Research article

Convergence and data dependence results of the nonlinear Volterra integral equation by the Picard's three step iteration

  • Received: 20 March 2024 Revised: 02 May 2024 Accepted: 09 May 2024 Published: 28 May 2024
  • MSC : 45D05, 47H10

  • Picard's three step iteration algorithm was one of the iteration algorithms that was recently shown to be faster than some other iterative algorithms in the existing literature. The purpose of this paper was to study using this iteration algorithm for the solution of nonlinear Volterra integral equations. It was investigated that the sequences obtained from this iteration algorithm converged to the solution of nonlinear Volterra integral equations. Moreover, data dependence was obtained for nonlinear Volterra integral equations. An example was given that confirmed the applicability of the newly proven theorems.

    Citation: Lale Cona. Convergence and data dependence results of the nonlinear Volterra integral equation by the Picard's three step iteration[J]. AIMS Mathematics, 2024, 9(7): 18048-18063. doi: 10.3934/math.2024880

    Related Papers:

  • Picard's three step iteration algorithm was one of the iteration algorithms that was recently shown to be faster than some other iterative algorithms in the existing literature. The purpose of this paper was to study using this iteration algorithm for the solution of nonlinear Volterra integral equations. It was investigated that the sequences obtained from this iteration algorithm converged to the solution of nonlinear Volterra integral equations. Moreover, data dependence was obtained for nonlinear Volterra integral equations. An example was given that confirmed the applicability of the newly proven theorems.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [2] V. Berinde, Iterative approximation of fixed points, Berlin: Springer, 2007. https://doi.org/10.1007/978-3-540-72234-2
    [3] I. K. Argyros, S. Regmi, Undergraduate research at Cameron University on iterative procedures in Banach and other spaces, New York: Nova Science Publisher, 2019.
    [4] D. D. Bruns, J. E. Bailey, Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state, Chem. Eng. Sci., 32 (1977), 257–264. https://doi.org/10.1016/0009-2509(77)80203-0 doi: 10.1016/0009-2509(77)80203-0
    [5] K. Köklü, Integral equations, İstanbul: Papatya Publishing, 2018.
    [6] B. Musayev, M. Alp, Functional analysis, Kütahya: Balcı Publications, 2000.
    [7] S. Noeiaghdam, D. N. Sidorov, V. S. Sizikov, N. A. Sidorov, Control of accuracy on Taylor-collocation method to solve the weakly regular Volterra integral equations of the first kind by using the CESTAC method, Appl. Comput. Math., 19 (2020), 87–105.
    [8] S. Noeiaghdam, D. Sidorov, A. M. Wazwaz, N. Sidorov, V. Sizikov, The numerical validation of the Adomian decomposition method for solving Volterra integral equation with discontinuous kernel using the CESTAC method, Mathematics, 9 (2021), 260. https://doi.org/10.3390/math9030260 doi: 10.3390/math9030260
    [9] A. N. Tynda, S. Noeiaghdam, D. Sidorov, Polynomial spline collocation method for solving weakly regular Volterra integral equations of the first kind, The Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 62–79. https://doi.org/10.26516/1997-7670.2022.39.62 doi: 10.26516/1997-7670.2022.39.62
    [10] S. Noeiaghdam, D. Sidorov, A, Dereglea, A novel numerical optimality technique to find the optimal results of Volterra integral equation of the second kind with discontinuous kernel, Appl. Numer. Math., 186 (2023), 202–212. https://doi.org/10.1016/j.apnum.2023.01.011 doi: 10.1016/j.apnum.2023.01.011
    [11] É. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pure. Appl., 6 (1890), 145–210.
    [12] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
    [13] M. A. Krasnosel'skii, Two comments on the method of successive approximations, Usp. Math. Nauk, 10 (1955), 123–127.
    [14] H. Schaefer, Über die methode sukzessiver approximationen, Jahresbericht der Deutschen Mathematiker-Vereinigung, 59 (1957), 131–140.
    [15] W. A. Kirk, On successive approximations for nonexpansive mappings in Banach spaces, Glasgow Math. J., 12 (1971), 6–9. https://doi.org/10.1017/S0017089500001063 doi: 10.1017/S0017089500001063
    [16] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
    [17] X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc., 113 (1991), 727–731. https://doi.org/10.2307/2048608 doi: 10.2307/2048608
    [18] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
    [19] B. E. Rhoades, Ş. M. Şoltuz, The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Anal. Theor., 58 (2004), 219–228. https://doi.org/10.1016/j.na.2003.11.013 doi: 10.1016/j.na.2003.11.013
    [20] R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex A., 8 (2007), 61.
    [21] Ş. M. Şoltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl., 2008 (2008), 242916. https://doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916
    [22] M. O. Olatinwo, C. O. Imoru, Some convergence results for the Jungck-Mann and the Jungck-Ishikawa iteration processes in the class of generalized Zamfirescu operators, Acta Math. Univ. Comen., 77 (2008), 299–304.
    [23] S. Thianwan, Common fixed points of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space, J. Comput. Appl. Math., 224 (2009), 688–695. https://doi.org/10.1016/j.cam.2008.05.051 doi: 10.1016/j.cam.2008.05.051
    [24] D. R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theor., 12 (2011), 187–204.
    [25] R. Chugh, V. Kumar, S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, Am. J. Comput. Math., 2 (2012), 345–357. https://doi.org/10.4236/ajcm.2012.24048 doi: 10.4236/ajcm.2012.24048
    [26] R. Chugh, S. Kumar, On the stability and strong convergence for Jungck-Agarwal et al. iteration procedure, Int. J. Comput. Appl., 64 (2013), 39–44. https://doi.org/10.5120/10650-5412 doi: 10.5120/10650-5412
    [27] I. Karahan, M. Özdemir, A general iterative method for approximation of fixed points and their applications, Adv. Fixed Point Theor., 3 (2013), 510–526.
    [28] S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 2013 (2013), 69. https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69
    [29] M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesn., 66 (2014), 223–234.
    [30] D. Thakur, B. S. Thakur, M. Postolache, New iteration scheme for numerical reckoning fixed points of nonexpansive mappings, J. Inequal. Appl., 2014 (2014), 328. https://doi.org/10.1186/1029-242X-2014-328 doi: 10.1186/1029-242X-2014-328
    [31] F. Gürsoy, V. Karakaya, B. E. Rhoades, Data dependence results of new multi-step and S-iterative schemes for contractive-like operators, Fixed Point Theory Appl., 2013 (2013), 76. https://doi.org/10.1186/1687-1812-2013-76 doi: 10.1186/1687-1812-2013-76
    [32] F. Gürsoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, 2014. https://doi.org/10.48550/arXiv.1403.2546
    [33] F. Gürsoy, V. Karakaya, Some convergence and stability results for two new Kirk type hybrid fixed point iterative algorithms, J. Funct. Space., 2014 (2014), 684191. https://doi.org/10.1155/2014/684191 doi: 10.1155/2014/684191
    [34] F. Gürsoy, V. Karakaya, B. E. Rhoades, Some convergence and stability results for the Kirk multistep and Kirk-SP fixed point iterative algorithms, Abstract Appl. Anal., 2014 (2014), 806537. https://doi.org/10.1155/2014/806537 doi: 10.1155/2014/806537
    [35] F. Gürsoy, A Picard-S iterative method for approximating fixed point of weak-contraction mappings, Filomat, 30 (2016), 2829–2845. https://doi.org/10.2298/FIL1610829G doi: 10.2298/FIL1610829G
    [36] V. Karakaya, Y. Atalan, K. Doğan, N. E. H. Bouzara, Some fixed point results for a new three steps iteration process in Banach spaces, Fixed Point Theor., 18 (2017), 625–640. https://doi.org/10.24193/fpt-ro.2017.2.50 doi: 10.24193/fpt-ro.2017.2.50
    [37] Y. Atalan, V. Karakaya, Iterative solution of functional Volterra-Fredholm integral equation with deviating argument, J. Nonlinear Convex A., 18 (2017), 675–684.
    [38] K. Ullah, M. Arshad, On different results for the new three step iteration process in Banach spaces. Springer Plus, 5 (2016), 1616. https://doi.org/10.1186/s40064-016-3056-x doi: 10.1186/s40064-016-3056-x
    [39] K. Ullah, M. Arshad, New iteration process and numerical reckoning fixed points in Banach space, U. Politeh. Buch. Ser. A, 79 (2017), 113–122.
    [40] F. Ali, J. Ali, R. Rodriguez-Lopez, Approximation of fixed points and the solution of a nonlinear integral equation, Nonlinear Funct. Anal. Appl., 26 (2021), 869–885. https://doi.org/10.22771/nfaa.2021.26.05.01 doi: 10.22771/nfaa.2021.26.05.01
    [41] L. Cona, K. Şengul, On data dependency and solutions of nonlinear Fredholm integral equations with the three-step iteration method, Ikonion J. Math., 5 (2023), 53–64. https://doi.org/10.54286/ikjm.1303219 doi: 10.54286/ikjm.1303219
    [42] L. Cona, K. Şengul, Solutions of linear Fredholm integral equations with the three-step iteration method, Sigma J. Eng. Nat. Sci., 42 (2024), 245−251. https://doi.org/10.14744/sigma.2024.00020 doi: 10.14744/sigma.2024.00020
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(452) PDF downloads(69) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog