Research article

Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials

  • Received: 20 December 2023 Revised: 13 April 2024 Accepted: 26 April 2024 Published: 28 May 2024
  • MSC : 30C45

  • In this paper, we introduced two novel subclasses of bi-univalent functions, MΣ(α,B(x,ξ)) and HΣ(α,μ,B(x,ξ)), utilizing Lucas-Balancing polynomials. Within these function classes, we established bounds for the Taylor-Maclaurin coefficients |a2| and |a3|, addressing the Fekete-Szegö functional problems specific to functions within these new subclasses. Moreover, we illustrated how our primary findings could lead to various new outcomes through parameter specialization.

    Citation: Abdulmtalb Hussen, Mohammed S. A. Madi, Abobaker M. M. Abominjil. Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials[J]. AIMS Mathematics, 2024, 9(7): 18034-18047. doi: 10.3934/math.2024879

    Related Papers:

    [1] Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165
    [2] Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order $ \vartheta +i\delta $ associated with $ (p, q)- $ Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254
    [3] Halit Orhan, Nanjundan Magesh, Chinnasamy Abirami . Fekete-Szegö problem for Bi-Bazilevič functions related to Shell-like curves. AIMS Mathematics, 2020, 5(5): 4412-4423. doi: 10.3934/math.2020281
    [4] Anandan Murugan, Sheza M. El-Deeb, Mariam Redn Almutiri, Jong-Suk-Ro, Prathviraj Sharma, Srikandan Sivasubramanian . Certain new subclasses of bi-univalent function associated with bounded boundary rotation involving sǎlǎgean derivative. AIMS Mathematics, 2024, 9(10): 27577-27592. doi: 10.3934/math.20241339
    [5] Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with $ \mathfrak{q} $-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333
    [6] Abeer O. Badghaish, Abdel Moneim Y. Lashin, Amani Z. Bajamal, Fayzah A. Alshehri . A new subclass of analytic and bi-univalent functions associated with Legendre polynomials. AIMS Mathematics, 2023, 8(10): 23534-23547. doi: 10.3934/math.20231196
    [7] Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395
    [8] Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061
    [9] Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus . Applications of $ q- $Ultraspherical polynomials to bi-univalent functions defined by $ q- $Saigo's fractional integral operators. AIMS Mathematics, 2024, 9(7): 17063-17075. doi: 10.3934/math.2024828
    [10] Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618
  • In this paper, we introduced two novel subclasses of bi-univalent functions, MΣ(α,B(x,ξ)) and HΣ(α,μ,B(x,ξ)), utilizing Lucas-Balancing polynomials. Within these function classes, we established bounds for the Taylor-Maclaurin coefficients |a2| and |a3|, addressing the Fekete-Szegö functional problems specific to functions within these new subclasses. Moreover, we illustrated how our primary findings could lead to various new outcomes through parameter specialization.



    Let A denote the set of all functions f, which are analytic in the open unit disk U={ξ:ξC and |ξ|<1} and has a Taylor-Maclaurin series expansion given by

    f(ξ)=ξ+n=2anξn, (ξU). (1.1)

    Additionally, functions in A are normalized by the conditions f(0)=f(0)1=0. Let S denote the set of all functions fA which are univalent in U. For f,gA, we say f is subordinate to g if there exists a Schwarz function h(ξ) such that h(0)=0, |h(ξ)|<1, and f(ξ)=g(h(ξ)) for ξU. Symbolically, this relationship is denoted as fg or f(ξ)g(ξ) for ξU. Miller et al. [1] state that if the function g is univalent in U, then the subordination can be equivalently expressed as f(0)=g(0) and f(U)g(U). The Koebe one-quarter theorem [2] guarantees the existence of an inverse function, denoted as f1, for any function fS, satisfying the following conditions:

    f1(f(ξ))=ξ,(ξU),f(f1(w))=w,(|w|<r0(f),r0(f)14), (1.2)

    where,

    g(w)=f1(w)=wa2w2+(2a22a3)w3(5a325a2a3+a4)w4+. (1.3)

    A function fA is considered bi-univalent within the domain U if both the function f and its inverse f1 are one-to-one within U. Let Σ denote the set of bi-univalent functions within the domain U, as specified by Eq (1.1).

    Here, we present several examples of functions belonging to the class Σ which have significantly reinvigorated the study of bi-univalent functions in recent years:

    f1(ξ)=ξ1ξf2(ξ)=log(1ξ)andf3(ξ)=12log(1+ξ1ξ),

    with their respective inverses

    f11(w)=w1+wf12(w)=ew1ewandf13(w)=e2w1e2w+1.

    However, the Koebe function denoted by K(ξ)=ξ(1ξ)2 does not belong to the class Σ because it maps the open unit disk UC to K(U)=C(,14], which does not include U.

    The most significant and thoroughly investigated subclasses of S are the class S(δ) of starlike functions of order δ[0,1) and the class, K(δ) of convex functions of order δ in the open unit disk U, which are respectively defined by

    S(δ):={f:fS and Re{ξf(ξ)f(ξ)}>δ,(ξU;0δ<1)}

    and

    K(δ):={f:fS and Re{1+ξf(ξ)f(ξ)}>δ,(ξU;0δ<1)}.

    Fekete and Szegö [3] established a fundamental finding regarding the maximum value of |a3ηa22| within the class of normalized univalent functions defined in (1.1), where η is a real parameter. Subsequent studies have expanded upon this, investigating |a3ηa22| for various classes of functions defined in terms of subordination. Numerous authors have made significant strides in establishing tight coefficient bounds for diverse subclasses of bi-univalent functions, often intertwined with specific polynomial families (see [4,5,6,7,8,9,10,11,12,13]).

    In [14], Behera and Panda introduced a novel integer sequence called Balancing numbers. These numbers are defined by the recurrence relation Bn+1=6BnBn1 for n1, with initial values B0=0 and B1=1. Several researchers have explored these new number sequences, leading to the establishment of various generalizations. Comprehensive information on Lucas-Balancing numbers and their extensions can be found in [15,16,17,18,19,20,21,22,23]. One notable extension is the Lucas Balancing polynomial, which is recursively defined as follows:

    Definition 1.1 (Lucas-Balancing Polynomials, [24]). For any complex number x and integer n2, Lucas-Balancing polynomials are defined recursively as follows:

    Cn(x)=6xCn1(x)Cn2(x), (1.4)

    where the initial conditions are given by:

    C0(x)=1, C1(x)=3x. (1.5)

    Using the recurrence relation (1.4), we can derive the following expressions:

    C2(x)=18x21 C3(x)=108x39x. (1.6)

    Lucas-Balancing polynomials, like other number polynomials, can be derived through certain generating functions. One such generating function is expressed as follows:

    Lemma 1.1. [24] The generating function for Balancing polynomials can be represented as

    B(x,ξ)=n=0Cn(x)ξn=13xξ16xξ+ξ2, (1.7)

    where x is within the range [1,1], and ξ is in the open unit disk U.

    A recently published paper by Hussen and Illafe [25] employs a novel approach utilizing the linear combination of two distinct subclasses, starlike and convex functions, associated with Lucas-Balancing polynomials NλΣ(B(x,z)). They aim to determine the Taylor-Maclaurin coefficients, |a2| and |a3|, while addressing the Fekete-Szegö functional inequality. In this paper, we extend this investigation by exploring alternative subclasses connected with Lucas-Balancing polynomials.

    Lemma 1.2. [2] Let Ω be the class of all analytic functions, and let ωΩ with ω(ξ)=n=1ωnξn,ξD. Then,

    |ω1|1,|ωn|1|ω1|2fornN{1}.

    Embarking on our exploration, we aim to introduce and define a distinct class of bi-univalent functions. This novel subclass, denoted as MΣ(α,B(x,ξ)), will expand our understanding and contribute to the evolving landscape of mathematical analysis in the domain of bi-univalent functions.

    Definition 2.1. A function fΣ given by (1.1), with α[0,1] and x(12,1], is said to be in the class MΣ(α,B(x,ξ)) if the following subordinations are satisfied

    ξf(ξ)f(ξ)+αξ2f(ξ)f(ξ)B(x,ξ) (2.1)

    and

    wg(w)g(w)+αw2g(w)g(w)B(x,w), (2.2)

    where the function g(w)=f1(w) is defined by (1.3) and B(x,ξ) is the generating function of the Lucas-Balancing polynomials given by (1.7).

    Example 2.1. A bi-univalent function fΣ is said to be in the class MΣ(0,B(x,ξ)), if the following subordination conditions hold:

    ξf(ξ)f(ξ)B(x,ξ) (2.3)

    and

    wg(w)g(w)B(x,w), (2.4)

    where the function g=f1 is defined by (1.3).

    Theorem 2.1. Let f given by (1.1) be in the class MΣ(α,B(x,ξ)). Then,

    |a2||C1(x)||C1(x)||(1+4α)(C1(x))2(1+2α)2C2(x)|

    and

    |a3|27x3|9x2(1+4α)(18x21)(1+2α)2|+3x2(1+3α).

    Proof. Given that fMΣ(α,B(x,ξ)), where 0α1, it follows from Eqs (2.1) and (2.2) that

    ξf(ξ)f(ξ)+αξ2f(ξ)f(ξ)=B(x,u(ξ)) (2.5)

    and

    wg(w)g(w)+αw2g(w)g(w)=B(x,v(w)), (2.6)

    where g(w)=f1(w) and u,vΩ are given to be of the form

    u(ξ)=n=1cnξnandv(w)=n=1dnwn. (2.7)

    Utilizing Lemma 1.2 yields the following inequality

    |cn|1 and |dn|1,nN. (2.8)

    By replacing the expression of B(x,ξ) as defined in (1.7) into the respective right-hand sides of Eqs (2.5) and (2.6), we obtain

    B(x,u(ξ))=1+C1(x)c1ξ+[C1(x)c2+C2(x)c21]ξ2+[C1(x)c3+2C2(x)c1c2+C3(x)c31]ξ3+ (2.9)

    and

    B(x,v(w))=1+C1(x)d1w+[C1(x)d2+C2(x)d21]w2+[C1(x)d3+2C2(x)d1d2+C3(x)d31]w3+. (2.10)

    Therefore, Eqs (2.5) and (2.6) become

    1+a2ξ+(2a3a22)ξ2+(a323a2a3+3a4)ξ3++α[2a2ξ+(6a32a22)ξ2+2(a324a2a3+6a4)ξ3]+=1+C1(x)c1ξ+[C1(x)c2+C2(x)c21]ξ2+[C1(x)c3+2C2(x)c1c2+C3(x)c31]ξ3+ (2.11)

    and

    1a2w+(3a222a3)w2+(10a32+12a2a33a4)w3++α[2a2w+(10a226a3)w2+(46a32+52a2a312a4)w3]+=1+C1(x)d1w+[C1(x)d2+C2(x)d21]w2+[C1(x)d3+2C2(x)d1d2+C3(x)d31]w3+. (2.12)

    By equating the coefficients in Eqs (2.11) and (2.12), we obtain

    (1+2α)a2=C1(x)c1, (2.13)
    2(1+3α)a3(1+2α)a22=C1(x)c2+C2(x)c21, (2.14)
    (1+2α)a2=C1(x)d1 (2.15)

    and

    (3+10α)a222(1+3α)a3=C1(x)d2+C2(x)d21. (2.16)

    Utilizing Eqs (2.13) and (2.15) we derive the subsequent equations

    c1=d1 (2.17)

    and

    c21+d21=2(1+2α)2a22(C1(x))2. (2.18)

    Moreover, utilizing Eqs (2.14), (2.16) and (2.18) results in

    a22=(C1(x))3(c2+d2)2[(1+4α)(C1(x))2(1+2α)2C2(x)]. (2.19)

    Utilizing Lemma 1.2 and examining Eqs (2.13) and (2.17), we can deduce

    |a2|2|C1(x)|3|(1+4α)(C1(x))2(1+2α)2C2(x)|, (2.20)

    consequently,

    |a2||C1(x)||C1(x)||(1+4α)(C1(x))2(1+2α)2C2(x)|. (2.21)

    Replacing the expressions for C1(x) and C2(x), as given in (1.5) and (1.6), respectively, into Eq (2.21) results in the following

    |a2|3x3x|9x2(1+4α)(18x21)(1+2α)2|.

    By subtracting Eq (2.16) from Eq (2.14), we obtain

    a3=a22+C1(x)(c2d2)4(1+3α). (2.22)

    This results in the following inequality

    |a3||a2|2+|C1(x)||c2d2|4(1+3α). (2.23)

    Applying Lemma 1.2, utilizing (1.5) and (1.6) we obtain

    |a3|27x3|9x2(1+4α)(18x21)(1+2α)2|+3x2(1+3α). (2.24)

    The proof of Theorem 2.1 is thus concluded.

    Within this section, the utilization of a22 and a3 serves as a crucial tool in establishing the Fekete-Szegö inequality applicable to functions belonging to MΣ(α,B(x,ξ)). This mathematical endeavor leverages these specific coefficients to derive insightful results within this functional space.

    Theorem 3.1. Let f given by (1.1) be in the class MΣ(α,B(x,ξ)). Then,

    |a3ηa22|{3x2(1+4α)if0|h(η)|14(1+3α),6x|h(η)|if|h(η)|14(1+3α),

    where

    h(η)=9x2(1η)2[9x2(1+4α)(18x21)(1+2α)2].

    Proof. Based on Eqs (2.19) and (2.22), we obtain

    a3ηa22=a22+C1(x)(c2d2)4(1+3α)ηa22=(1η)a22+C1(x)(c2d2)4(1+3α)=(1η)(C1(x))3(c2+d2)2[(1+4α)(C1(x))2(1+2α)2C2(x)]+C1(x)(c2d2)4(1+3α)=(C1(x))([h(η)+14(1+3α)]c2+[h(η)14(1+3α)]d2),

    where

    h(η)=(C1(x))2(1η)2[(1+4α)(C1(x))2(1+2α)2C2(x)].

    Then, in view of (1.5), (1.6), and utilizing (2.8), we can conclude that

    |a3ηa22|{3x2(1+4α) if0|h(η)|14(1+3α),6x|h(η)| if|h(η)|14(1+3α).

    The proof of Theorem 3.1 is thus concluded.

    Following our previous discussion, our subsequent step involves introducing a corollary.

    Corollary 3.1. [25] Let f given by (1.1) be in the class MΣ(0,B(x,ξ)). Then,

    |a2|3x3x|19x2|,
    |a3|27x3|19x2|+3x2

    and

    |a3ηa22|{3x2if0|h1(η)|14,6x|h1(η)|if|h1(η)|14,

    where

    h1(η)=9x2(1η)2(19x2).

    In this section, we introduce and define another distinct class of bi-univalent functions. Denoted as HΣ(α,μ,B(x,ξ)), this new subclass enriches our comprehension and advances the domain of bi-univalent functions in mathematical analysis.

    Definition 4.1. A function fΣ given by (1.1), with α,μ[0,1] and x(12,1], is said to be in the class HΣ(α,μ,B(x,ξ)) if the following subordinations are satisfied

    (1α+2μ)f(ξ)ξ+(α2μ)f(ξ)+μξf(ξ)B(x,ξ) (4.1)

    and

    (1α+2μ)g(w)w+(α2μ)g(w)+μwg(w)B(x,w), (4.2)

    where the function g(w)=f1(w) is defined by (1.3) and B(x,ξ) is the generating function of the Lucas-Balancing polynomials given by (1.7).

    Example 4.1. A bi-univalent function fΣ is said to be in the class HΣ(α,0,B(x,ξ)) if the following subordination conditions hold:

    (1α)f(ξ)ξ+αf(ξ)B(x,ξ) (4.3)

    and

    (1α)g(w)w+αg(w)B(x,w), (4.4)

    where the function g=f1 is defined by (1.3).

    Example 4.2. A bi-univalent function fΣ is said to be in the class HΣ(1,0,B(x,ξ)) if the following subordination conditions hold:

    f(ξ)B(x,ξ) (4.5)

    and

    g(w)B(x,w), (4.6)

    where the function g=f1 is defined by (1.3).

    Theorem 4.1. Let fΣ of the form (1.1) be in the class HΣ(α,μ,B(x,ξ)). Then,

    |a2|3x3x|9x2(1+2α+2μ)(18x21)(1+α)2|

    and

    |a3|27x3|9x2(1+2α+2μ)(18x21)(1+α)2|+3x(1+2α+2μ).

    Proof. Assuming f belongs to HΣ(α,μ,B(x,ξ)), where 0α,μ1, Eqs (4.1) and (4.2) imply that

    (1α+2μ)f(ξ)ξ+(α2μ)f(ξ)+μξf(ξ)=B(x,u(ξ)) (4.7)

    and

    (1α+2μ)g(w)w+(α2μ)g(w)+μwg(w)=B(x,v(w)), (4.8)

    where g(w)=f1(w) and u,vΩ are defined in (2.7).

    Upon substituting the definition of B(x,ξ) from (1.7) into the right-hand sides of Eqs (4.7) and (4.8), we obtain

    B(x,u(ξ))=1+C1(x)c1ξ+[C1(x)c2+C2(x)c21]ξ2+[C1(x)c3+2C2(x)c1c2+C3(x)c31]ξ3+ (4.9)

    and

    B(x,v(w))=1+C1(x)d1w+[C1(x)d2+C2(x)d21]w2+[C1(x)d3+2C2(x)d1d2+C3(x)d31]w3+. (4.10)

    Hence, Eqs (4.7) and (4.8) become

    (1α+2μ)(1+a2ξ+a3ξ2+a4ξ3+)+(α2μ)(1+2a2ξ+3a3ξ2+4a4ξ3+)+μξ(2a2+6a3ξ+12a4ξ2+)=1+C1(x)c1ξ+[C1(x)c2+C2(x)c21]ξ2+[C1(x)c3+2C2(x)c1c2+C3(x)c31]ξ3+ (4.11)

    and

    (1α+2μ)(1a2w+(2a22a3)w2(5a325a2a3+a4)w3+)+(α2μ)(12a2w+3(2a22a3)w24(5a325a2a3+a4)w3+)+μξ(2a2+6(2a22a3)w12(5a325a2a3+a4)w2+)=1+C1(x)d1w+[C1(x)d2+C2(x)d21]w2+[C1(x)d3+2C2(x)d1d2+C3(x)d31]w3+. (4.12)

    When equating the coefficients in Eqs (4.11) and (4.12), we get

    (1+α)a2=C1(x)c1, (4.13)
    (1+2α+2μ)a3=C1(x)c2+C2(x)c21, (4.14)
    (1+α)a2=C1(x)d1 (4.15)

    and

    2(1+2α+2μ)a22(1+2α+2μ)a3=C1(x)d2+C2(x)d21. (4.16)

    With the utilization of (4.13) and (4.15), we derive the following equations

    c1=d1 (4.17)

    and

    c21+d21=2(1+α)2a22(C1(x))2. (4.18)

    Additionally, applying Eqs (4.14), (4.16) and (4.18) results in

    a22=(C1(x))3(c2+d2)2[(1+2α+2μ)(C1(x))2(1+α)2C2(x)]. (4.19)

    By employing Lemma 1.2 and analyzing Eqs (4.13) and (4.17), we can deduce

    |a2|2|C1(x)|3|(1+2α+2μ)(C1(x))2(1+α)2C2(x)|, (4.20)

    therefore

    |a2||C1(x)||C1(x)||(1+2α+2μ)(C1(x))2(1+α)2C2(x)|. (4.21)

    When substituting C1(x) and C2(x) as provided in (1.5) and (1.6) into Eq (4.21), it results in the following expression

    |a2|3x3x|9x2(1+2α+2μ)(18x21)(1+α)2|.

    By subtracting Eq (4.16) from Eq (4.14), we obtain:

    a3=a22+C1(x)(c2d2)2(1+2α+2μ). (4.22)

    Consequently, this results in the following inequality

    |a3||a2|2+|C1(x)||c2d2|2(1+2α+2μ). (4.23)

    By employing Lemma 1.2 and utilizing (1.5) and (1.6), we obtain

    |a3|27x3|9x2(1+2α+2μ)(18x21)(1+α)2|+3x(1+2α+2μ). (4.24)

    The proof of Theorem 4.1 is thus concluded.

    In this section, the utilization of the values of a22 and a3 assists in deriving the Fekete-Szegö inequality applicable to functions fHΣ(α,μ,B(x,ξ)).

    Theorem 5.1. Let fΣ given by the form (1.1) be in the class HΣ(α,μ,B(x,ξ)). Then,

    |a3ηa22|{3x1+2α+2μif0|h(η)|12(1+2α+2μ),6x|h(η)|if|h(η)|12(1+2α+2μ),

    where

    h(η)=9x2(1η)2[9x2(1+2α+2μ)(18x21)(1+α)2].

    Proof. Equations (4.19) and (4.22) yield

    a3ηa22=a22+C1(x)(c2d2)2(1+2α+2μ)ηa22=(1η)a22+C1(x)(c2d2)2(1+2α+2μ)=(1η)(C1(x))3(c2+d2)2[(1+2α+2μ)(C1(x))2(1+α)2C2(x)]+C1(x)(c2d2)2(1+2α+2μ)=(C1(x))([h(η)+12(1+2α+2μ)]c2+[h(η)12(1+2α+2μ)]d2),

    where

    h(η)=(C1(x))2(1η)2[(1+2α+2μ)(C1(x))2(1+α)2C2(x)].

    Considering (1.5), (1.6) and applying (2.8), we can deduce that

    |a3ηa22|{3x1+2α+2μ if0|h(η)|12(1+2α+2μ),6x|h(η)| if|h(η)|12(1+2α+2μ).

    The proof of Theorem 5.1 is thus concluded.

    Corollary 5.1. Let fΣ given by the form (1.1) be in the class HΣ(α,0,B(x,ξ)). Then,

    |a2|3x3x|9x2(1+2α)(18x21)(1+α)2|,
    |a3|27x3|9x2(1+2α)(18x21)(1+α)2|+3x1+2α

    and

    |a3ηa22|{3x1+2αif0|h2(η)|12(1+2α),6x|h2(η)|if|h2(η)|12(1+2α),

    where

    h2(η)=9x2(1η)2[9x2(1+2α)(18x21)(1+α)2].

    Corollary 5.2. Let fΣ given by the form (1.1) be in the class HΣ(1,0,B(x,ξ)). Then

    |a2|3x3x|445x2|,
    |a3|27x3|445x2|+x3

    and

    |a3ηa22|{x3if0|h3(η)|16,6x|h3(η)|if|h3(η)|16,

    where

    h3(η)=9x2(1η)2(445x2).

    We introduced two novel subclasses of bi-univalent functions within the open unit disk U, namely MΣ(α,B(x,ξ)) and HΣ(α,μ,B(x,ξ)), employing Lucas-Balancing polynomials. Our investigation delves into the initial estimates of the Taylor-Maclaurin coefficients |a2| and |a3|.

    Furthermore, by utilizing of a22 and a3 a crucial tool, we established the Fekete-Szegö inequalities |a3ηa22| for functions belonging to MΣ(α,B(x,ξ)) and HΣ(α,μ,B(x,ξ)).

    Moreover, by appropriately specializing the parameter, we obtained new results for the subclasses MΣ(0,B(x,ξ)), HΣ(α,0,B(x,ξ)), and HΣ(1,0,B(x,ξ)), defined in Examples (2.1), (4.1), and (4.2), respectively. These results establish connections between these subclasses and the Lucas-Balancing Polynomials. Utilizing these subclasses, we derive estimations for the Taylor-Maclaurin coefficients |a2| and |a3|, and investigate the Fekete-Szegö inequalities.

    A. H., M. M. and A. A.: Conceptualization; A. H. and M. M.: Data curation; A. H. and A.A.: Formal analysis; A. H., M. M. and A. A.: Investigation; A. H. and M. M.: Methodology; A. H. and M. M.: Resources; A. H., M. M. and A. A.: Validation; A. H., M. M. and A. A.: Visualization; A. H. and A. A.: Writing original draft; A. H. and A. A.: Writing review & editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflict of interest.



    [1] S. S. Miller, P. T. Mocanu, Differential subordinations, CRC Press, 2000. https://doi.org/10.1201/9781482289817
    [2] P. L. Duren, Univalent Functions, New York: Berlin, 1983.
    [3] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc., 1 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85
    [4] A. Hussen, A. Zeyani, Coefficients and Fekete-Szegö functional estimations of Bi-Univalent subclasses based on gegenbauer polynomials, Mathematics, 11 (2023), 2852. https://doi.org/10.3390/math11132852 doi: 10.3390/math11132852
    [5] F. Yousef, S. Alroud, M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Bol. Soc. Mat., 26 (2020), 329–339. https://doi.org/10.1007/s40590-019-00245-3 doi: 10.1007/s40590-019-00245-3
    [6] M. Illafe, A. Amourah, M. H. Mohd, Coefficient estimates and Fekete-Szegö functional inequalities for a certain subclass of analytic and bi-univalent functions, Axioms, 11 (2022), 147. https://doi.org/10.3390/axioms11040147 doi: 10.3390/axioms11040147
    [7] M. Illafe, F. Yousef, M. H. Mohd, S. Supramaniam, Initial coefficients wstimates and Fekete-Szegö inequality problem for a general subclass of Bi-Univalent functions defined by subordination, Axioms, 12 (2023), 235. https://doi.org/10.3390/axioms12030235 doi: 10.3390/axioms12030235
    [8] F. Yousef, B. A. Frasin, T. Al-Hawary, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, Filomat, 32 (2018), 3229–3236. https://doi.org/10.2298/FIL1809229Y doi: 10.2298/FIL1809229Y
    [9] F. Yousef, S. Alroud, M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Anal. Math. Phys., 11 (2021), 58. https://doi.org/10.1007/s13324-021-00491-7 doi: 10.1007/s13324-021-00491-7
    [10] F. Yousef, A. Amourah, B. A. Frasin, T. Bulboacă, An avant-Garde construction for subclasses of analytic bi-univalent functions, Axioms, 11 (2022), 267. https://doi.org/10.3390/axioms11060267 doi: 10.3390/axioms11060267
    [11] A. Hussen, An application of the Mittag-Leffler-type borel distribution and gegenbauer polynomials on a certain subclass of Bi-Univalent functions, Heliyon, 2024. https://doi.org/10.1016/j.heliyon.2024.e31469 doi: 10.1016/j.heliyon.2024.e31469
    [12] B. A. Frasin, T. Al-Hawary, F. Yousef, I. Aldawish, On subclasses of analytic functions associated with Struve functions, Nonlinear Funct. Anal. Appl., 27 (2022), 99-110. https://doi.org/10.22771/NFAA.2022.27.01.06 doi: 10.22771/NFAA.2022.27.01.06
    [13] I. Aktaş, İ. Karaman, On some new subclasses of bi-univalent functions defined by Balancing polynomials, Karamanoğlu Mehmetbey Üniv. Mühendislik ve Doğa Bilimleri Derg., 5 (2023), 25–32.
    [14] A. Behera, G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98–105.
    [15] P. K. Ray, Balancing and Lucas-balancing sums by matrix methods, Math. Reports, 17 (2015), 225–233.
    [16] K. Liptai, F. Luca, Á. Pintér, L. Szalay, Generalized balancing numbers, Indagationes Math., 20 (2009), 87–100. https://doi.org/10.1016/S0019-3577(09)80005-0 doi: 10.1016/S0019-3577(09)80005-0
    [17] R. K. Davala, G. K. Panda, On sum and ratio formulas for balancing numbers, J. Ind. Math. Soc., 82 (2015), 23–32.
    [18] R. Frontczak, A note on hybrid convolutions involving balancing and Lucas-balancing numbers, Appl. Math. Sci., 12 (2018), 1201–1208. https://doi.org/10.12988/ams.2018.87111 doi: 10.12988/ams.2018.87111
    [19] R. Frontczak, Sums of balancing and Lucas-balancing numbers with binomial coefficients, Int. J. Math. Anal., 12 (2018), 585–594. https://doi.org/10.12988/ijma.2018.81067 doi: 10.12988/ijma.2018.81067
    [20] B. K. Patel, N. Irmak, P. K. Ray, Incomplete balancing and Lucas-balancing numbers, Math. Rep., 20 (2018), 59–72.
    [21] T. Komatsu, G. K. Panda, On several kinds of sums of balancing numbers, arXiv, 153 (2020), 127–148. https://doi.org/10.48550/arXiv.1608.05918 doi: 10.48550/arXiv.1608.05918
    [22] G. K. Panda, T. Komatsu, R. K. Davala, Reciprocal sums of sequences involving balancing and lucas-balancing numbers, Math. Rep., 20 (2018), 201–214.
    [23] P. K. Ray, J. Sahu, Generating functions for certain balancing and lucas-balancing numbers, Palestine J. Math., 5 (2016), 122–129.
    [24] R. Frontczak, On balancing polynomials, Appl. Math. Sci., 13 (2019), 57–66. https://doi.org/10.12988/ams.2019.812183 doi: 10.12988/ams.2019.812183
    [25] A. Hussen, M. Illafe, Coefficient bounds for a certain subclass of Bi-Univalent functions associated with Lucas-Balancing polynomials, Mathematics, 11 (2023), 4941. https://doi.org/10.3390/math11244941 doi: 10.3390/math11244941
  • This article has been cited by:

    1. Mohamed Illafe, Maisarah Haji Mohd, Feras Yousef, Shamani Supramaniam, Bounds for the Second Hankel Determinant of a General Subclass of Bi-Univalent Functions, 2024, 9, 2455-7749, 1226, 10.33889/IJMEMS.2024.9.5.065
    2. Ala Amourah, Basem Frasin, Jamal Salah, Feras Yousef, Subfamilies of Bi-Univalent Functions Associated with the Imaginary Error Function and Subordinate to Jacobi Polynomials, 2025, 17, 2073-8994, 157, 10.3390/sym17020157
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1443) PDF downloads(38) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog