Research article

Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials

  • Received: 20 December 2023 Revised: 13 April 2024 Accepted: 26 April 2024 Published: 28 May 2024
  • MSC : 30C45

  • In this paper, we introduced two novel subclasses of bi-univalent functions, $ \mathcal{M}_{\Sigma}(\alpha, \mathcal{B}(x, \xi)) $ and $ \mathcal{H}_{\Sigma}(\alpha, \mu, \mathcal{B}(x, \xi)) $, utilizing Lucas-Balancing polynomials. Within these function classes, we established bounds for the Taylor-Maclaurin coefficients $ \left|a_2\right| $ and $ \left|a_3\right| $, addressing the Fekete-Szegö functional problems specific to functions within these new subclasses. Moreover, we illustrated how our primary findings could lead to various new outcomes through parameter specialization.

    Citation: Abdulmtalb Hussen, Mohammed S. A. Madi, Abobaker M. M. Abominjil. Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials[J]. AIMS Mathematics, 2024, 9(7): 18034-18047. doi: 10.3934/math.2024879

    Related Papers:

  • In this paper, we introduced two novel subclasses of bi-univalent functions, $ \mathcal{M}_{\Sigma}(\alpha, \mathcal{B}(x, \xi)) $ and $ \mathcal{H}_{\Sigma}(\alpha, \mu, \mathcal{B}(x, \xi)) $, utilizing Lucas-Balancing polynomials. Within these function classes, we established bounds for the Taylor-Maclaurin coefficients $ \left|a_2\right| $ and $ \left|a_3\right| $, addressing the Fekete-Szegö functional problems specific to functions within these new subclasses. Moreover, we illustrated how our primary findings could lead to various new outcomes through parameter specialization.



    加载中


    [1] S. S. Miller, P. T. Mocanu, Differential subordinations, CRC Press, 2000. https://doi.org/10.1201/9781482289817
    [2] P. L. Duren, Univalent Functions, New York: Berlin, 1983.
    [3] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc., 1 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85
    [4] A. Hussen, A. Zeyani, Coefficients and Fekete-Szegö functional estimations of Bi-Univalent subclasses based on gegenbauer polynomials, Mathematics, 11 (2023), 2852. https://doi.org/10.3390/math11132852 doi: 10.3390/math11132852
    [5] F. Yousef, S. Alroud, M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Bol. Soc. Mat., 26 (2020), 329–339. https://doi.org/10.1007/s40590-019-00245-3 doi: 10.1007/s40590-019-00245-3
    [6] M. Illafe, A. Amourah, M. H. Mohd, Coefficient estimates and Fekete-Szegö functional inequalities for a certain subclass of analytic and bi-univalent functions, Axioms, 11 (2022), 147. https://doi.org/10.3390/axioms11040147 doi: 10.3390/axioms11040147
    [7] M. Illafe, F. Yousef, M. H. Mohd, S. Supramaniam, Initial coefficients wstimates and Fekete-Szegö inequality problem for a general subclass of Bi-Univalent functions defined by subordination, Axioms, 12 (2023), 235. https://doi.org/10.3390/axioms12030235 doi: 10.3390/axioms12030235
    [8] F. Yousef, B. A. Frasin, T. Al-Hawary, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, Filomat, 32 (2018), 3229–3236. https://doi.org/10.2298/FIL1809229Y doi: 10.2298/FIL1809229Y
    [9] F. Yousef, S. Alroud, M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Anal. Math. Phys., 11 (2021), 58. https://doi.org/10.1007/s13324-021-00491-7 doi: 10.1007/s13324-021-00491-7
    [10] F. Yousef, A. Amourah, B. A. Frasin, T. Bulboacă, An avant-Garde construction for subclasses of analytic bi-univalent functions, Axioms, 11 (2022), 267. https://doi.org/10.3390/axioms11060267 doi: 10.3390/axioms11060267
    [11] A. Hussen, An application of the Mittag-Leffler-type borel distribution and gegenbauer polynomials on a certain subclass of Bi-Univalent functions, Heliyon, 2024. https://doi.org/10.1016/j.heliyon.2024.e31469 doi: 10.1016/j.heliyon.2024.e31469
    [12] B. A. Frasin, T. Al-Hawary, F. Yousef, I. Aldawish, On subclasses of analytic functions associated with Struve functions, Nonlinear Funct. Anal. Appl., 27 (2022), 99-110. https://doi.org/10.22771/NFAA.2022.27.01.06 doi: 10.22771/NFAA.2022.27.01.06
    [13] I. Aktaş, İ. Karaman, On some new subclasses of bi-univalent functions defined by Balancing polynomials, Karamanoğlu Mehmetbey Üniv. Mühendislik ve Doğa Bilimleri Derg., 5 (2023), 25–32.
    [14] A. Behera, G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98–105.
    [15] P. K. Ray, Balancing and Lucas-balancing sums by matrix methods, Math. Reports, 17 (2015), 225–233.
    [16] K. Liptai, F. Luca, Á. Pintér, L. Szalay, Generalized balancing numbers, Indagationes Math., 20 (2009), 87–100. https://doi.org/10.1016/S0019-3577(09)80005-0 doi: 10.1016/S0019-3577(09)80005-0
    [17] R. K. Davala, G. K. Panda, On sum and ratio formulas for balancing numbers, J. Ind. Math. Soc., 82 (2015), 23–32.
    [18] R. Frontczak, A note on hybrid convolutions involving balancing and Lucas-balancing numbers, Appl. Math. Sci., 12 (2018), 1201–1208. https://doi.org/10.12988/ams.2018.87111 doi: 10.12988/ams.2018.87111
    [19] R. Frontczak, Sums of balancing and Lucas-balancing numbers with binomial coefficients, Int. J. Math. Anal., 12 (2018), 585–594. https://doi.org/10.12988/ijma.2018.81067 doi: 10.12988/ijma.2018.81067
    [20] B. K. Patel, N. Irmak, P. K. Ray, Incomplete balancing and Lucas-balancing numbers, Math. Rep., 20 (2018), 59–72.
    [21] T. Komatsu, G. K. Panda, On several kinds of sums of balancing numbers, arXiv, 153 (2020), 127–148. https://doi.org/10.48550/arXiv.1608.05918 doi: 10.48550/arXiv.1608.05918
    [22] G. K. Panda, T. Komatsu, R. K. Davala, Reciprocal sums of sequences involving balancing and lucas-balancing numbers, Math. Rep., 20 (2018), 201–214.
    [23] P. K. Ray, J. Sahu, Generating functions for certain balancing and lucas-balancing numbers, Palestine J. Math., 5 (2016), 122–129.
    [24] R. Frontczak, On balancing polynomials, Appl. Math. Sci., 13 (2019), 57–66. https://doi.org/10.12988/ams.2019.812183 doi: 10.12988/ams.2019.812183
    [25] A. Hussen, M. Illafe, Coefficient bounds for a certain subclass of Bi-Univalent functions associated with Lucas-Balancing polynomials, Mathematics, 11 (2023), 4941. https://doi.org/10.3390/math11244941 doi: 10.3390/math11244941
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(957) PDF downloads(28) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog