical mechanics of the fluctuating lattice Boltzmann equation, Phys. Rev. E, 76 (2007), 036704. https://doi.org/10.1103/PhysRevE.76.036704 doi: 10.1103/PhysRevE.76.036704
    [13] W. X. Ma, Z. Zhu, Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 15 (2012), 11871–11879. https://doi.org/10.1016/j.amc.2012.05.049 doi: 10.1016/j.amc.2012.05.049
    [14] A. R. Seadawy, Traveling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves, Eur. Phys. J. Plus, 132 (2017), 29. https://doi.org/10.1140/epjp/i2017-11313-4 doi: 10.1140/epjp/i2017-11313-4
    [15] S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. Roy. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [16] J. S. Russell, Report on waves: made to the meetings of the British Association in 1842-43, London: Printed by Richard and John E. Taylor, 1845.
    [17] P. G. Drazin, R. S. Johnson, Solitons: an introduction, 2 Eds, Cambridge University Press, 1989. https://doi.org/10.1017/CBO9781139172059
    [18] X. B. Wang, S. F. Tian, C. Y. Qin, T. T. Zhang, Lie symmetry analysis, conservation laws, and analytical solutions of a time-fractional generalized kdv-type equation, J. Nonlinear Math. Phys., 24 (2017), 516–530. https://doi.org/10.1080/14029251.2017.1375688 doi: 10.1080/14029251.2017.1375688
    [19] A. Jhangeer, A. R. Ansari, M. Imran, Beenish, M. B. Riaz, Conserved quantities and sensitivity analysis the influence of damping effect in ferrites materials, Alex. Eng. J., 86 (2024), 298–310. https://doi.org/10.1016/j.aej.2023.11.067 doi: 10.1016/j.aej.2023.11.067
    [20] M. Wang, X. Li, Applications of f-expansion to periodic wave solutions for a new Hamiltonian amplitude equation, Chaos, Soliton. Fract., 24 (2005), 1257–1268. https://doi.org/10.1016/j.chaos.2004.09.044 doi: 10.1016/j.chaos.2004.09.044
    [21] F. González-Gascón, A. González-López, Symmetries of differential equations. IV, J. Math. Phys., 24 (1983), 2006–2021. https://doi.org/10.1063/1.525960 doi: 10.1063/1.525960
    [22] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212–218. https://doi.org/10.1016/S0375-9601(00)00725-8 doi: 10.1016/S0375-9601(00)00725-8
    [23] S. San, R. Altunay, Application of the generalized Kudryashov method to various physical models, Appl. Math. I Infor. Sci. Lett., 8 (2021), 7–13.
    [24] A. M. Wazwaz, The tanh and the sine-cosine methods for the complex modified K dv and the generalized K dv equations, Comput. Math. Appl., 49 (2005), 1101–1112. https://doi.org/10.1016/j.camwa.2004.08.013 doi: 10.1016/j.camwa.2004.08.013
    [25] S. San, R. Altunay, Abundant traveling wave solutions of (3+1) dimensional Boussinesq equation with dual dispersion, Rev. Mex. Fís. E, 19 (2022), 020203. https://doi.org/10.31349/RevMexFisE.19.020203 doi: 10.31349/RevMexFisE.19.020203
    [26] M. M. A. Khater, D. Kumar, New exact solutions for the time fractional coupled Boussinesq–Burger equation and approximate long water wave equation in shallow water, J. Ocean Eng. Sci., 2 (2017), 223–228. https://doi.org/10.1016/j.joes.2017.07.001 doi: 10.1016/j.joes.2017.07.001
    [27] A. Jhangeer, N. Raza, H. Rezazadeh, A. Seadawy, Nonlinear self-adjointness, conserved quantities, bifurcation analysis and traveling wave solutions of a family of long-wave unstable lubrication model, Pramana, 94 (2020), 87. https://doi.org/10.1007/s12043-020-01961-6 doi: 10.1007/s12043-020-01961-6
    [28] A. Hussain, M. Usman, B. R. Al-Sinan, W. M. Osman, T. F. Ibrahim, Symmetry analysis and closed-form invariant solutions of the nonlinear wave equations in elasticity using an optimal system of Lie sub-algebra, Chinese J. Phys., 83 (2023), 1–13. https://doi.org/10.1016/j.cjph.2023.02.011 doi: 10.1016/j.cjph.2023.02.011
    [29] V. A. Dorodnitsyn, E. I. Kaptsov, R. V. Kozlov, S. V. Meleshko, One-dimensional MHD flows with cylindrical symmetry: Lie symmetries and conservation laws, Int. J. Nonlinear Mech., 148 (2023), 104290. https://doi.org/10.1016/j.ijnonlinmec.2022.104290 doi: 10.1016/j.ijnonlinmec.2022.104290
    [30] A. Abdallah, I. Abbas, H. Sapoor, The effects of fractional derivatives of bioheat model in living tissues using the analytical-numerical method, Infor. Sci. Lett., 11 (2022), 7–13. http://doi.org/10.18576/isl/110102 doi: 10.18576/isl/110102
    [31] L. Zada, M. Al-Hamami, R. Nawaz, S. Jehanzeb, A. Morsy, A. Abdel-Aty, et al., A new approach for solving Fredholm integro-differential equations, Infor. Sci. Lett., 10 (2021), 407–415. http://doi.org/10.18576/isl/100303 doi: 10.18576/isl/100303
    [32] L. Akinyemi, A fractional analysis of Noyes-Field model for the nonlinear Belousov-Zhabotinsky reaction, Comput. Appl. Math., 39 (2020), 175. http://doi.org/10.1007/s40314-020-01212-9 doi: 10.1007/s40314-020-01212-9
    [33] L. T. K. Nguyen, Soliton solution of good Boussinesq equation, Vietnam J. Math., 44 (2016), 375–385. https://doi.org/10.1007/s10013-015-0157-8 doi: 10.1007/s10013-015-0157-8
    [34] L. T. K. Nguyen, N. F. Smyth, Modulation theory for radially symmetric kink waves governed by a multi-dimensional Sine-Gordon equation, J. Nonlinear Sci., 33 (2023), 11. https://doi.org/10.1007/s00332-022-09859-w doi: 10.1007/s00332-022-09859-w
    [35] H. Almusawa, A. Jhangeer, Beenish, Soliton solutions, lie symmetry analysis and conservation laws of ionic waves traveling through microtubules in live cells, Results Phys., 43 (2022), 106028. https://doi.org/10.1016/j.rinp.2022.106028 doi: 10.1016/j.rinp.2022.106028
    [36] S. San, A. Akbulut, Ö. Ünsal, F. Taşcan, Conservation laws and double reduction of (2+1) dimensional Calogero–Bogoyavlenskii–Schiff equation, Math. Methods Appl. Sci., 40 (2017), 1703–1710. https://doi.org/10.1002/mma.4091 doi: 10.1002/mma.4091
    [37] P. J. Olver, Applications of Lie groups to differential equations, Springer Science & Business Media, Vol. 107, 1993.
    [38] Beenish, H. Kurkcu, M. B. Riaz, M. Imran, A. Jhangeer, Lie analysis and nonlinear propagating waves of the (3+1)-dimensional generalized Boiti–Leon–Manna–Pempinelli equation, Alex. Eng. J., 80 (2023), 475–486. https://doi.org/10.1016/j.aej.2023.08.067 doi: 10.1016/j.aej.2023.08.067
    [39] R. Grimshaw, Nonlinear ordinary differential equations, Routledge, 2017. https://doi.org/10.1201/9780203745489
    [40] A. Jhangeer, Beenish, Study of magnetic fields using dynamical patterns and sensitivity analysis, Chaos, Soliton. Fract., 182 (2024), 114827. https://doi.org/10.1016/j.chaos.2024.114827 doi: 10.1016/j.chaos.2024.114827
    [41] S. Banerjee, M. K. Hassan, S. Mukherjee, A. Gowrisankar, Fractal patterns in nonlinear dynamics and applications, CRC Press, 2020. https://doi.org/10.1201/9781315151564
    [42] K. K. Ali, W. A. Faridi, A. Yusuf, M. Abd El-Rahman, M. R. Ali, Bifurcation analysis, chaotic structures and wave propagation for nonlinear system arising in oceanography, Results Phys., 57 (2024), 107336. https://doi.org/10.1016/j.rinp.2024.107336
    [43] H. Natiq, S. Banerjee, A. P. Misra, M. R. Said, Degenerating the butterfly attractor in a plasma perturbation model using nonlinear controllers, Chaos, Soliton. Fract., 122 (2019), 58–68. https://doi.org/10.1016/j.chaos.2019.03.009 doi: 10.1016/j.chaos.2019.03.009
    [44] R. Naz, Conservation laws for some compaction equations using the multiplier approach, Appl. Math. Lett., 25 (2012), 257–261. https://doi.org/10.1016/j.aml.2011.08.019 doi: 10.1016/j.aml.2011.08.019
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(682) PDF downloads(75) Cited by(7)

Article outline

Figures and Tables

Figures(14)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog